Skip to content
2000
image of Insights into the Evolutionary Dynamics: Characterization of Disintegrin and Metalloproteinase Proteins in the Venom Gland Transcriptome of the Hemiscorpius lepturus Scorpion

Abstract

Background

The Disintegrin and Metalloproteinase (ADAM) family, also known as the metalloproteinase/disintegrin/cysteine-rich (MDC) proteins, includes both secreted and transmembrane molecules involved in critical biological processes, such as cell migration, adhesion, and signaling. This study aimed to investigate the evolutionary relationships and structural characteristics of disintegrin and metalloproteinase proteins identified in the venom gland transcriptome of the scorpion .

Methods

Using bioinformatics tools, we analyzed the open reading frame, conserved motifs, and primary, secondary, and tertiary structures of these proteins. Five proteins, named HLDisMet1, HLDisMet2, HLDisMet3, HLDisMet4, and HLDisMet5, were identified. Their predicted 3-D structures were within normal ranges (Z-score between -4 to -9).

Results

Phylogenetic analysis revealed that HLDisMet1 shares similarities with proteins from various spider species ( , , , and iensis), HLDisMet2 with the scorpion, HLDisMet4 with the scorpion, and HLDisMet5 with several snake species ( , , , and ).

Conclusion

These findings highlight the significant similarities between HLDisMet proteins and those found in other venomous species, suggesting a complex and diverse evolutionary pathway for venom components. The cross-species conservation observed may indicate a convergent evolutionary strategy, where different species independently develop similar venom components to adapt to similar ecological niches or prey types. This study highlights the evolutionary significance of venom diversification and its potential applications in understanding venom biology across different species.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665321842240819073453
2024-09-04
2024-10-09
Loading full text...

Full text loading...

References

  1. Chitnis P. Maraghi S. Vaziran Zadeh B. Epidemiological & laboratory study on scorpion stings in Khuzestan province. JGUMS 1993 2 8 5 12
    [Google Scholar]
  2. Afzali N. Pezeshki N. Surveying of kidney acute dysfunction following Hemiscorpius lepturus sting in children. J. Med. Sci. 1998 25 42 48
    [Google Scholar]
  3. Jalali A. Pipelzadeh M.H. Sayedian R. Rowan E.G. A review of epidemiological, clinical and in vitro physiological studies of envenomation by the scorpion Hemiscorpius lepturus (Hemiscorpiidae) in Iran. Toxicon 2010 55 2-3 173 179 10.1016/j.toxicon.2009.09.012 19799924
    [Google Scholar]
  4. Dehghani R. Khamehchian T. Vazirianzadeh B. Vatandoost H. Moravvej A. Toxic effects of scorpion, Hemiscorpius lepturus (Hemiscorpiidae) venom on mice. J. Anim. Plant Sci. 2012 22 3 593 596
    [Google Scholar]
  5. Monod L. Lourenço W.R. Hemiscorpiidae (Scorpiones) from Iran, with descriptions of two new species and notes on biogeography and phylogenetic relationships. Rev. Suisse Zool. 2005 112 4 869 941 10.5962/bhl.part.80331
    [Google Scholar]
  6. Heidarpour M. Ennaifer E. Ahari H. Srairi-Abid N. Borchani L. Khalili G. Amini H. Anvar A.A. Boubaker S. El-Ayeb M. Shahbazzadeh D. Histopathological changes induced by Hemiscorpius lepturus scorpion venom in mice. Toxicon 2012 59 3 373 378 10.1016/j.toxicon.2011.12.011 22230352
    [Google Scholar]
  7. Ghafourian M. Ganjalikhanhakemi N. Hemmati A.A. Dehghani R. Kooti W. The effect of Hemiscorpius lepturus (Scorpionida: Hemiscorpiidae) venom on leukocytes and the leukocyte subgroups in peripheral blood of rat. J. Arthropod Borne Dis. 2016 10 2 159 167 27308274
    [Google Scholar]
  8. Pondehnezhadan E. Chamani A. Salabi F. Soleimani R. Identification, characterization, and molecular phylogeny of scorpion enolase ( Androctonus crassicauda and Hemiscorpius lepturus ). Toxin Rev. 2023 42 1 228 241 10.1080/15569543.2022.2080223
    [Google Scholar]
  9. Dizaji R. Sharafi A. Pourahmad J. Vatanpour S. Hosseini M.J. Vatanpour H. The effects of Hemiscorpius lepturus induced-acute kidney injury on PGC-1α gene expression: From induction to suppression in mice. Toxicon 2020 174 57 63 10.1016/j.toxicon.2019.12.154 31887316
    [Google Scholar]
  10. Shahbazzadeh D. Srairi-Abid N. Feng W. Ram N. Borchani L. Ronjat M. Akbari A. Pessah I.N. De Waard M. El Ayeb M. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochem. J. 2007 404 1 89 96 10.1042/BJ20061404 17291197
    [Google Scholar]
  11. Ahadi M. Cloning and expression of two metalloproteinase inhibitors of Hemiscorpius lepturus (Khuzestan dangerous scorpion). Razi J. Med. Sci. 2020 26 11 9 19
    [Google Scholar]
  12. Srairi-Abid N. Shahbazzadeh D. Chatti I. Mlayah-Bellalouna S. Mejdoub H. Borchani L. Benkhalifa R. Akbari A. El Ayeb M. Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion Hemiscorpius lepturus. FEBS J. 2008 275 18 4641 4650 10.1111/j.1742‑4658.2008.06607.x 18699777
    [Google Scholar]
  13. Kazemi-Lomedasht F. Shahbazzadeh D. Behdani M. Phylogenetic analysis of metalloprotease from transcriptome of venom gland of Hemiscorpius lepturus . Arch Biotechnol Biomed 2019 3 1 006 010 10.29328/journal.abb.1001014.
    [Google Scholar]
  14. Ahadi M. In silico docking of matrix metalloproteinase inhibitors of Hemiscorpius lepturus to human matrix metalloproteinases-opportunities for novel natural therapeutics. HBB 2019 16 39 10.22034/HBB.2019.15.
    [Google Scholar]
  15. Seyedian R. Pipelzadeh M.H. Jalali A. Kim E. Lee H. Kang C. Cha M. Sohn E. Jung E.S. Rahmani A.H. Mirakabady A.Z. Enzymatic analysis of Hemiscorpius lepturus scorpion venom using zymography and venom-specific antivenin. Toxicon 2010 56 4 521 525 10.1016/j.toxicon.2010.05.008 20493200
    [Google Scholar]
  16. Fathi B. Younesi F. Salami F. Acute venom toxicity determinations for five Iranian vipers and a scorpion. Iran. J. Toxicol. 2022 16 2 73 82 10.32598/IJT.16.2.569.2
    [Google Scholar]
  17. Dehghani R. Ghorbani A. Varzandeh M. Karami-Robati F. Toxicity mechanism of dangerous scorpion stings in Iran. J. Arthropod Borne Dis. 2023 17 2 105 119 10.18502/jad.v17i2.13616 37822761
    [Google Scholar]
  18. Kazemi-Lomedasht F. Khalaj V. Bagheri K.P. Behdani M. Shahbazzadeh D. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus . Toxicon 2017 125 123 130 10.1016/j.toxicon.2016.11.261 27914888
    [Google Scholar]
  19. Takeda S. Takeya H. Iwanaga S. Snake venom metalloproteinases: Structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim. Biophys. Acta. Proteins Proteomics 2012 1824 1 164 176 10.1016/j.bbapap.2011.04.009 21530690
    [Google Scholar]
  20. Giebeler N. Zigrino P. A disintegrin and metalloprotease (ADAM): Historical overview of their functions. Toxins (Basel) 2016 8 4 122 10.3390/toxins8040122 27120619
    [Google Scholar]
  21. Wolfsberg T.G. White J.M. ADAM metalloproteinases. Handbook of proteolytic enzymes. Elsevier 2004 709 714 10.1016/B978‑0‑12‑079611‑3.50215‑9
    [Google Scholar]
  22. Klein T. Bischoff R. Active metalloproteases of the A disintegrin and metalloprotease (ADAM) family: Biological function and structure. J. Proteome Res. 2011 10 1 17 33 10.1021/pr100556z 20849079
    [Google Scholar]
  23. Casewell N.R. On the ancestral recruitment of metalloproteinases into the venom of snakes. Toxicon 2012 60 4 449 454 10.1016/j.toxicon.2012.02.006 22406471
    [Google Scholar]
  24. Andreini C. Banci L. Bertini I. Elmi S. Rosato A. Comparative analysis of the ADAM and ADAMTS families. J. Proteome Res. 2005 4 3 881 888 10.1021/pr0500096 15952735
    [Google Scholar]
  25. Edwards D. Handsley M. Pennington C. The ADAM metalloproteinases. Mol. Aspects Med. 2008 29 5 258 289 10.1016/j.mam.2008.08.001 18762209
    [Google Scholar]
  26. Zhong S. Khalil R.A. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Biochem. Pharmacol. 2019 164 188 204 10.1016/j.bcp.2019.03.033 30905657
    [Google Scholar]
  27. Yang H. Khalil R.A. ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease. Adv Pharmacol. 2022 94 255 363 10.1016/bs.apha.2021.11.002.
    [Google Scholar]
  28. Qu H. Khalil R.A. Role of ADAM and ADAMTS disintegrin and metalloproteinases in normal pregnancy and preeclampsia. Biochem. Pharmacol. 2022 206 115266 10.1016/j.bcp.2022.115266 36191626
    [Google Scholar]
  29. Łukaszewicz-Zając M. Pączek S. Mroczko B. A disintegrin and metalloproteinase (ADAM) family—Novel biomarkers of selected gastrointestinal (GI) malignancies? Cancers (Basel) 2022 14 9 2307 10.3390/cancers14092307 35565436
    [Google Scholar]
  30. Ainola M. Li T-F. Mandelin J. Hukkanen M. Choi S.J. Salo J. Konttinen Y.T. Involvement of a disintegrin and a metalloproteinase 8 (ADAM8) in osteoclastogenesis and pathological bone destruction. Ann. Rheum. Dis. 2009 68 3 427 434 10.1136/ard.2008.088260 18397961
    [Google Scholar]
  31. Park Y.L. Park S.Y. Oh H.H. Chung M.W. Hong J.Y. Kim K.H. Myung D.S. Cho S.B. Lee W.S. Kim H.S. Joo Y.E. A disintegrin and metalloprotease 12 promotes tumor progression by inhibiting apoptosis in human colorectal cancer. Cancers (Basel) 2021 13 8 1927 10.3390/cancers13081927 33923541
    [Google Scholar]
  32. Žbodáková O. The role of ADAM17 and other metalloproteases in liver pathological processes. Dissertation Thesis, Charles University 2020
    [Google Scholar]
  33. Imoto I. Saito M. Suga K. Kohmoto T. Otsu M. Horiuchi K. Nakayama H. Higashiyama S. Sugimoto M. Sasaki A. Homma Y. Shono M. Nakagawa R. Hayabuchi Y. Tange S. Kagami S. Masuda K. Functionally confirmed compound heterozygous ADAM17 missense loss-of-function variants cause neonatal inflammatory skin and bowel disease 1. Sci. Rep. 2021 11 1 9552 10.1038/s41598‑021‑89063‑0 33953303
    [Google Scholar]
  34. Chang Z. Duan Q. Yu C. Li D. Jiang H. Ge F. Xu G. Proteomics and biochemical analyses of secreted proteins revealed a novel mechanism by which ADAM12S regulates the migration of gastric cancer cells. J. Proteome Res. 2022 21 9 2160 2172 10.1021/acs.jproteome.2c00221 35926154
    [Google Scholar]
  35. Lucas N. Day M.L. The role of the disintegrin metalloproteinase ADAM15 in prostate cancer progression. J. Cell. Biochem. 2009 106 6 967 974 10.1002/jcb.22087 19229865
    [Google Scholar]
  36. Lambrecht B.N. Vanderkerken M. Hammad H. The emerging role of ADAM metalloproteinases in immunity. Nat. Rev. Immunol. 2018 18 12 745 758 10.1038/s41577‑018‑0068‑5 30242265
    [Google Scholar]
  37. Wolfsberg T.G. Primakoff P. Myles D.G. White J.M. ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: Multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol. 1995 131 2 275 278 10.1083/jcb.131.2.275 7593158
    [Google Scholar]
  38. Zolkiewska A. Disintegrin-like/cysteine-rich region of ADAM 12 is an active cell adhesion domain. Exp. Cell Res. 1999 252 2 423 431 10.1006/excr.1999.4632 10527632
    [Google Scholar]
  39. Huxley-Jones J. Clarke T.K. Beck C. Toubaris G. Robertson D.L. Boot-Handford R.P. The evolution of the vertebrate metzincins; Insights from Ciona intestinalis and Danio rerio . BMC Evol. Biol. 2007 7 1 63 10.1186/1471‑2148‑7‑63 17439641
    [Google Scholar]
  40. Gómez-Gaviro M. Domínguez-Luis M. Canchado J. Calafat J. Janssen H. Lara-Pezzi E. Fourie A. Tugores A. Valenzuela-Fernández A. Mollinedo F. Sánchez-Madrid F. Díaz-González F. Expression and regulation of the metalloproteinase ADAM-8 during human neutrophil pathophysiological activation and its catalytic activity on L-selectin shedding. J. Immunol. 2007 178 12 8053 8063 10.4049/jimmunol.178.12.8053 17548643
    [Google Scholar]
  41. Glassey B. Civetta A. Positive selection at reproductive ADAM genes with potential intercellular binding activity. Mol. Biol. Evol. 2004 21 5 851 859 10.1093/molbev/msh080 14963094
    [Google Scholar]
  42. Dijkstra A. Postma D.S. Noordhoek J.A. Lodewijk M.E. Kauffman H.F. ten Hacken N.H.T. Timens W. Expression of ADAMs (“a disintegrin and metalloprotease”) in the human lung. Virchows Arch. 2009 454 4 441 449 10.1007/s00428‑009‑0748‑4 19255780
    [Google Scholar]
  43. Olaoba O.T. Karina dos Santos P. Selistre-de-Araujo H.S. Ferreira de Souza D.H. Snake venom metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020 7 100052 10.1016/j.toxcx.2020.100052 32776002
    [Google Scholar]
  44. Soto J.G. White S.A. Reyes S.R. Regalado R. Sanchez E.E. Perez J.C. Molecular evolution of PIII-SVMP and RGD disintegrin genes from the genus Crotalus . Gene 2007 389 1 66 72 10.1016/j.gene.2006.09.020 17112685
    [Google Scholar]
  45. Gould R.J. Polokoff M.A. Friedman P.A. Huang T.F. Holt J.C. Cook J.J. Niewiarowski S. Disintegrins: A family of integrin inhibitory proteins from viper venoms. Exp. Biol. Med. (Maywood) 1990 195 2 168 171 10.3181/00379727‑195‑43129B 2236100
    [Google Scholar]
  46. Fox J.W. Serrano S.M.T. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008 275 12 3016 3030 10.1111/j.1742‑4658.2008.06466.x 18479462
    [Google Scholar]
  47. Calvete J.J. Moreno-Murciano M.P. Sanz L. Jürgens M. Schrader M. Raida M. Benjamin D.C. Fox J.W. The disulfide bond pattern of catrocollastatin C, a disintegrin‐like/cysteine‐rich protein isolated from Crotalus atrox venom. Protein Sci. 2000 9 7 1365 1373 10.1110/ps.9.7.1365 10933502
    [Google Scholar]
  48. Blobel C.P. Metalloprotease-disintegrins: Links to cell adhesion and cleavage of TNF α and Notch. Cell 1997 90 4 589 592 10.1016/S0092‑8674(00)80519‑X 9288739
    [Google Scholar]
  49. Düsterhöft S. Michalek M. Kordowski F. Oldefest M. Sommer A. Röseler J. Reiss K. Grötzinger J. Lorenzen I. Extracellular juxtamembrane segment of ADAM17 interacts with membranes and is essential for its shedding activity. Biochemistry 2015 54 38 5791 5801 10.1021/acs.biochem.5b00497 26348730
    [Google Scholar]
  50. Chantry A. Gregson N.A. Glynn P. A novel metalloproteinase associated with brain myelin membranes. Isolation and characterization. J. Biol. Chem. 1989 264 36 21603 21607 10.1016/S0021‑9258(20)88226‑X 2600084
    [Google Scholar]
  51. Qalaf M.A. Al-Tu’ma F.J. Mukheef M.A. Al-Haideri A.Q. Serum ADAM -17 and interleukin-6 levels as a predictors in Type 2 diabetic patients with myocardial infarction patients. 2024 14 23 63 73 10.62472/kjps.v14.i23.
    [Google Scholar]
  52. Guo D. Huang F. Xue R. Ma Y. Xiao L. Lou H. Pan S. A disintegrin and metalloproteinase 10 (ADAM10) is essential for oligodendrocyte precursor development and myelination in the mouse brain. Mol. Neurobiol. 2023 60 3 1675 1689 10.1007/s12035‑022‑03163‑0 36550333
    [Google Scholar]
  53. Lichtenthaler S.F. Haass C. Steiner H. Regulated intramembrane proteolysis - Lessons from amyloid precursor protein processing. J. Neurochem. 2011 117 5 779 796 10.1111/j.1471‑4159.2011.07248.x 21413990
    [Google Scholar]
  54. Chen Y.T. Lin C.W. Chou Y.E. Su S.C. Chang L.C. Lee C.Y. Hsieh M.J. Yang S.F. Potential impact of ADAM‐10 genetic variants with the clinical features of oral squamous cell carcinoma. J. Cell. Mol. Med. 2023 27 8 1144 1152 10.1111/jcmm.17728 36946281
    [Google Scholar]
  55. Valavi E. Amoori P. Mohtasham N. Ziaei Kajbaf T. Taheri M. Cheraghian B. Hooshmandi S. Beneficial effect of fresh frozen plasma in reducing renal complications in Hemiscorpius lepturus scorpion envenomated children with severe hemoglobinuria: An open label randomized clinical trial. Toxin Rev. 2023 42 1 197 203 10.1080/15569543.2022.2068031
    [Google Scholar]
  56. Valavi E. Ahmadzadeh A. Amoori P. Daneshgar A. High frequency of acquired ADAMTS13 deficiency after hemolysis in Hemiscorpius lepturus (scorpion) stung children. Indian J. Pediatr. 2014 81 7 665 669 10.1007/s12098‑013‑1089‑5 23893367
    [Google Scholar]
  57. Valavi E. Amuri P. Ahmadzadeh A. Cheraghian B. Ahankoob E. Acute kidney injury in Hemiscorpius lepturus scorpion stung children: Risk factors and clinical features. Saudi J. Kidney Dis. Transpl. 2016 27 5 936 941 10.4103/1319‑2442.190841 27752001
    [Google Scholar]
  58. Valavi E. Alemzadeh Ansari M.J. Hemolytic uremic syndrome following Hemiscorpius lepturus (scorpion) sting. Indian J. Nephrol. 2008 18 4 166 168 10.4103/0971‑4065.45293 20142930
    [Google Scholar]
  59. Furlan M. Lämmle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: The role of von Willebrand factor-cleaving protease. Best Pract. Res. Clin. Haematol. 2001 14 2 437 454 10.1053/beha.2001.0142 11686108
    [Google Scholar]
  60. White J.M. ADAMs: Modulators of cell–cell and cell–matrix interactions. Curr. Opin. Cell Biol. 2003 15 5 598 606 10.1016/j.ceb.2003.08.001 14519395
    [Google Scholar]
  61. Takeda S. Igarashi T. Mori H. Araki S. Crystal structures of VAP1 reveal ADAMs’ MDC domain architecture and its unique C-shaped scaffold. EMBO J. 2006 25 11 2388 2396 10.1038/sj.emboj.7601131 16688218
    [Google Scholar]
  62. Guan H.H. Goh K.S. Davamani F. Wu P.L. Huang Y.W. Jeyakanthan J. Wu W. Chen C.J. Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins. J. Struct. Biol. 2010 169 3 294 303 10.1016/j.jsb.2009.11.009 19932752
    [Google Scholar]
  63. Khalilov R.K. Bakishzade A. Nasibova A. Future prospects of biomaterials in nanomedicine. Adv. Bio. Earth Sci. 2024 9 Special Issue 5 10 10.62476/abes.9s5
    [Google Scholar]
  64. Kalita B. Saviola A.J. Mukherjee A.K. From venom to drugs: A review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes. Drug Discov. Today 2021 26 4 993 1005 10.1016/j.drudis.2020.12.021 33486112
    [Google Scholar]
  65. King G. Venoms to drugs: Translating venom peptides into therapeutics. Aust Biochem. 2013 44 3
    [Google Scholar]
  66. King G.F. Venoms as a platform for human drugs: Translating toxins into therapeutics. Expert Opin. Biol. Ther. 2011 11 11 1469 1484 10.1517/14712598.2011.621940 21939428
    [Google Scholar]
  67. Oliveira A.L. Viegas M.F. da Silva S.L. Soares A.M. Ramos M.J. Fernandes P.A. The chemistry of snake venom and its medicinal potential. Nat. Rev. Chem. 2022 6 7 451 469 10.1038/s41570‑022‑00393‑7
    [Google Scholar]
  68. Ortiz E. Gurrola G.B. Schwartz E.F. Possani L.D. Scorpion venom components as potential candidates for drug development. Toxicon 2015 93 125 135 10.1016/j.toxicon.2014.11.233 25432067
    [Google Scholar]
  69. Willard N.K. Salazar E. Oyervides F.A. Wiebe C.S. Ocheltree J.S. Cortez M. Perez R.P. Markowitz H. Iliuk A. Sanchez E.E. Suntravat M. Galan J.A. Proteomic identification and quantification of snake venom biomarkers in venom and plasma extracellular vesicles. Toxins (Basel) 2021 13 9 654 10.3390/toxins13090654 34564658
    [Google Scholar]
  70. Rucavado A. Escalante T. Shannon J. Gutiérrez J.M. Fox J.W. Proteomics of wound exudate in snake venom-induced pathology: Search for biomarkers to assess tissue damage and therapeutic success. J. Proteome Res. 2011 10 4 1987 2005 10.1021/pr101208f 21306181
    [Google Scholar]
  71. Smith C.F. Brandehoff N.P. Pepin L. McCabe M.C. Castoe T.A. Mackessy S.P. Nemkov T. Hansen K.C. Saviola A.J. Feasibility of detecting snake envenomation biomarkers from dried blood spots. Anal. Sci. Adv. 2023 4 1-2 26 36 10.1002/ansa.202200050 38715579
    [Google Scholar]
  72. Packi K. Matysiak J. Matuszewska E. Bręborowicz A. Kycler Z. Matysiak J. New biomarkers of Hymenoptera venom allergy in a group of inflammation factors. Int. J. Environ. Res. Public Health 2021 18 8 4011 10.3390/ijerph18084011 33920429
    [Google Scholar]
  73. Lu Q.-M. Lai R. Zhang Y. Animal toxins and human disease: From single component to venomics, from biochemical characterization to disease mechanisms, from crude venom utilization to rational drug design. Dongwuxue Yanjiu 2010 31 1 2 16 10.3724/SP.J.1141.2010.01002
    [Google Scholar]
  74. Gutiérrez J. Escalante T. Rucavado A. Herrera C. Hemorrhage caused by snake venom metalloproteinases: A journey of discovery and understanding. Toxins (Basel) 2016 8 4 93 10.3390/toxins8040093 27023608
    [Google Scholar]
  75. Fry B.G. Winkel K.D. Wickramaratna J.C. Hodgson W.C. Wüster W. Effectiveness of snake antivenom: Species and regional venom variation and its clinical impact. J. Toxicol. Toxin Rev. 2003 22 1 23 34 10.1081/TXR‑120019018
    [Google Scholar]
  76. Surm J.M. Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. Evodevo 2021 12 1 1 10.1186/s13227‑020‑00171‑w 33413660
    [Google Scholar]
  77. Zancolli G. Casewell N.R. Venom systems as models for studying the origin and regulation of evolutionary novelties. Mol. Biol. Evol. 2020 37 10 2777 2790 10.1093/molbev/msaa133 32462210
    [Google Scholar]
  78. Sunagar K. Casewell N.R. Varma S. Kolla R. Antunes A. Moran Y. Deadly innovations: Unraveling the molecular evolution of animal venoms. Venom Genomics and Proteomics. Gopalakrishnakone P. Calvete J. 2016 10.1007/978‑94‑007‑6416‑3_27.
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665321842240819073453
Loading
/content/journals/ppl/10.2174/0109298665321842240819073453
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: disintegrin ; phylogenetic ; metalloprotease ; venom ; transcriptome ; Hemiscorpius lepturus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test