Skip to content
2000
Volume 31, Issue 8
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

The Disintegrin and Metalloproteinase (ADAM) family, also known as the metalloproteinase/disintegrin/cysteine-rich (MDC) proteins, includes both secreted and transmembrane molecules involved in critical biological processes, such as cell migration, adhesion, and signaling. This study aimed to investigate the evolutionary relationships and structural characteristics of disintegrin and metalloproteinase proteins identified in the venom gland transcriptome of the scorpion .

Methods

Using bioinformatics tools, we analyzed the open reading frame, conserved motifs, and primary, secondary, and tertiary structures of these proteins. Five proteins, named HLDisMet1, HLDisMet2, HLDisMet3, HLDisMet4, and HLDisMet5, were identified. Their predicted 3-D structures were within normal ranges (Z-score between -4 to -9).

Results

Phylogenetic analysis revealed that HLDisMet1 shares similarities with proteins from various spider species (, , , and iensis), HLDisMet2 with the scorpion , HLDisMet4 with the scorpion , and HLDisMet5 with several snake species (, , , and ).

Conclusion

These findings highlight the significant similarities between HLDisMet proteins and those found in other venomous species, suggesting a complex and diverse evolutionary pathway for venom components. The cross-species conservation observed may indicate a convergent evolutionary strategy, where different species independently develop similar venom components to adapt to similar ecological niches or prey types. This study highlights the evolutionary significance of venom diversification and its potential applications in understanding venom biology across different species.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665321842240819073453
2024-08-30
2025-02-17
Loading full text...

Full text loading...

References

  1. ChitnisP. MaraghiS. Vaziran ZadehB. Epidemiological & laboratory study on scorpion stings in Khuzestan province.JGUMS199328512
    [Google Scholar]
  2. AfzaliN. PezeshkiN. Surveying of kidney acute dysfunction following Hemiscorpius lepturus sting in children.J. Med. Sci.1998254248
    [Google Scholar]
  3. JalaliA. PipelzadehM.H. SayedianR. RowanE.G. A review of epidemiological, clinical and in vitro physiological studies of envenomation by the scorpion Hemiscorpius lepturus (Hemiscorpiidae) in Iran.Toxicon2010552-317317910.1016/j.toxicon.2009.09.01219799924
    [Google Scholar]
  4. DehghaniR. KhamehchianT. VazirianzadehB. VatandoostH. MoravvejA. Toxic effects of scorpion, Hemiscorpius lepturus (Hemiscorpiidae) venom on mice.J. Anim. Plant Sci.2012223593596
    [Google Scholar]
  5. MonodL. LourençoW.R. Hemiscorpiidae (Scorpiones) from Iran, with descriptions of two new species and notes on biogeography and phylogenetic relationships.Rev. Suisse Zool.2005112486994110.5962/bhl.part.80331
    [Google Scholar]
  6. HeidarpourM. EnnaiferE. AhariH. Srairi-AbidN. BorchaniL. KhaliliG. AminiH. AnvarA.A. BoubakerS. El-AyebM. ShahbazzadehD. Histopathological changes induced by Hemiscorpius lepturus scorpion venom in mice.Toxicon201259337337810.1016/j.toxicon.2011.12.01122230352
    [Google Scholar]
  7. GhafourianM. GanjalikhanhakemiN. HemmatiA.A. DehghaniR. KootiW. The effect of Hemiscorpius lepturus (Scorpionida: Hemiscorpiidae) venom on leukocytes and the leukocyte subgroups in peripheral blood of rat.J. Arthropod Borne Dis.201610215916727308274
    [Google Scholar]
  8. PondehnezhadanE. ChamaniA. SalabiF. SoleimaniR. Identification, characterization, and molecular phylogeny of scorpion enolase (Androctonus crassicauda and Hemiscorpius lepturus).Toxin Rev.202342122824110.1080/15569543.2022.2080223
    [Google Scholar]
  9. DizajiR. SharafiA. PourahmadJ. VatanpourS. HosseiniM.J. VatanpourH. The effects of Hemiscorpius lepturus induced-acute kidney injury on PGC-1α gene expression: From induction to suppression in mice.Toxicon2020174576310.1016/j.toxicon.2019.12.15431887316
    [Google Scholar]
  10. ShahbazzadehD. Srairi-AbidN. FengW. RamN. BorchaniL. RonjatM. AkbariA. PessahI.N. De WaardM. El AyebM. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels.Biochem. J.20074041899610.1042/BJ2006140417291197
    [Google Scholar]
  11. AhadiM. Cloning and expression of two metalloproteinase inhibitors of Hemiscorpius lepturus (Khuzestan dangerous scorpion).Razi J. Med. Sci.20202611919
    [Google Scholar]
  12. Srairi-AbidN. ShahbazzadehD. ChattiI. Mlayah-BellalounaS. MejdoubH. BorchaniL. BenkhalifaR. AkbariA. El AyebM. Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion Hemiscorpius lepturus.FEBS J.2008275184641465010.1111/j.1742‑4658.2008.06607.x18699777
    [Google Scholar]
  13. Kazemi-LomedashtF. ShahbazzadehD. BehdaniM. Phylogenetic analysis of metalloprotease from transcriptome of venom gland of Hemiscorpius lepturus.Arch Biotechnol Biomed20193100601010.29328/journal.abb.1001014.
    [Google Scholar]
  14. AhadiM. In silico docking of matrix metalloproteinase inhibitors of Hemiscorpius lepturus to human matrix metalloproteinases-opportunities for novel natural therapeutics.HBB2019163910.22034/HBB.2019.15.
    [Google Scholar]
  15. SeyedianR. PipelzadehM.H. JalaliA. KimE. LeeH. KangC. ChaM. SohnE. JungE.S. RahmaniA.H. MirakabadyA.Z. Enzymatic analysis of Hemiscorpius lepturus scorpion venom using zymography and venom-specific antivenin.Toxicon201056452152510.1016/j.toxicon.2010.05.00820493200
    [Google Scholar]
  16. FathiB. YounesiF. SalamiF. Acute venom toxicity determinations for five Iranian vipers and a scorpion.Iran. J. Toxicol.2022162738210.32598/IJT.16.2.569.2
    [Google Scholar]
  17. DehghaniR. GhorbaniA. VarzandehM. Karami-RobatiF. Toxicity mechanism of dangerous scorpion stings in Iran.J. Arthropod Borne Dis.202317210511910.18502/jad.v17i2.1361637822761
    [Google Scholar]
  18. Kazemi-LomedashtF. KhalajV. BagheriK.P. BehdaniM. ShahbazzadehD. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus.Toxicon201712512313010.1016/j.toxicon.2016.11.26127914888
    [Google Scholar]
  19. TakedaS. TakeyaH. IwanagaS. Snake venom metalloproteinases: Structure, function and relevance to the mammalian ADAM/ADAMTS family proteins.Biochim. Biophys. Acta. Proteins Proteomics20121824116417610.1016/j.bbapap.2011.04.00921530690
    [Google Scholar]
  20. GiebelerN. ZigrinoP. A disintegrin and metalloprotease (ADAM): Historical overview of their functions.Toxins (Basel)20168412210.3390/toxins804012227120619
    [Google Scholar]
  21. WolfsbergT.G. WhiteJ.M. ADAM metalloproteinases.Handbook of proteolytic enzymes.Elsevier200470971410.1016/B978‑0‑12‑079611‑3.50215‑9
    [Google Scholar]
  22. KleinT. BischoffR. Active metalloproteases of the A disintegrin and metalloprotease (ADAM) family: Biological function and structure.J. Proteome Res.2011101173310.1021/pr100556z20849079
    [Google Scholar]
  23. CasewellN.R. On the ancestral recruitment of metalloproteinases into the venom of snakes.Toxicon201260444945410.1016/j.toxicon.2012.02.00622406471
    [Google Scholar]
  24. AndreiniC. BanciL. BertiniI. ElmiS. RosatoA. Comparative analysis of the ADAM and ADAMTS families.J. Proteome Res.20054388188810.1021/pr050009615952735
    [Google Scholar]
  25. EdwardsD. HandsleyM. PenningtonC. The ADAM metalloproteinases.Mol. Aspects Med.200829525828910.1016/j.mam.2008.08.00118762209
    [Google Scholar]
  26. ZhongS. KhalilR.A. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease.Biochem. Pharmacol.201916418820410.1016/j.bcp.2019.03.03330905657
    [Google Scholar]
  27. YangH. KhalilR.A. ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease.Adv. Pharmacol.20229425536310.1016/bs.apha.2021.11.002.
    [Google Scholar]
  28. QuH. KhalilR.A. Role of ADAM and ADAMTS disintegrin and metalloproteinases in normal pregnancy and preeclampsia.Biochem. Pharmacol.202220611526610.1016/j.bcp.2022.11526636191626
    [Google Scholar]
  29. Łukaszewicz-ZającM. PączekS. MroczkoB. A disintegrin and metalloproteinase (ADAM) family—Novel biomarkers of selected gastrointestinal (GI) malignancies?Cancers (Basel)2022149230710.3390/cancers1409230735565436
    [Google Scholar]
  30. AinolaM. LiT-F. MandelinJ. HukkanenM. ChoiS.J. SaloJ. KonttinenY.T. Involvement of a disintegrin and a metalloproteinase 8 (ADAM8) in osteoclastogenesis and pathological bone destruction.Ann. Rheum. Dis.200968342743410.1136/ard.2008.08826018397961
    [Google Scholar]
  31. ParkY.L. ParkS.Y. OhH.H. ChungM.W. HongJ.Y. KimK.H. MyungD.S. ChoS.B. LeeW.S. KimH.S. JooY.E. A disintegrin and metalloprotease 12 promotes tumor progression by inhibiting apoptosis in human colorectal cancer.Cancers (Basel)2021138192710.3390/cancers1308192733923541
    [Google Scholar]
  32. ŽbodákováO. The role of ADAM17 and other metalloproteases in liver pathological processes.Dissertation Thesis, Charles University2020
    [Google Scholar]
  33. ImotoI. SaitoM. SugaK. KohmotoT. OtsuM. HoriuchiK. NakayamaH. HigashiyamaS. SugimotoM. SasakiA. HommaY. ShonoM. NakagawaR. HayabuchiY. TangeS. KagamiS. MasudaK. Functionally confirmed compound heterozygous ADAM17 missense loss-of-function variants cause neonatal inflammatory skin and bowel disease 1.Sci. Rep.2021111955210.1038/s41598‑021‑89063‑033953303
    [Google Scholar]
  34. ChangZ. DuanQ. YuC. LiD. JiangH. GeF. XuG. Proteomics and biochemical analyses of secreted proteins revealed a novel mechanism by which ADAM12S regulates the migration of gastric cancer cells.J. Proteome Res.20222192160217210.1021/acs.jproteome.2c0022135926154
    [Google Scholar]
  35. LucasN. DayM.L. The role of the disintegrin metalloproteinase ADAM15 in prostate cancer progression.J. Cell. Biochem.2009106696797410.1002/jcb.2208719229865
    [Google Scholar]
  36. LambrechtB.N. VanderkerkenM. HammadH. The emerging role of ADAM metalloproteinases in immunity.Nat. Rev. Immunol.2018181274575810.1038/s41577‑018‑0068‑530242265
    [Google Scholar]
  37. WolfsbergT.G. PrimakoffP. MylesD.G. WhiteJ.M. ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: Multipotential functions in cell-cell and cell-matrix interactions.J. Cell Biol.1995131227527810.1083/jcb.131.2.2757593158
    [Google Scholar]
  38. ZolkiewskaA. Disintegrin-like/cysteine-rich region of ADAM 12 is an active cell adhesion domain.Exp. Cell Res.1999252242343110.1006/excr.1999.463210527632
    [Google Scholar]
  39. Huxley-JonesJ. ClarkeT.K. BeckC. ToubarisG. RobertsonD.L. Boot-HandfordR.P. The evolution of the vertebrate metzincins; Insights from Ciona intestinalis and Danio rerio.BMC Evol. Biol.2007716310.1186/1471‑2148‑7‑6317439641
    [Google Scholar]
  40. Gómez-GaviroM. Domínguez-LuisM. CanchadoJ. CalafatJ. JanssenH. Lara-PezziE. FourieA. TugoresA. Valenzuela-FernándezA. MollinedoF. Sánchez-MadridF. Díaz-GonzálezF. Expression and regulation of the metalloproteinase ADAM-8 during human neutrophil pathophysiological activation and its catalytic activity on L-selectin shedding.J. Immunol.2007178128053806310.4049/jimmunol.178.12.805317548643
    [Google Scholar]
  41. GlasseyB. CivettaA. Positive selection at reproductive ADAM genes with potential intercellular binding activity.Mol. Biol. Evol.200421585185910.1093/molbev/msh08014963094
    [Google Scholar]
  42. DijkstraA. PostmaD.S. NoordhoekJ.A. LodewijkM.E. KauffmanH.F. ten HackenN.H.T. TimensW. Expression of ADAMs (“a disintegrin and metalloprotease”) in the human lung.Virchows Arch.2009454444144910.1007/s00428‑009‑0748‑419255780
    [Google Scholar]
  43. OlaobaO.T. Karina dos SantosP. Selistre-de-AraujoH.S. Ferreira de SouzaD.H. Snake venom metalloproteinases (SVMPs): A structure-function update.Toxicon X2020710005210.1016/j.toxcx.2020.10005232776002
    [Google Scholar]
  44. SotoJ.G. WhiteS.A. ReyesS.R. RegaladoR. SanchezE.E. PerezJ.C. Molecular evolution of PIII-SVMP and RGD disintegrin genes from the genus Crotalus.Gene20073891667210.1016/j.gene.2006.09.02017112685
    [Google Scholar]
  45. GouldR.J. PolokoffM.A. FriedmanP.A. HuangT.F. HoltJ.C. CookJ.J. NiewiarowskiS. Disintegrins: A family of integrin inhibitory proteins from viper venoms.Exp. Biol. Med. (Maywood)1990195216817110.3181/00379727‑195‑43129B2236100
    [Google Scholar]
  46. FoxJ.W. SerranoS.M.T. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity.FEBS J.2008275123016303010.1111/j.1742‑4658.2008.06466.x18479462
    [Google Scholar]
  47. CalveteJ.J. Moreno-MurcianoM.P. SanzL. JürgensM. SchraderM. RaidaM. BenjaminD.C. FoxJ.W. The disulfide bond pattern of catrocollastatin C, a disintegrin-like/cysteine-rich protein isolated from Crotalus atrox venom.Protein Sci.2000971365137310.1110/ps.9.7.136510933502
    [Google Scholar]
  48. BlobelC.P. Metalloprotease-disintegrins: Links to cell adhesion and cleavage of TNF α and Notch.Cell199790458959210.1016/S0092‑8674(00)80519‑X9288739
    [Google Scholar]
  49. DüsterhöftS. MichalekM. KordowskiF. OldefestM. SommerA. RöselerJ. ReissK. GrötzingerJ. LorenzenI. Extracellular juxtamembrane segment of ADAM17 interacts with membranes and is essential for its shedding activity.Biochemistry201554385791580110.1021/acs.biochem.5b0049726348730
    [Google Scholar]
  50. ChantryA. GregsonN.A. GlynnP. A novel metalloproteinase associated with brain myelin membranes. Isolation and characterization.J. Biol. Chem.198926436216032160710.1016/S0021‑9258(20)88226‑X2600084
    [Google Scholar]
  51. QalafM.A. Al-Tu’maF.J. MukheefM.A. Al-HaideriA.Q. Serum ADAM -17 and interleukin-6 levels as a predictors in Type 2 diabetic patients with myocardial infarction patients.20241423637310.62472/kjps.v14.i23.
    [Google Scholar]
  52. GuoD. HuangF. XueR. MaY. XiaoL. LouH. PanS. A disintegrin and metalloproteinase 10 (ADAM10) is essential for oligodendrocyte precursor development and myelination in the mouse brain.Mol. Neurobiol.20236031675168910.1007/s12035‑022‑03163‑036550333
    [Google Scholar]
  53. LichtenthalerS.F. HaassC. SteinerH. Regulated intramembrane proteolysis - Lessons from amyloid precursor protein processing.J. Neurochem.2011117577979610.1111/j.1471‑4159.2011.07248.x21413990
    [Google Scholar]
  54. ChenY.T. LinC.W. ChouY.E. SuS.C. ChangL.C. LeeC.Y. HsiehM.J. YangS.F. Potential impact of ADAM-10 genetic variants with the clinical features of oral squamous cell carcinoma.J. Cell. Mol. Med.20232781144115210.1111/jcmm.1772836946281
    [Google Scholar]
  55. ValaviE. AmooriP. MohtashamN. Ziaei KajbafT. TaheriM. CheraghianB. HooshmandiS. Beneficial effect of fresh frozen plasma in reducing renal complications in Hemiscorpius lepturus scorpion envenomated children with severe hemoglobinuria: An open label randomized clinical trial.Toxin Rev.202342119720310.1080/15569543.2022.2068031
    [Google Scholar]
  56. ValaviE. AhmadzadehA. AmooriP. DaneshgarA. High frequency of acquired ADAMTS13 deficiency after hemolysis in Hemiscorpius lepturus (scorpion) stung children.Indian J. Pediatr.201481766566910.1007/s12098‑013‑1089‑523893367
    [Google Scholar]
  57. ValaviE. AmuriP. AhmadzadehA. CheraghianB. AhankoobE. Acute kidney injury in Hemiscorpius lepturus scorpion stung children: Risk factors and clinical features.Saudi J. Kidney Dis. Transpl.201627593694110.4103/1319‑2442.19084127752001
    [Google Scholar]
  58. ValaviE. Alemzadeh AnsariM.J. Hemolytic uremic syndrome following Hemiscorpius lepturus (scorpion) sting.Indian J. Nephrol.200818416616810.4103/0971‑4065.4529320142930
    [Google Scholar]
  59. FurlanM. LämmleB. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: The role of von Willebrand factor-cleaving protease.Best Pract. Res. Clin. Haematol.200114243745410.1053/beha.2001.014211686108
    [Google Scholar]
  60. WhiteJ.M. ADAMs: Modulators of cell–cell and cell–matrix interactions.Curr. Opin. Cell Biol.200315559860610.1016/j.ceb.2003.08.00114519395
    [Google Scholar]
  61. TakedaS. IgarashiT. MoriH. ArakiS. Crystal structures of VAP1 reveal ADAMs’ MDC domain architecture and its unique C-shaped scaffold.EMBO J.200625112388239610.1038/sj.emboj.760113116688218
    [Google Scholar]
  62. GuanH.H. GohK.S. DavamaniF. WuP.L. HuangY.W. JeyakanthanJ. WuW. ChenC.J. Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins.J. Struct. Biol.2010169329430310.1016/j.jsb.2009.11.00919932752
    [Google Scholar]
  63. KhalilovR.K. BakishzadeA. NasibovaA. Future prospects of biomaterials in nanomedicine.Adv. Bio. Earth Sci.20249Special Issue51010.62476/abes.9s5
    [Google Scholar]
  64. KalitaB. SaviolaA.J. MukherjeeA.K. From venom to drugs: A review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes.Drug Discov. Today2021264993100510.1016/j.drudis.2020.12.02133486112
    [Google Scholar]
  65. KingG. Venoms to drugs: Translating venom peptides into therapeutics.Aust Biochem.2013443
    [Google Scholar]
  66. KingG.F. Venoms as a platform for human drugs: Translating toxins into therapeutics.Expert Opin. Biol. Ther.201111111469148410.1517/14712598.2011.62194021939428
    [Google Scholar]
  67. OliveiraA.L. ViegasM.F. da SilvaS.L. SoaresA.M. RamosM.J. FernandesP.A. The chemistry of snake venom and its medicinal potential.Nat. Rev. Chem.20226745146910.1038/s41570‑022‑00393‑7
    [Google Scholar]
  68. OrtizE. GurrolaG.B. SchwartzE.F. PossaniL.D. Scorpion venom components as potential candidates for drug development.Toxicon20159312513510.1016/j.toxicon.2014.11.23325432067
    [Google Scholar]
  69. WillardN.K. SalazarE. OyervidesF.A. WiebeC.S. OcheltreeJ.S. CortezM. PerezR.P. MarkowitzH. IliukA. SanchezE.E. SuntravatM. GalanJ.A. Proteomic identification and quantification of snake venom biomarkers in venom and plasma extracellular vesicles.Toxins (Basel)202113965410.3390/toxins1309065434564658
    [Google Scholar]
  70. RucavadoA. EscalanteT. ShannonJ. GutiérrezJ.M. FoxJ.W. Proteomics of wound exudate in snake venom-induced pathology: Search for biomarkers to assess tissue damage and therapeutic success.J. Proteome Res.20111041987200510.1021/pr101208f21306181
    [Google Scholar]
  71. SmithC.F. BrandehoffN.P. PepinL. McCabeM.C. CastoeT.A. MackessyS.P. NemkovT. HansenK.C. SaviolaA.J. Feasibility of detecting snake envenomation biomarkers from dried blood spots.Anal. Sci. Adv.202341-2263610.1002/ansa.20220005038715579
    [Google Scholar]
  72. PackiK. MatysiakJ. MatuszewskaE. BręborowiczA. KyclerZ. MatysiakJ. New biomarkers of Hymenoptera venom allergy in a group of inflammation factors.Int. J. Environ. Res. Public Health2021188401110.3390/ijerph1808401133920429
    [Google Scholar]
  73. LuQ.-M. LaiR. ZhangY. Animal toxins and human disease: From single component to venomics, from biochemical characterization to disease mechanisms, from crude venom utilization to rational drug design.Dongwuxue Yanjiu201031121610.3724/SP.J.1141.2010.01002
    [Google Scholar]
  74. GutiérrezJ. EscalanteT. RucavadoA. HerreraC. Hemorrhage caused by snake venom metalloproteinases: A journey of discovery and understanding.Toxins (Basel)2016849310.3390/toxins804009327023608
    [Google Scholar]
  75. FryB.G. WinkelK.D. WickramaratnaJ.C. HodgsonW.C. WüsterW. Effectiveness of snake antivenom: Species and regional venom variation and its clinical impact.J. Toxicol. Toxin Rev.2003221233410.1081/TXR‑120019018
    [Google Scholar]
  76. SurmJ.M. MoranY. Insights into how development and life-history dynamics shape the evolution of venom.Evodevo2021121110.1186/s13227‑020‑00171‑w33413660
    [Google Scholar]
  77. ZancolliG. CasewellN.R. Venom systems as models for studying the origin and regulation of evolutionary novelties.Mol. Biol. Evol.202037102777279010.1093/molbev/msaa13332462210
    [Google Scholar]
  78. SunagarK. CasewellN.R. VarmaS. KollaR. AntunesA. MoranY. Deadly innovations: Unraveling the molecular evolution of animal venoms.Venom Genomics and Proteomics. GopalakrishnakoneP. CalveteJ. 201610.1007/978‑94‑007‑6416‑3_27
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665321842240819073453
Loading
/content/journals/ppl/10.2174/0109298665321842240819073453
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): disintegrin; Hemiscorpius lepturus; metalloprotease; phylogenetic; transcriptome; venom
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test