Skip to content
2000
Volume 31, Issue 10
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Cancer is a deadly disease that has claimed millions of lives worldwide. Traditional cancer treatments, such as chemotherapy and radiation, have been used for many years but have become less favored due to drug resistance, lack of tumor selectivity, high costs, and various side effects, such as fatigue and hair loss. Many studies have reported that animal venoms, such as those from snakes, scorpions, and bees, contain bioactive peptides that can be synthesized into anti-cancer peptides (ACPs), which offer a potential alternative to traditional cancer therapies. Apitherapy is an area of growing interest for the development of new cancer treatments using bee venom, which is a complex mixture of biologically active peptides, enzymes, bioactive amines, and non-peptide components that have been found to have anti-cancer properties. By leveraging these bioactive peptides, researchers could develop ACPs that are more targeted towards cancer cells, reducing the risk of adverse side effects and improving patient outcomes. The use of bee venom components in targeting cancer could provide a more selective, effective, and affordable approach to cancer therapy. While further research is needed, the potential benefits of using bee venom components in cancer therapy are significant and could help improve the lives of cancer patients worldwide. This study aims to review the components of bee venom as potential cancer treatments.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665339355241008104141
2024-11-15
2025-01-31
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. DillekåsH. RogersM.S. StraumeO. Are 90% of deaths from cancer caused by metastases?Cancer Med.20198125574557610.1002/cam4.247431397113
    [Google Scholar]
  4. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.1034322663
    [Google Scholar]
  5. MarqusS. PirogovaE. PivaT.J. Evaluation of the use of therapeutic peptides for cancer treatment.J. Biomed. Sci.20172412110.1186/s12929‑017‑0328‑x28320393
    [Google Scholar]
  6. GuptaS. KapoorP. ChaudharyK. GautamA. KumarR. RaghavaG.P.S. RaghavaG.P. Open Source Drug Discovery Consortium In silico approach for predicting toxicity of peptides and proteins.PLoS One201389e7395710.1371/journal.pone.007395724058508
    [Google Scholar]
  7. SoonT.N. ChiaA.Y.Y. YapW.H. TangY.Q. Anticancer mechanisms of bioactive peptides.Protein Pept. Lett.202027982383010.2174/092986652766620040910274732271692
    [Google Scholar]
  8. SoonT.N. ChiaA.Y.Y. YapW.H. TangY.Q. Animal Venom-derived Antimicrobial Peptides: Novel and Improved Weapon for Cancer Treatment Malaysian Journal for Biochemistry &.Mol. Biol.202018
    [Google Scholar]
  9. QazilbashM.H. WiederE. ThallP.F. WangX. RiosR. LuS. KanodiaS. RuisaardK.E. GiraltS.A. EsteyE.H. CortesJ. KomanduriK.V. Clise-DwyerK. AlatrashG. MaQ. ChamplinR.E. MolldremJ.J. PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies.Leukemia201731369770410.1038/leu.2016.25427654852
    [Google Scholar]
  10. Al ShaerD. Al MusaimiO. AlbericioF. de la TorreB.G. 2021 FDA tides (peptides and oligonucleotides) harvest.Pharmaceuticals2022152222
    [Google Scholar]
  11. a WijesingheA. KumariS. BoothV. Conjugates for use in peptide therapeutics: A systematic review and meta-analysis.PLoS One2022173e025575310.1371/journal.pone.025575335259149
    [Google Scholar]
  12. b ZhangH. ZhangY. ZhangC. YuH. MaY. LiZ. ShiN. Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules.Pharmaceutics2023158209310.3390/pharmaceutics1508209337631307
    [Google Scholar]
  13. MaR. MahadevappaR. KwokH.F. Venom-based peptide therapy: insights into anti-cancer mechanism.Oncotarget201785910090810093010.18632/oncotarget.2174029246030
    [Google Scholar]
  14. ChatterjeeB. Animal venoms have potential to treat cancer.Curr. Top. Med. Chem.201918302555256610.2174/156802661966618122112081730574852
    [Google Scholar]
  15. BleumerI. KnuthA. OosterwijkE. HofmannR. VargaZ. LamersC. KruitW. MelchiorS. MalaC. UllrichS. MulderP.D. MuldersP F A. BeckJ. A phase II trial of chimeric monoclonal antibody G250 for advanced renal cell carcinoma patients.Br. J. Cancer200490598599010.1038/sj.bjc.660161714997194
    [Google Scholar]
  16. WangC. ChenT. ZhangN. YangM. LiB. LüX. CaoX. LingC. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB.J. Biol. Chem.200928463804381310.1074/jbc.M80719120019074436
    [Google Scholar]
  17. ValerioL.G.Jr Application of advanced in silico methods for predictive modeling and information integration.Expert Opin. Drug Metab. Toxicol.20128439539810.1517/17425255.2012.66463622432718
    [Google Scholar]
  18. TyagiA. KapoorP. KumarR. ChaudharyK. GautamA. RaghavaG.P.S. In silico models for designing and discovering novel anticancer peptides.Sci. Rep.201331298410.1038/srep0298424136089
    [Google Scholar]
  19. El BakaryN.M. AlsharkawyA.Z. ShouaibZ.A. BarakatE.M.S. Role of bee venom and melittin on restraining angiogenesis and metastasis in γ-irradiated solid ehrlich carcinoma-bearing mice.Integr. Cancer Ther.202019447610.1177/153473542094447632735464
    [Google Scholar]
  20. GajskiG. LeonovaE. SjaksteN. Bee venom: Composition and anticancer properties.Toxins2024163117
    [Google Scholar]
  21. JungG.B. HuhJ.E. LeeH.J. KimD. LeeG.J. ParkH.K. LeeJ.D. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy.Biomed. Opt. Express20189115703571810.1364/BOE.9.00570330460157
    [Google Scholar]
  22. FeitelsonM.A. ArzumanyanA. KulathinalR.J. BlainS.W. HolcombeR.F. MahajnaJ. MarinoM. Martinez-ChantarM.L. NawrothR. Sanchez-GarciaI. SharmaD. SaxenaN.K. SinghN. VlachostergiosP.J. GuoS. HonokiK. FujiiH. GeorgakilasA.G. BilslandA. AmedeiA. NiccolaiE. AminA. AshrafS.S. BoosaniC.S. GuhaG. CirioloM.R. AquilanoK. ChenS. MohammedS.I. AzmiA.S. BhaktaD. HalickaD. KeithW.N. NowsheenS. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets.Semin Cancer Biol.2015S25S54
    [Google Scholar]
  23. KimM. KangN. KoS. ParkJ. ParkE. ShinD. KimS. LeeS. LeeJ. LeeS. HaE. JeonS. ParkY. Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant Acinetobacter baumannii.Int. J. Mol. Sci.20181910304110.3390/ijms1910304130301180
    [Google Scholar]
  24. SamanH. RazaS.S. UddinS. RasulK. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches.Cancers (Basel)2020125117210.3390/cancers1205117232384792
    [Google Scholar]
  25. HuhJ.E. KangJ.W. NamD. BaekY.H. ChoiD.Y. ParkD.S. LeeJ.D. Melittin suppresses VEGF-A-induced tumor growth by blocking VEGFR-2 and the COX-2-mediated MAPK signaling pathway.J. Nat. Prod.201275111922192910.1021/np300446c23110475
    [Google Scholar]
  26. BakareO.O. GokulA. WuR. NiekerkL.A. KleinA. KeysterM. Biomedical relevance of novel anticancer peptides in the sensitive treatment of cancer.Biomolecules2021118112010.3390/biom1108112034439786
    [Google Scholar]
  27. TorneselloA.L. BorrelliA. BuonaguroL. BuonaguroF.M. TorneselloM.L. Antimicrobial peptides as anticancer agents: Functional properties and biological activities.Molecules20202512285010.3390/molecules2512285032575664
    [Google Scholar]
  28. XieM. LiuD. YangY. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification.Open Biol.202010720000410.1098/rsob.20000432692959
    [Google Scholar]
  29. TanuS. PrincyC. SangeetaS. Antimicrobial Peptides: Mechanism of Action.Insights on Antimicrobial Peptides. ShymaaE. JorgeM-S. AnnaS. IntechOpen2022
    [Google Scholar]
  30. PandidanS. MechlerA. Nano-viscosimetry analysis of the membrane disrupting action of the bee venom peptide melittin.Sci. Rep.2019911084110.1038/s41598‑019‑47325‑y31346251
    [Google Scholar]
  31. YavariM. SalesiZ. DerakhtiA. Melittin and breast cancer a brief review of the evidence.J. Nurs. Patient Saf.20201001007
    [Google Scholar]
  32. Soltan-AlinejadP. VahediM. TurkiH. SoltaniA. A comprehensive entomological survey and evaluation of the efficacy of different therapies on a suspected delusional parasitosis case.Brain Behav.2021111e0194510.1002/brb3.194533174366
    [Google Scholar]
  33. RadyI. SiddiquiI.A. RadyM. MukhtarH. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy.Cancer Lett.2017402163110.1016/j.canlet.2017.05.01028536009
    [Google Scholar]
  34. DuffyC. SorollaA. WangE. GoldenE. WoodwardE. DavernK. HoD. JohnstoneE. PflegerK. RedfernA. IyerK.S. BaerB. BlancafortP. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer.NPJ Precis. Oncol.2020412410.1038/s41698‑020‑00129‑032923684
    [Google Scholar]
  35. ParkM.H. ChoiM.S. KwakD.H. OhK.W. YoonD.Y. HanS.B. SongH.S. SongM.J. HongJ.T. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB.Prostate201171880181210.1002/pros.2129621456063
    [Google Scholar]
  36. ShawP. KumarN. HammerschmidD. Privat-MaldonadoA. DewildeS. BogaertsA. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy.Cancers (Basel)2019118110910.3390/cancers1108110931382579
    [Google Scholar]
  37. AlizadehnohiM. NabiuniM. NazariZ. SafaeinejadZ. IrianS. The synergistic cytotoxic effect of cisplatin and honey bee venom on human ovarian cancer cell line A2780cp.J. Venom Res.20123222723301148
    [Google Scholar]
  38. JoM. ParkM.H. KolliparaP.S. AnB.J. SongH.S. HanS.B. KimJ.H. SongM.J. HongJ.T. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway.Toxicol. Appl. Pharmacol.20122581728110.1016/j.taap.2011.10.00922027265
    [Google Scholar]
  39. LiuS. YuM. HeY. XiaoL. WangF. SongC. SunS. LingC. XuZ. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway.Hepatology20084761964197310.1002/hep.2224018506888
    [Google Scholar]
  40. LuoY. XuC. LuoB. LiangG. ZhangQ. Melittin treatment prevents colorectal cancer from progressing in mice through ER stress-mediated apoptosis.J. Pharm. Pharmacol.202375564565410.1093/jpp/rgad00836966363
    [Google Scholar]
  41. a ShahS.P. RothA. GoyaR. OloumiA. HaG. ZhaoY. TurashviliG. DingJ. TseK. HaffariG. BashashatiA. PrenticeL.M. KhattraJ. BurleighA. YapD. BernardV. McPhersonA. ShumanskyK. CrisanA. GiulianyR. Heravi-MoussaviA. RosnerJ. LaiD. BirolI. VarholR. TamA. DhallaN. ZengT. MaK. ChanS.K. GriffithM. MoradianA. ChengS.W.G. MorinG.B. WatsonP. GelmonK. ChiaS. ChinS.F. CurtisC. RuedaO.M. PharoahP.D. DamarajuS. MackeyJ. HoonK. HarkinsT. TadigotlaV. SigaroudiniaM. GascardP. TlstyT. CostelloJ.F. MeyerI.M. EavesC.J. WassermanW.W. JonesS. HuntsmanD. HirstM. CaldasC. MarraM.A. AparicioS. The clonal and mutational evolution spectrum of primary triple-negative breast cancers.Nature2012486740339539910.1038/nature1093322495314
    [Google Scholar]
  42. b PratA. PerouC.M. Deconstructing the molecular portraits of breast cancer.Mol. Oncol.20115152310.1016/j.molonc.2010.11.00321147047
    [Google Scholar]
  43. ZhaoJ. HuW. ZhangZ. ZhouZ. DuanJ. DongZ. LiuH. YanC. Bee venom protects against pancreatic cancer via inducing cell cycle arrest and apoptosis with suppression of cell migration.J. Gastrointest. Oncol.202213284785810.21037/jgo‑22‑22235557571
    [Google Scholar]
  44. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb418425180339
    [Google Scholar]
  45. QianY. ChenX. Tumor suppression by p53: making cells senescent.Histol. Histopathol.201025451552620183804
    [Google Scholar]
  46. SadeghiF. AsgariM. MatloubiM. RanjbarM. Karkhaneh YousefiN. AzariT. Zaki-DizajiM. Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: review of radiosensitivity assays.Biol. Proced. Online20202212310.1186/s12575‑020‑00133‑533013205
    [Google Scholar]
  47. TariqR. LiaqatA. KhalidU. An insight into the role of bee venom and melittin against tumor cells: A review of breast cancer therapy.Arch Breast Cancer202184276
    [Google Scholar]
  48. PlasayM. MusliminL. Potential natural toxin with anticancer properties: Regulating IL-1β, COX-2 and TNF-α in human colorectal cancer cells WiDr.Trends Sci.2024214742410.48048/tis.2024.7424
    [Google Scholar]
  49. CelikS. Anti-metastasis after bee venom and melittin by upregulation of BRMS1 and DRG1 genes, with downregulation of wnt7b in breast cancer cells.Qeios202410.32388/0Y7O4S
    [Google Scholar]
  50. MogaM. DimienescuO. ArvătescuC. IfteniP. PleşL. Anticancer activity of toxins from bee and snake venom—an overview on ovarian cancer.Molecules201823369210.3390/molecules2303069229562696
    [Google Scholar]
  51. Dabbagh MoghaddamF. AkbarzadehI. MarzbankiaE. FaridM. khalediL. ReihaniA.H. JavidfarM. MortazaviP. Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect.Cancer Nanotechnol.20211211410.1186/s12645‑021‑00085‑9
    [Google Scholar]
  52. DarwishD.A. MasoudH.M.M. Abdel-MonsefM.M. HelmyM.S. ZidanH.A. IbrahimM.A. Phospholipase A2 enzyme from the venom of Egyptian honey bee Apis mellifera lamarckii with anti-platelet aggregation and anti-coagulation activities.J. Genet. Eng. Biotechnol.20211911010.1186/s43141‑020‑00112‑z33443641
    [Google Scholar]
  53. ChaisakulJ. KhowO. WiwatwarayosK. RusmiliM.R.A. PrasertW. OthmanI. AbidinS.A.Z. CharoenpitakchaiM. HodgsonW.C. ChanhomeL. ChaiyabutrN. A biochemical and pharmacological characterization of phospholipase a2 and metalloproteinase fractions from eastern russell’s viper (Daboia siamensis) venom: Two major components associated with acute kidney injury.Toxins (Basel)202113852110.3390/toxins1308052134437392
    [Google Scholar]
  54. PutzT. RamonerR. GanderH. RahmA. BartschG. ThurnherM. Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3,4)-bisphosphate.Cancer Immunol. Immunother.200655111374138310.1007/s00262‑006‑0143‑916485125
    [Google Scholar]
  55. YaacoubC. RifiM. El-ObeidD. MawlawiH. SabatierJ.M. CoutardB. FajlounZ. The cytotoxic effect of Apis mellifera venom with a synergistic potential of its two main components-melittin and pla2-on colon cancer hct116 cell lines.Molecules2021268226410.3390/molecules2608226433919706
    [Google Scholar]
  56. IpS.W. WeiH.C. LinJ.P. KuoH.M. LiuK.C. HsuS.C. YangJ.S. Mei-Dueyang ChiuT.H. HanS.M. ChungJ.G. Bee venom induced cell cycle arrest and apoptosis in human cervical epidermoid carcinoma Ca Ski cells.Anticancer Res.2008282A83384218507026
    [Google Scholar]
  57. ChahlaC. RimaM. MouawadC. RoufayelR. KovacicH. El ObeidD. SabatierJ-M. LuisJ. FajlounZ. El-WalyB. Effect of Apis mellifera syriaca bee venom on glioblastoma cancer: In vitro and in vivo studies.Molecules202429163950
    [Google Scholar]
  58. LamyC. GoodchildS.J. WeatherallK.L. JaneD.E. LiégeoisJ.F. SeutinV. MarrionN.V. Allosteric block of KCa2 channels by apamin.J. Biol. Chem.201028535270672707710.1074/jbc.M110.11007220562108
    [Google Scholar]
  59. GuH. HanS.M. ParkK.K. Therapeutic effects of apamin as a bee venom component for non-neoplastic disease.Toxins202012319510.3390/toxins1203019532204567
    [Google Scholar]
  60. AbdulkareemZ.A. GeeJ.M.W. CoxC.D. WannK.T. Knockdown of the small conductance Ca2+ -activated K+ channels is potently cytotoxic in breast cancer cell lines.Br. J. Pharmacol.2016173117719010.1111/bph.1335726454020
    [Google Scholar]
  61. PotierM. JoulinV. RogerS. BessonP. JourdanM.L. LeGuennecJ.Y. BougnouxP. VandierC. Identification of SK3 channel as a new mediator of breast cancer cell migration.Mol. Cancer Ther.20065112946295310.1158/1535‑7163.MCT‑06‑019417121942
    [Google Scholar]
  62. AlhakamyN.A. AhmedO.A.A. FahmyU.A. MdS. Apamin-conjugated alendronate sodium nanocomplex for management of pancreatic cancer.Pharmaceuticals202114872910.3390/ph1408072934451826
    [Google Scholar]
  63. YangW. ZhangY. YangG. GengY. ChenD. WangJ. YeY. WangH. XiaD. HuF. JiangJ. XuX. Anti-PD-1 immunotherapy and bee venom for relapsed and refractory liposarcoma: A case report.Front. Oncol.20211166899210.3389/fonc.2021.66899233996596
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665339355241008104141
Loading
/content/journals/ppl/10.2174/0109298665339355241008104141
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; apitherapy; bee venom; Cancer; peptides; tumor selectivity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test