Skip to content
2000
Volume 31, Issue 8
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

The spread of the COVID-19 disease is the result of an infection caused by the SARS-CoV2 virus. Four crucial proteins, spike (S), membrane (M), nucleocapsid (N), and envelope (E) in coronaviruses have been considered to a large extent.

Objective

This research aimed to express the recombinant protein of a multiepitope immunogen construct and evaluate the immunogenicity of the multiepitope vaccine that was previously designed as a candidate immunogenic against SARS-Cov-2.

Materials and Methods

Plasmid pET26b was transferred to the expression host BL21 (DE3) and the recombinant protein was expressed with IPTG induction. The recombinant protein was purified by Ni-NTA column affinity chromatography, and western blotting was used to confirm it. Finally, mice were immunized with recombinant protein in three doses. Then, the interaction of the 3D structure of the vaccine with the human neutralizing antibodies3D structures (7BWJ and 7K8N) antibody was evaluated by docking and molecular dynamics simulation.

Results

The optimized gene had a codon compatibility index of 0.96. The expression of the recombinant protein of the SARS-Cov-2 vaccine in an host led to the production of the recombinant protein with a weight of about 70 kDa with a concentration of 0.7 mg/ml. Immunization of mice with recombinant protein of SARS-Cov-2 vaccine-induced IgG serum antibody response. Statistical analysis showed that the antibody titer in comparison with the control sample has a significant difference, and the antibody titer was acceptable up to 1/256000 dilution. The simulation of vaccine binding with human antibodies by molecular dynamics showed that Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration, and H-bond as well as van der Waals energies and electrostatic of Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) analysis have stable interaction.

Conclusion

This recombinant protein can probably be used as an immunogen candidate for the development of vaccines against SARS-CoV2 in future research.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665320319240809095727
2024-08-19
2024-12-23
Loading full text...

Full text loading...

References

  1. ChoudharyS. MalikY.S. TomarS. Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach.Front. Immunol.202011166410.3389/fimmu.2020.0166432754161
    [Google Scholar]
  2. LuR. ZhaoX. LiJ. NiuP. YangB. WuH. WangW. SongH. HuangB. ZhuN. BiY. MaX. ZhanF. WangL. HuT. ZhouH. HuZ. ZhouW. ZhaoL. ChenJ. MengY. WangJ. LinY. YuanJ. XieZ. MaJ. LiuW.J. WangD. XuW. HolmesE.C. GaoG.F. WuG. ChenW. ShiW. TanW. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑832007145
    [Google Scholar]
  3. AnandK. ZiebuhrJ. WadhwaniP. MestersJ.R. HilgenfeldR. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs.Science200330056261763176710.1126/science.108565812746549
    [Google Scholar]
  4. SuS. WongG. ShiW. LiuJ. LaiA.C.K. ZhouJ. LiuW. BiY. GaoG.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses.Trends Microbiol.201624649050210.1016/j.tim.2016.03.00327012512
    [Google Scholar]
  5. MalikYS SircarS BhatS SharunK DhamaK Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developmentsVet Q.20204016876
    [Google Scholar]
  6. TsengC.T. SbranaE. Iwata-YoshikawaN. NewmanP.C. GarronT. AtmarR.L. PetersC.J. CouchR.B. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus.PLoS One201274e3542110.1371/journal.pone.003542122536382
    [Google Scholar]
  7. RichardsonP. GriffinI. TuckerC. SmithD. OechsleO. PhelanA. RawlingM. SavoryE. StebbingJ. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease.Lancet202039510223e30e3110.1016/S0140‑6736(20)30304‑432032529
    [Google Scholar]
  8. SheahanTP SimsAC LeistSR SchäferA WonJ BrownAJ Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV.Nat Commun.202011122210.1038/s41467‑019‑13940‑6
    [Google Scholar]
  9. TianX LiC HuangA XiaS LuS ShiZ. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody.Emerg Microbes Infect.20209138238510.1080/22221751.2020.1729069
    [Google Scholar]
  10. Thanh LeT. AndreadakisZ. KumarA. Gómez RománR. TollefsenS. SavilleM. MayhewS. The COVID-19 vaccine development landscape.Nat. Rev. Drug Discov.202019530530610.1038/d41573‑020‑00073‑532273591
    [Google Scholar]
  11. MuthumaniK. FalzaranoD. ReuschelE.L. TingeyC. FlingaiS. VillarrealD.O. WiseM. PatelA. IzmirlyA. AljuaidA. SeligaA.M. SouleG. MorrowM. KraynyakK.A. KhanA.S. ScottD.P. FeldmannF. LaCasseR. Meade-WhiteK. OkumuraA. UgenK.E. SardesaiN.Y. KimJ.J. KobingerG. FeldmannH. WeinerD.B. A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates.Sci. Transl. Med.20157301301ra13210.1126/scitranslmed.aac746226290414
    [Google Scholar]
  12. WangL. ShiW. JoyceM.G. ModjarradK. ZhangY. LeungK. LeesC.R. ZhouT. YassineH.M. KanekiyoM. YangZ. ChenX. BeckerM.M. FreemanM. VogelL. JohnsonJ.C. OlingerG. ToddJ.P. BagciU. SolomonJ. MolluraD.J. HensleyL. JahrlingP. DenisonM.R. RaoS.S. SubbaraoK. KwongP.D. MascolaJ.R. KongW.P. GrahamB.S. Evaluation of candidate vaccine approaches for MERS-CoV.Nat. Commun.201561771210.1038/ncomms871226218507
    [Google Scholar]
  13. EnjuanesL. ZuñigaS. Castaño-RodriguezC. Gutierrez-AlvarezJ. CantonJ. SolaI. Molecular basis of coronavirus virulence and vaccine development.Adv. Virus Res.20169624528610.1016/bs.aivir.2016.08.00327712626
    [Google Scholar]
  14. ZhangN. ChannappanavarR. MaC. WangL. TangJ. GarronT. TaoX. TasneemS. LuL. TsengC.T.K. ZhouY. PerlmanS. JiangS. DuL. Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus.Cell. Mol. Immunol.201613218019010.1038/cmi.2015.0325640653
    [Google Scholar]
  15. AbdullaF. NainZ. HossainM.M. SyedS.B. Ahmed KhanM.S. AdhikariU.K. A comprehensive screening of the whole proteome of hantavirus and designing a multi-epitope subunit vaccine for cross-protection against hantavirus: Structural vaccinology and immunoinformatics study.Microb. Pathog.202115010470510.1016/j.micpath.2020.10470533352214
    [Google Scholar]
  16. WangJ. TricocheN. DuL. HunterM. ZhanB. GoudG. DidierE.S. LiuJ. LuL. MarxP.A. JiangS. LustigmanS. The adjuvanticity of an O. volvulus-derived rOv-ASP-1 protein in mice using sequential vaccinations and in non-human primates.PLoS One201275e3701910.1371/journal.pone.003701922615877
    [Google Scholar]
  17. Krishnan GS. JoshiA. AkhtarN. KaushikV. Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome.Microb. Pathog.202115010472810.1016/j.micpath.2020.10472833400987
    [Google Scholar]
  18. SkwarczynskiM. TothI. Peptide-based synthetic vaccines.Chem. Sci.20167284285410.1039/C5SC03892H28791117
    [Google Scholar]
  19. JahangirianE. JamalG.A. NourooziM. MohammadpourA. A reverse vaccinology and immunoinformatics approach for designing a multiepitope vaccine against SARS-CoV-2.Immunogenetics202173645947710.1007/s00251‑021‑01228‑334542663
    [Google Scholar]
  20. GroteA HillerK ScheerM MünchR NörtemannB HempelDC JCat: A novel tool to adapt codon usage of a target gene to its potential expression host.Nucleic Acids Res.200533W526W53110.1093/nar/gki376
    [Google Scholar]
  21. ZukerM. Mfold web server for nucleic acid folding and hybridization prediction.Nucleic Acids Res.200331133406341510.1093/nar/gkg59512824337
    [Google Scholar]
  22. SambrookJ. FritschE.F. ManiatisT. Molecular Cloning: A Laboratory Manual.Cold Spring Harbor Laboratory1989
    [Google Scholar]
  23. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  24. LinA.V. Indirect ELISA.Methods Mol. Biol.20151318515910.1007/978‑1‑4939‑2742‑5_526160563
    [Google Scholar]
  25. JuB. ZhangQ. GeJ. WangR. SunJ. GeX. YuJ. ShanS. ZhouB. SongS. TangX. YuJ. LanJ. YuanJ. WangH. ZhaoJ. ZhangS. WangY. ShiX. LiuL. ZhaoJ. WangX. ZhangZ. ZhangL. Human neutralizing antibodies elicited by SARS-CoV-2 infection.Nature2020584781911511910.1038/s41586‑020‑2380‑z32454513
    [Google Scholar]
  26. BarnesC.O. JetteC.A. AbernathyM.E. DamK.M.A. EssweinS.R. GristickH.B. MalyutinA.G. SharafN.G. Huey-TubmanK.E. LeeY.E. RobbianiD.F. NussenzweigM.C. WestA.P.Jr BjorkmanP.J. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies.Nature2020588783968268710.1038/s41586‑020‑2852‑133045718
    [Google Scholar]
  27. YanY. TaoH. HeJ. HuangS.Y. The HDOCK server for integrated protein–protein docking.Nat. Protoc.20201551829185210.1038/s41596‑020‑0312‑x32269383
    [Google Scholar]
  28. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u21919503
    [Google Scholar]
  29. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.2335423832629
    [Google Scholar]
  30. ApolE ApostolovR BerendsenH BuurenA BjelkmarP DrunenR Gromacs user manual version 4.6.GROMACS2013
    [Google Scholar]
  31. HessB. BekkerH. BerendsenH. FraaijeJ. LINCS: A linear constraint solver for molecular simulations.J. Comput. Chem.199818
    [Google Scholar]
  32. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.103293625835573
    [Google Scholar]
  33. AldeghiM. BodkinM.J. KnappS. BigginP.C. Statistical analysis on the performance of molecular mechanics poisson–boltzmann surface area versus absolute binding free energy calculations: Bromodomains as a case study.J. Chem. Inf. Model.20175792203222110.1021/acs.jcim.7b0034728786670
    [Google Scholar]
  34. SohrabiC AlsafiZ O'NeillN KhanM KerwanA Al-JabirA World health organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19).Int. J. Surg.2020767176
    [Google Scholar]
  35. CucinottaD. VanelliM. WHO declares COVID-19 a pandemic.Acta Biomed.202091115716032191675
    [Google Scholar]
  36. AhmadS NavidA FaridR AbbasG AhmadF ZamanN Design of a novel multi epitope-based vaccine for pandemic coronavirus disease (COVID-19) by vaccinomics and probable prevention strategy against avenging zoonotics.EUR J. Pharm. Sci.2020151105387
    [Google Scholar]
  37. BehmardE. SoleymaniB. NajafiA. BarzegariE. Immunoinformatic design of a COVID-19 subunit vaccine using entire structural immunogenic epitopes of SARS-CoV-2.Sci. Rep.20201012086410.1038/s41598‑020‑77547‑433257716
    [Google Scholar]
  38. KarT NarsariaU BasakS DebD CastiglioneF MuellerDM A candidate multi-epitope vaccine against SARS-CoV-2.Sci Rep2020101089510.1038/s41598‑020‑67749‑1
    [Google Scholar]
  39. KhairkhahN AghasadeghiMR NamvarA BolhassaniA Design of novel multiepitope constructs-based peptide vaccine against the structural S, N and M proteins of human COVID-19 using immunoinformatics analysis.PLoS One20201510e0240577
    [Google Scholar]
  40. MukherjeeS. TworowskiD. DetrojaR. MukherjeeS.B. Frenkel-MorgensternM. Immunoinformatics and structural analysis for identification of immunodominant epitopes in SARS-CoV-2 as potential vaccine targets.Vaccines20208229010.3390/vaccines802029032526960
    [Google Scholar]
  41. De GrootA.S. MoiseL. TerryF. GutierrezA.H. HindochaP. RichardG. HoftD.F. RossT.M. NoeA.R. TakahashiY. KotraiahV. SilkS.E. NielsenC.M. MinassianA.M. AshfieldR. ArditoM. DraperS.J. MartinW.D. Better epitope discovery, precision immune engineering, and accelerated vaccine design using immunoinformatics tools.Front. Immunol.20201144210.3389/fimmu.2020.0044232318055
    [Google Scholar]
  42. SetteA. FikesJ. Epitope-based vaccines: An update on epitope identification, vaccine design and delivery.Curr. Opin. Immunol.200315446147010.1016/S0952‑7915(03)00083‑912900280
    [Google Scholar]
  43. OuX LiuY LeiX LiP MiD RenL Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV.Nat Commun2020111162010.1038/s41467‑020‑15562‑9
    [Google Scholar]
  44. SanjuánR. Domingo-CalapP. Mechanisms of viral mutation.Cell. Mol. Life Sci.201673234433444810.1007/s00018‑016‑2299‑627392606
    [Google Scholar]
  45. JafarpourR. PashangzadehS. DowranR. Host factors: Implications in immunopathogenesis of COVID-19.Pathol. Res. Pract.202122815364710.1016/j.prp.2021.15364734749207
    [Google Scholar]
  46. CanH. KöseoğluA.E. Erkunt AlakS. GüvendiM. DöşkayaM. KarakavukM. GürüzA.Y. ÜnC. In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19.Sci. Rep.20201012238710.1038/s41598‑020‑79645‑933372181
    [Google Scholar]
  47. RosanoG.L. CeccarelliE.A. Recombinant protein expression in Escherichia coli: Advances and challenges.Front. Microbiol.2014517210.3389/fmicb.2014.0017224860555
    [Google Scholar]
  48. FuY.Z. WangS.Y. ZhengZ.Q. Yi Huang LiW.W. XuZ.S. WangY.Y. SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response.Cell. Mol. Immunol.202118361362010.1038/s41423‑020‑00571‑x33110251
    [Google Scholar]
  49. SatarkerS. NampoothiriM. Structural proteins in severe acute respiratory syndrome coronavirus-2.Arch. Med. Res.202051648249110.1016/j.arcmed.2020.05.01232493627
    [Google Scholar]
  50. McBrideR. Van ZylM. FieldingB. The coronavirus nucleocapsid is a multifunctional protein.Viruses2014682991301810.3390/v608299125105276
    [Google Scholar]
  51. CubukJ AlstonJJ The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA.Nat Commun2021121193610.1038/s41467‑021‑21953‑3
    [Google Scholar]
  52. NarayananK. KimK.H. MakinoS. Characterization of N protein self-association in coronavirus ribonucleoprotein complexes.Virus Res.200398213114010.1016/j.virusres.2003.08.02114659560
    [Google Scholar]
  53. KavoosiM. CreaghA.L. KilburnD.G. HaynesC.A. Strategy for selecting and characterizing linker peptides for CBM9-tagged fusion proteins expressed in Escherichia coli.Biotechnol. Bioeng.200798359961010.1002/bit.2139617394253
    [Google Scholar]
  54. BuiH.H. SidneyJ. DinhK. SouthwoodS. NewmanM.J. SetteA. Predicting population coverage of T-cell epitope-based diagnostics and vaccines.BMC Bioinformatics20067115310.1186/1471‑2105‑7‑15316545123
    [Google Scholar]
  55. ChowK.T. GaleM.Jr LooY.M. RIG-I and other RNA sensors in antiviral immunity.Annu. Rev. Immunol.201836166769410.1146/annurev‑immunol‑042617‑05330929677479
    [Google Scholar]
  56. SallenaveJ.M. GuillotL. Innate immune signaling and proteolytic pathways in the resolution or exacerbation of SARS-CoV-2 in COVID-19: Key therapeutic targets?Front. Immunol.202011122910.3389/fimmu.2020.0122932574272
    [Google Scholar]
  57. GuptaN. KumarA. Designing an efficient multi-epitope vaccine against Campylobacter jejuni using immunoinformatics and reverse vaccinology approach.Microb. Pathog.202014710439810.1016/j.micpath.2020.10439832771659
    [Google Scholar]
  58. SolanichX. Vargas-ParraG. van der MadeC.I. SimonsA. Schuurs-HoeijmakersJ. AntolíA. del ValleJ. Rocamora-BlanchG. SetiénF. EstellerM. van ReijmersdalS.V. Riera-MestreA. Sabater-RieraJ. CapelláG. van de VeerdonkF.L. van der HovenB. CorbellaX. HoischenA. LázaroC. Genetic screening for TLR7 variants in young and previously healthy men with severe covid-19.Front. Immunol.20211271911510.3389/fimmu.2021.71911534367187
    [Google Scholar]
  59. KawasakiT. KawaiT. Toll-like receptor signaling pathways.Front. Immunol.2014546110.3389/fimmu.2014.0046125309543
    [Google Scholar]
  60. O’NeillL.A.J. GolenbockD. BowieA.G. The history of toll-like receptors — Redefining innate immunity.Nat. Rev. Immunol.201313645346010.1038/nri344623681101
    [Google Scholar]
  61. HuangY. LiZ. HongQ. ZhouL. MaY. HuY. XinJ. LiT. KongZ. ZhengQ. ChenY. ZhaoQ. GuY. ZhangJ. WangY. YuH. LiS. XiaN. A stepwise docking molecular dynamics approach for simulating antibody recognition with substantial conformational changes.Comput. Struct. Biotechnol. J.20222071072010.1016/j.csbj.2022.01.01235198128
    [Google Scholar]
  62. YuW. ZhongN. LiX. RenJ. WangY. LiC. YaoG. ZhuR. WangX. JiaZ. WuC. ChenR. ZhengW. LiaoH. WuX. YuanX. Structure based affinity maturation and characterizing of SARS-CoV Antibody CR3022 against SARS-CoV-2 by computational and experimental approaches.Viruses202214218610.3390/v1402018635215781
    [Google Scholar]
  63. BzówkaM. BagrowskaW. GóraA. Recent advances in studying toll-like receptors with the use of computational methods.J. Chem. Inf. Model.202363123669368710.1021/acs.jcim.3c0041937285179
    [Google Scholar]
  64. KhanmohammadiS RezaeiN. Role of Toll-like receptors in the pathogenesis of COVID-19.J. Med. Virol.20219352735273910.1002/jmv.26826
    [Google Scholar]
  65. BarnesC.O. WestA.P.Jr Huey-TubmanK.E. HoffmannM.A.G. SharafN.G. HoffmanP.R. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies.bioRxiv202010.1101/2020.05.28.121533
    [Google Scholar]
  66. RockxB. CortiD. DonaldsonE. SheahanT. StadlerK. LanzavecchiaA. BaricR. Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge.J. Virol.20088273220323510.1128/JVI.02377‑0718199635
    [Google Scholar]
  67. WuY WangF. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2.Science202036864961274127810.1126/science.abc2241
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665320319240809095727
Loading
/content/journals/ppl/10.2174/0109298665320319240809095727
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test