Skip to content
2000
image of Copper Nanoparticles: Characterization, Synthesis, and Biological Activity – A Review

Abstract

Copper and copper-based nanoparticles, derived from the abundant and cost-effective copper metal, have garnered significant attention due to their unique properties and potential for various applications. Copper is a biogenic metal that is found in all kingdoms of life and has a variety of essential biological activities. Among the earliest metals that humanity has harvested and exploited, copper has played a crucial role in maintaining and advancing civilization since the beginning of time. The article provided sources that shed light on the synthesis, characteristics, and applications of copper and copper nanoparticles, highlighting their historical significance and diverse range of uses.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385330139240924082840
2024-10-09
2025-01-19
Loading full text...

Full text loading...

References

  1. USGS Mineral Resources Program, U.S. Department of the Interior. U.S. Geological Survey, Fact Sheet 2009 3031 May 2009
    [Google Scholar]
  2. Allaker R. Memarzadeh K. Nanoparticles and the control of oral infections. Int. J. Antimicrob. Agents 2014 43 2 95 104
    [Google Scholar]
  3. Bashir O. Hussain S. AL-Thabaiti, S.; Khan, Z. Synthesis, optical properties, stability, and encapsulation of Cu-nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 140 265 273
    [Google Scholar]
  4. Sadhra S. Wheatley A.D. Cross H.J. Dietary Exposure to Copper in the European Union and Its Assessment for EU Regulatory Risk Assessment. Science of the Total Environment 2007 374 223 234
    [Google Scholar]
  5. Institute of Medicine Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC National Academy Press 2001 224 257
    [Google Scholar]
  6. Turnlund J.R. Jacob R.A. Keen C.L. Strain J.J. Kelley D.S. Domek J.M. Keyes W.R. Ensunsa J.L. Lykkesfeldt J. Coulter J. Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. Am. J. Clin. Nutr. 2004 79 6 1037 1044
    [Google Scholar]
  7. Swartz H.M. Mason R.P. Hogg N. Kalyanaraman B. Sarna T. Plonka P.M. Zareb M. Gutierrez P.L. Berliner L.J. Free Radicals and Medicine. Biomedical EPR, Part A: Free Radicals, Metals, Medicine, and Physiology 2005 23 25 74
    [Google Scholar]
  8. Massoud T.F. Gambhir S.S. Molecular Imaging in Living Subjects: Seeing Fundamental Biological Processes in a New Light. Genes Dev. 2003 17 545 580
    [Google Scholar]
  9. Milanino R. Copper and the Skin. NY Informa Healthcare 2006 149 160
    [Google Scholar]
  10. Rai R. Gummadi S.N. Chand D.K. Cuprous oxide- or coppercoated jute stick pieces at an air-water interface for prevention of aerial contamination in potable water. ACS Omega 2019 4 22514 22520
    [Google Scholar]
  11. Rai R. Chand D.K. Multicomponent click reactions catalysed by copper(I) oxide nanoparticles (Cu2ONPs) derived using Oryza sativa. J. Chem. Sci. 2020 132 Article No. 83
    [Google Scholar]
  12. Raabe D. The Materials Science behind Sustainable Metals and Alloys. Chem. Rev. 2023 123 5 2436 2608
    [Google Scholar]
  13. Trammell R. Rajabimoghadam K. Garcia-Bosch I. Copper- Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O2 Model Systems to Organometallic Transformations. Chem. Rev. 2019 119 4 2954 3031
    [Google Scholar]
  14. Constantinou G. Ancient copper mining in Cyprus. he Government of Cyprus, Cyprus, Copper and the Sea 1992 Seville Universal Exhibition p. 43-75
    [Google Scholar]
  15. Simoni M.U. Drielsma J.A. Ericsson M. Gunn A.G. Heiberg S. Heldal T.A. Nassar N.T. Petavratzi E. Müller D.B. Mass-Balance-Consistent Geological Stock Accounting: A New Approach toward Sustainable Management of Mineral Resources. Environ. Sci. Technol. 2024 58 2 971 990
    [Google Scholar]
  16. Bawiec W. J. Spanski G. T. EMINERS–Economic mineral resource simulator, version 3.0 U.S. Geological Survey Open-File Report 2009-1057, program files and 29-p Quick-Start Guide
    [Google Scholar]
  17. Qiu Q. Zhang F. Zhu W. Wu J. Liang M. Copper in diabetes mellitus: a meta-analysis and systematic review of plasma and serum studies. Biol. Trace Elem. Res. 2017 177 5363
    [Google Scholar]
  18. Gomase V.S. Changbhale S.S. Patil S.A. Kale K.V. Metabolomics. Curr. Drug Metab. 2008 9 1 88 98
    [Google Scholar]
  19. Zheng L. Han P. Liu J. Li R. Yin W. Wang T. Zhang W. Kang Y.J. Role of copper in regression of cardiac hypertrophy. Pharmacol. Ther. 2015 148 66 84
    [Google Scholar]
  20. Denoyer D. Masaldan S. La Fontaine S. Cater M.A. Targeting copper in cancer therapy: ‘Copper That Cancer’. Metallomics 2015 7 145976
    [Google Scholar]
  21. Uriu-Adams J.Y. Keen C.L. Copper, oxidative stress, and human health. Mol. Aspects Med. 2005 26 26898
    [Google Scholar]
  22. Tylecote R.F. A History of Metallurgy. London The Metals Society 1976 1 39
    [Google Scholar]
  23. Khanna P. Gaikwad S. Adhyapak P. Singh N. Marimuthu R. Synthesis and characterization of copper nanoparticles. Mater. Lett. 2007 61 4711 4714
    [Google Scholar]
  24. Dollwet H. Historic uses of copper compounds in medicine. Trace Elem. Med. 2001 2 80 87
    [Google Scholar]
  25. Hochella M.F. Spencer M.G. Jones K.L. Nanotechnology: nature’s gift or scientists’ brainchild? Environ. Sci. Nano 2015 2 114 119
    [Google Scholar]
  26. Kriechbaumer T. Angus A. Parsons D. Rivas C.M. An improved wavelet–ARIMA approach for forecasting metal prices. Resources Policy 2014 39 C 32 41
    [Google Scholar]
  27. Dini J.W. Snyder D.D. Electrodeposition of Copper. Modern Electroplating. Hoboken, NJ, USA John Wiley & Sons, Inc. 2011 33 78
    [Google Scholar]
  28. Yin Z. Sun W. Hu Y. Zhang C. Guan Q. Wu K. Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests. J. Clean. Prod. 2018 171 1039 1048
    [Google Scholar]
  29. Schlesinger M.E. King M.J. Sole K.C. Davenport W.G. Extractive Metallurgy of Copper. Amsterdam, The Netherlands Elsevier 2011 Volume 53 ISBN 9780080967899
    [Google Scholar]
  30. Aldrich C. Consumption of steel grinding media in mills—A review. Miner. Eng. 2013 49 77 91
    [Google Scholar]
  31. Gomase V.S. Tagore S. Toxicogenomics. Curr. Drug Metab. 2008 9 3 250 254 10.2174/138920008783884696 18336230
    [Google Scholar]
  32. Linder M.C. Biochemistry of Copper. New York Plenum Press 1991
    [Google Scholar]
  33. Halliwell B. Gutteridge J.M. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990 186 1 85
    [Google Scholar]
  34. Bull P. Thomas G. Rommens J. Forbes J. Cox D. The Wilson’s disease gene is a putative copper transporting P-type ATPase similar to the Menke’s gene. Nature Genet. 1993 5 327 337
    [Google Scholar]
  35. Brewer G. Recognition, diagnosis, and management of Wilson’s disease. Exp. Biol. Med. 2000 223 39 46
    [Google Scholar]
  36. Daniel K.G. Harbach R.H. Guida W.C. Dou Q.P. Copper storage diseases: Menkes, Wilson’s, and cancer. Front. Biosci. 2004 9 2652 2662
    [Google Scholar]
  37. Wang T. Guo Z.J. Copper in medicine: Homeostasis, chelation therapy and antitumor drug design. Curr. Med. Chem. 2006 13 525 537
    [Google Scholar]
  38. Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2001 2 492 501
    [Google Scholar]
  39. Turski M.L. Thiele D.J. New roles for copper metabolism in cell proliferation, signaling, and disease. J. Biol. Chem. 2009 284 717 721
    [Google Scholar]
  40. Bush A.I. Metals and neuroscience. Curr. Opin. Chem. Biol. 2000 4 184 191
    [Google Scholar]
  41. Patil S.A. Gomase V.S. Kale K.V. DNA Electronics: A Nanotechnology Approach. Curr. Nanosci. 2007 3 2 161 165
    [Google Scholar]
  42. Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 1971 285 1182 1186
    [Google Scholar]
  43. Beckner M. Factors promoting tumor angiogenesis. Cancer Invest. 1999 17 594 623
    [Google Scholar]
  44. Gomase V.S. Tagore S. Kale K.V. Bhiwgade D.A. Oncogenomics. Curr. Drug Metab. 2008 9 3 199 206
    [Google Scholar]
  45. Ziche M. Jones J. Gullino P. Role of prostaglandin E1 and copper in angiogenesis. J. Natl. Cancer Inst. 1982 69 475 482
    [Google Scholar]
  46. Finney L. Vogt S. Fukai T. Glesne D. Copper and angiogenesis: Unraveling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol. 2009 36 88 94
    [Google Scholar]
  47. Warburg O. Wind F. Negelein E. THE METABOLISM OF TUMORS IN THE BODY J. Gen. Physiol. 1927 8 6 519 530 10.1085/jgp.8.6.519 19872213 PMC2140820
    [Google Scholar]
  48. Folkman J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971 285 1182 1186
    [Google Scholar]
  49. Mu¨ ller, T.; Mu¨ ller, W.; Freichtinger, H. Idiopathic copper toxicosis. Am. J. Clin. Nutr. 1998 67 Suppl. 1082S 1086S
    [Google Scholar]
  50. Mu¨ ller, T.; Feichtinger, H.; Berger, H.; Mu¨ ller, W. Endemic tyrolean infantile cirrhosis: an exogenetic disorder. Lancet 1996 347 877 880
    [Google Scholar]
  51. Bruna T. Maldonado-Bravo F. Jara P. Caro N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021 22 7202
    [Google Scholar]
  52. Aygun A. Gülbagca F. Ozer L.Y. Ustaoglu B. Altunoglu Y.C. Baloglu M.C. Atalar M.N. Alma M.H. Sen F. Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J. Pharm. Biomed. Anal. 2020 179 112961
    [Google Scholar]
  53. Rai R. Gummadi S.N. Chand D.K. Cuprous oxide- or coppercoated jute stick pieces at an air-water interface for prevention of aerial contamination in potable water. ACS Omega 2019 4 22514 22520
    [Google Scholar]
  54. Rai R. Chand D.K. Copper nanoparticles (CuNPs) catalyzed chemoselective reduction of nitroarenes in aqueous medium. J. Chem. Sci. 2021 133 Article No. 87
    [Google Scholar]
  55. Rai R. Chand D.K. Multicomponent click reactions catalysed by copper(I) oxide nanoparticles (Cu2ONPs) derived using Oryza sativa. J. Chem. Sci. 2020 132 Article No. 83
    [Google Scholar]
  56. Woźniak-Budych M.J. Staszak K. Staszak M. Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges. Molecules 2023 28 18 6687 doi: 10.3390/molecules28186687. 37764463 PMC10536384
    [Google Scholar]
  57. Gomase V.S. Kale K.V. Tagore S. Hatture S.R. Proteomics: Technologies for Protein Analysis. Curr. Drug Metab. 2008 9 3 213 220
    [Google Scholar]
  58. Kumar B. Smita K. Debut A. Cumbal L. Green synthesis of cuprous oxide nanoparticles using Andean Capuli (Prunus serotina Ehrh. var. Capuli) cherry. J. Clust Sci. 2021 32 1753 1760
    [Google Scholar]
  59. Lien L.T. Tho N.T. Ha D.M. Hang P.L. Nghia P.T. Thang N.D. Influence of phytochemicals in Piper betle linn leaf extract on wound healing. Burns Trauma 2015 3 23
    [Google Scholar]
  60. Kimber R.L. Lewis E.A. Parmeggiani F. Smith K. Bagshaw H. Starborg T. Joshi N. Figueroa A.I. van der Laan G. Cibin G. Gianolio D. Haigh S.J. Pattrick R.A.D. Turner N.J. Lloyd J.R. Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistry. Small 2018 14 10 doi: 10.1002/smll.201703145.
    [Google Scholar]
  61. Munoz J.E. Cervantes J. Esparza R. Rosas G. Iron nanoparticles produced by high-energy ball milling. J. Nanopart. Res. 2007 9 945 950
    [Google Scholar]
  62. Kumar R.V. Diamant Y. Gedanken A. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates. Chem. Mater. 2000 12 2301 2305
    [Google Scholar]
  63. Anikin K. Mel’nik N.N. Simakin A.V. Shafeev G.A. Voronov V.V. Vitukhnovsky A.G. Formation of ZnSe and CdS quantum dots via laser ablation in liquids. Chem. Phys. Lett. 2002 366 357 360
    [Google Scholar]
  64. Davoodi P. Lee L.Y. Xu Q. Sunil V. Sun Y. Soh S. Wang C.H. Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 2018 132 104 138
    [Google Scholar]
  65. Yang C. Su X. Wang J. Cao X. Wang S. Zhang L. Facile microwave-assisted hydrothermal synthesis of varied-shaped CuO nanoparticles and their gas sensing properties. Sens. Actuators B Chem. 2013 185 159 165
    [Google Scholar]
  66. Faulkner L.R. Bard A.J. Electrochemical Methods: Fundamentals and Applications NJ,USA 2001 236
    [Google Scholar]
  67. Hasan J. Crawford R.J. Ivanova E.P. Trends Biotechnol. 2013 31 295 304
    [Google Scholar]
  68. Niederberger M. Pinna N. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application (Engineering Materials and Processes). Berlin, Germany Springer 2009
    [Google Scholar]
  69. Rempel’ A.A. Nanotechnologies. Properties and applications of nanostructured materials. Russ. Chem. Rev. 2007 76 435 461
    [Google Scholar]
  70. Ferrier G.G. Berzins A.R. Davey N.M. Platinum. Metals. Rev. 1985 29 175
    [Google Scholar]
  71. Morales J. Sánchez L. Martín F. Ramos-Barrado J.R. Sánchez M. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 2005 474 1–2 133 140
    [Google Scholar]
  72. Xu K. Fu C. Gao Z. Wei F. Ying Y. Xu C. Fu G. Nanomaterial- based gas sensors: A review. Instrum. Sci. Technol. 2018 46 2 115 145
    [Google Scholar]
  73. Krithiga N. Jayachitra A. Rajalakshmi, Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. An Indian J. NanoSci. 2013 1 1 6 15
    [Google Scholar]
  74. Grigore M.E. Biscu E.R. Holban A.M. Gestal M.C. Grumezescu A.M. Methods of synthesis, properties and biomedical applications of CuO Nanoparticles. Pharmaceuticals 2016 9 75
    [Google Scholar]
  75. Sastry M. Ahmad A. Khan M.I. Kumar R. Biosynthesis of metal Nanoparticles using fungi and actinomycetes. Curr. Sci. 2003 85 162 170
    [Google Scholar]
  76. Theophanides T. Anastassopoulou J. Copper and carcinogenesis. Crit. Rev. Oncol. Hematol. 2002 42 1 57 64
    [Google Scholar]
  77. Mercer J.F.B. The molecular basis of copper transport diseases. Trends Mol. Med. 2001 7 64 69
    [Google Scholar]
  78. Klevay L.M. Cardiovascular disease from copper deficiency—A history. J. Nutr. 2000 130 489S 492S
    [Google Scholar]
  79. O’Gorman J. Humphreys H. Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect. 2012 81 217 223
    [Google Scholar]
  80. King N. Sullivan I. Watkins-Curry P. Chan J. Y. Maggard P. A. Flux-mediated syntheses, structural characterization and lowtemperature polymorphism of the p-type semiconductor Cu₂Ta₄O₁₁ J. Solid State Chem. 2016 236 10 18
    [Google Scholar]
  81. Khan F.A. Biotechnology Fundamentals. 2nd ed Boca Raton, FL, USA CRC Press 2017
    [Google Scholar]
  82. Gomase V.S. Tagore S. Changbhale S.S. Kale K.V. Pharmacogenomics. Curr. Drug Metab. 2008 9 3 207 212 doi: 10.2174/138920008783884830.
    [Google Scholar]
  83. Shankar S. Rhim J. Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater. Lett. 2014 132 307 311
    [Google Scholar]
  84. Borkow G. Gabbay J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol. 2009 3 272 278
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385330139240924082840
Loading
/content/journals/pnt/10.2174/0122117385330139240924082840
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test