Skip to content
2000
image of Silk Fibroin Hydrogels: Cutting-Edge Developments and Future Directions

Abstract

The exploration of hydrogel materials has gained significant attention due to the ongoing period of collaborative interdisciplinary advancements. Silk fibroin (SF) possesses remarkable attributes, such as less immunogenicity, sterilization efficacy, processability without chemical crosslinkers, excellent biocompatibility, low immunogenicity, non-toxicity, mechanical strength, thermal stability, non-carcinogenicity, and adjustable biodegradability make it a highly valuable biomaterial. Silk fibroin hydrogel (SFH), a versatile biomaterial, has garnered significant attention due to its unique properties. Its biocompatibility, tunable mechanical properties, water retention capacity, and bioactive nature offer a unique combination of features that can effectively promote tissue regeneration and enhance wound healing. The utilization of SF for hydrogel production presents a valuable opportunity to leverage natural resources and promote eco-friendly production practices. With their exceptional properties and versatile applications in biomedicine, silk protein-based hydrogels hold promise for various research fields. This review aims to discuss the potential properties and recent advancements in the application of SF-based hydrogels for preclinical skin wound healing.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385339249241102165029
2024-12-10
2025-01-19
Loading full text...

Full text loading...

References

  1. Kuo T.Y. Huang C.C. Shieh S.J. Wang Y.B. Lin M.J. Wu M.C. Huang L.L.H. Skin wound healing assessment via an optimized wound array model in miniature pigs. Sci. Rep. 2022 12 1 445 10.1038/s41598‑021‑03855‑y 35013386
    [Google Scholar]
  2. Landén N.X. Li D. Ståhle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016 73 20 3861 3885 10.1007/s00018‑016‑2268‑0 27180275
    [Google Scholar]
  3. Rezvani Ghomi E. Khalili S. Nouri Khorasani S. Esmaeely Neisiany R. Ramakrishna S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019 136 27 47738 10.1002/app.47738
    [Google Scholar]
  4. Shi C. Wang C. Liu H. Li Q. Li R. Zhang Y. Liu Y. Shao Y. Wang J. Selection of appropriate wound dressing for various wounds. Front. Bioeng. Biotechnol. 2020 8 182 10.3389/fbioe.2020.00182 32266224
    [Google Scholar]
  5. Mazurek Ł. Szudzik M. Rybka M. Konop M. Silk fibroin biomaterials and their beneficial role in skin wound healing. Biomolecules 2022 12 12 1852 Epub ahead of print 10.3390/biom12121852 36551280
    [Google Scholar]
  6. Jacob S. Nair A.B. Shah J. Sreeharsha N. Gupta S. Shinu P. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 2021 13 3 357 Epub ahead of print 10.3390/pharmaceutics13030357 33800402
    [Google Scholar]
  7. Holback H. Yeo Y. Park K. Hydrogel swelling behavior and its biomedical applications. Biomed Hydrogels 2011 3 24 10.1533/9780857091383.1.3
    [Google Scholar]
  8. Huang Z.M. Zhang Y.Z. Kotaki M. Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003 63 15 2223 2253 10.1016/S0266‑3538(03)00178‑7
    [Google Scholar]
  9. Patil P.P. Reagan M.R. Bohara R.A. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. Int. J. Biol. Macromol. 2020 164 4613 4627 10.1016/j.ijbiomac.2020.08.041 32814099
    [Google Scholar]
  10. Chen K. Li Y. Li Y. Pan W. Tan G. Silk fibroin combined with electrospinning as a promising strategy for tissue regeneration. Macromol. Biosci. 2023 23 2 2200380 10.1002/mabi.202200380 36409150
    [Google Scholar]
  11. Carrasco-Torres G. Valdés-Madrigal M.A. Vásquez-Garzón V.R. Baltiérrez-Hoyos R. De la Cruz-Burelo E. Román-Doval R. Valencia-Lazcano A.A. Effect of silk fibroin on cell viability in electrospun scaffolds of polyethylene oxide. Polymers 2019 11 3 451 10.3390/polym11030451 30960435
    [Google Scholar]
  12. Marcolin C. Draghi L. Tanzi M. Faré S. Electrospun silk fibroin–gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. J. Mater. Sci. Mater. Med. 2017 28 5 80 10.1007/s10856‑017‑5884‑9 28397163
    [Google Scholar]
  13. Hakimi O. Knight D.P. Vollrath F. Vadgama P. Spider and mulberry silkworm silks as compatible biomaterials. Compos., Part B Eng. 2007 38 3 324 337 10.1016/j.compositesb.2006.06.012
    [Google Scholar]
  14. Altman G.H. Diaz F. Jakuba C. Calabro T. Horan R.L. Chen J. Lu H. Richmond J. Kaplan D.L. Silk-based biomaterials. Biomaterials 2003 24 3 401 416 10.1016/S0142‑9612(02)00353‑8 12423595
    [Google Scholar]
  15. Wang H.Y. Zhang Y.Q. Processing silk hydrogel and its applications in biomedical materials. Biotechnol. Prog. 2015 31 3 630 640 10.1002/btpr.2058 25740113
    [Google Scholar]
  16. Lopez-Ojeda W. Oakley A.M. Anatomy, Skin (Integument) StatPearls Treasure Island 2018
    [Google Scholar]
  17. Mutsaers S.E. Bishop J.E. McGrouther G. Laurent G.J. Mechanisms of tissue repair: from wound healing to fibrosis. Int. J. Biochem. Cell Biol. 1997 29 1 5 17 10.1016/S1357‑2725(96)00115‑X 9076937
    [Google Scholar]
  18. Martin P. Wound healing--aiming for perfect skin regeneration. Science 1997 276 5309 75 81
    [Google Scholar]
  19. Guo B. Dong R. Liang Y. Li M. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 2021 5 11 773 791 10.1038/s41570‑021‑00323‑z 37117664
    [Google Scholar]
  20. Gurtner G.C. Werner S. Barrandon Y. Longaker M.T. Wound repair and regeneration. Nature 2008 453 7193 314 321 10.1038/nature07039 18480812
    [Google Scholar]
  21. Willyard C. Unlocking the secrets of scar-free skin healing. Nature 2018 563 7732 S86 S88 10.1038/d41586‑018‑07430‑w 30464288
    [Google Scholar]
  22. Clark R.A.F. Ghosh K. Tonnesen M.G. Tissue engineering for cutaneous wounds. J. Invest. Dermatol. 2007 127 5 1018 1029 10.1038/sj.jid.5700715 17435787
    [Google Scholar]
  23. Caló E. Khutoryanskiy V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015 65 252 267 10.1016/j.eurpolymj.2014.11.024
    [Google Scholar]
  24. Wang S. Wei Y. Wang Y. Cheng Y. Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review. Carbohydr. Polym. 2023 313 120760 Epub ahead of print 10.1016/j.carbpol.2023.120760 37182939
    [Google Scholar]
  25. Ozcelik B. Degradable hydrogel systems for biomedical applications. Biosynthetic. Polym. Med. Appl 2016 173 188
    [Google Scholar]
  26. Sudhakar C.K. Upadhyay N. Jain A. Hydrogels-promising candidates for tissue engineering. Nanotechnol. Appl. Tissue Eng 2015 77 94
    [Google Scholar]
  27. Yao X. Zou S. Fan S. Niu Q. Zhang Y. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Mater. Today Bio 2022 16 100381 10.1016/j.mtbio.2022.100381 36017107
    [Google Scholar]
  28. Sabarees G. Tamilarasi G.P. Velmurugan V. Alagarsamy V. Sibuh B.Z. Sikarwar M. Taneja P. Kumar A. Gupta P.K. Emerging trends in silk fibroin based nanofibers for impaired wound healing. J. Drug Deliv. Sci. Technol. 2023 79 103994 10.1016/j.jddst.2022.103994
    [Google Scholar]
  29. Min B.M. Lee G. Kim S.H. Nam Y.S. Lee T.S. Park W.H. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004 25 7-8 1289 1297 10.1016/j.biomaterials.2003.08.045 14643603
    [Google Scholar]
  30. Wang H. Liu X.Y. Chuah Y.J. Goh J.C.H. Li J.L. Xu H. Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures. Chem. Commun. (Camb.) 2013 49 14 1431 1433 10.1039/c2cc38779d 23321676
    [Google Scholar]
  31. Ude A.U. Eshkoor R.A. Zulkifili R. Ariffin A.K. Dzuraidah A.W. Azhari C.H. Bombyx mori silk fibre and its composite: A review of contemporary developments. Mater. Des. 2014 57 298 305 10.1016/j.matdes.2013.12.052
    [Google Scholar]
  32. Rousseau M.E. Lefèvre T. Pézolet M. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders. Biomacromolecules 2009 10 10 2945 2953 10.1021/bm9007919 19785404
    [Google Scholar]
  33. Kundu S.C. Kundu B. Talukdar S. Bano S. Nayak S. Kundu J. Mandal B.B. Bhardwaj N. Botlagunta M. Dash B.C. Acharya C. Ghosh A.K. Nonmulberry silk biopolymers. Biopolymers 2012 97 6 455 467 10.1002/bip.22024 22241173
    [Google Scholar]
  34. Widhe M. Johansson J. Hedhammar M. Rising A. Current progress and limitations of spider silk for biomedical applications. Biopolymers 2012 97 6 468 478 10.1002/bip.21715 21898363
    [Google Scholar]
  35. Zhou Y. Zhou S. Duan H. Wang J. Yan W. Silkworm pupae: A functional food with health benefits for humans. Foods 2022 11 11 1594 10.3390/foods11111594 35681343
    [Google Scholar]
  36. Konwarh R. Gupta P. Mandal B.B. Silk-microfluidics for advanced biotechnological applications: A progressive review. Biotechnol. Adv. 2016 34 5 845 858 10.1016/j.biotechadv.2016.05.001 27165254
    [Google Scholar]
  37. Inoue S. Tanaka K. Arisaka F. Kimura S. Ohtomo K. Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass nlmary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J. Biol. Chem. 2000 275 51 40517 40528 10.1074/jbc.M006897200 10986287
    [Google Scholar]
  38. Xu J. Dong Q. Yu Y. Niu B. Ji D. Li M. Huang Y. Chen X. Tan A. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc. Natl. Acad. Sci. USA 2018 115 35 8757 8762 10.1073/pnas.1806805115 30082397
    [Google Scholar]
  39. Xu H. O’Brochta D.A. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect. Proc. Biol. Sci. 2015 282 1810 20150487 Epub ahead of print 10.1098/rspb.2015.0487 26108630
    [Google Scholar]
  40. Abdelli N. Peng L. Keping C. Silkworm, Bombyx mori, as an alternative model organism in toxicological research. Environ. Sci. Pollut. Res. Int. 2018 25 35 35048 35054 10.1007/s11356‑018‑3442‑8 30374720
    [Google Scholar]
  41. Zhu Z. Imada T. Asakura T. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin. Mater. Chem. Phys. 2009 117 2-3 430 433 10.1016/j.matchemphys.2009.06.028
    [Google Scholar]
  42. Andersson M. Jia Q. Abella A. Lee X.Y. Landreh M. Purhonen P. Hebert H. Tenje M. Robinson C.V. Meng Q. Plaza G.R. Johansson J. Rising A. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 2017 13 3 262 264 10.1038/nchembio.2269 28068309
    [Google Scholar]
  43. Yang Y. Chen X. Shao Z. Zhou P. Porter D. Knight D.P. Vollrath F. Toughness of spider silk at high and low temperatures. Adv. Mater. 2005 17 1 84 88 10.1002/adma.200400344
    [Google Scholar]
  44. Zhou C.Z. Confalonieri F. Jacquet M. Perasso R. Li Z.G. Janin J. Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins 2001 44 2 119 122 10.1002/prot.1078 11391774
    [Google Scholar]
  45. Yang Y. Shao Z. Chen X. Zhou P. Optical spectroscopy to investigate the structure of regenerated Bombyx mori silk fibroin in solution. Biomacromolecules 2004 5 3 773 779 10.1021/bm0343848 15132660
    [Google Scholar]
  46. Sun W. Gregory D.A. Tomeh M.A. Zhao X. Silk fibroin as a functional biomaterial for tissue engineering. Int. J. Mol. Sci. 2021 22 3 1499 10.3390/ijms22031499 33540895
    [Google Scholar]
  47. Kunz RI Brancalhão RMC Ribeiro LDFC Silkworm Sericin: Properties and biomedical applications. Biomed. Res. Int 2016 2016 8175701 10.1155/2016/8175701
    [Google Scholar]
  48. Feng Y. Lin J. Niu L. Wang Y. Cheng Z. Sun X. Li M. High molecular weight silk fibroin prepared by papain degumming. Polymers 2020 12 9 2105 Epub ahead of print 10.3390/polym12092105 32947834
    [Google Scholar]
  49. Spicer C.D. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym. Chem. 2020 11 2 184 219 10.1039/C9PY01021A
    [Google Scholar]
  50. Elliott W.H. Bonani W. Maniglio D. Motta A. Tan W. Migliaresi C. Silk hydrogels of tunable structure and viscoelastic properties using different chronological orders of genipin and physical cross-linking. ACS Appl. Mater. Interfaces 2015 7 22 12099 12108 10.1021/acsami.5b02308 25978549
    [Google Scholar]
  51. Wang W. Nema S. Teagarden D. Protein aggregation—Pathways and influencing factors. Int. J. Pharm. 2010 390 2 89 99 10.1016/j.ijpharm.2010.02.025 20188160
    [Google Scholar]
  52. Nagarkar S. Nicolai T. Chassenieux C. Lele A. Structure and gelation mechanism of silk hydrogels. Phys. Chem. Chem. Phys. 2010 12 15 3834 3844 10.1039/b916319k 20358077
    [Google Scholar]
  53. Yang C Li S Huang X Silk fibroin hydrogels could be therapeutic biomaterials for neurological diseases. Oxid. Med. Cell. Longev 2022 2022 2076680 10.1155/2022/2076680
    [Google Scholar]
  54. Cromer M. Villet M.C. Fredrickson G.H. Gary Leal L. Stepanyan R. Bulters M.J.H. Concentration fluctuations in polymer solutions under extensional flow. J. Rheol. (N.Y.N.Y.) 2013 57 4 1211 1235 10.1122/1.4808411
    [Google Scholar]
  55. Yucel T. Cebe P. Kaplan D.L. Vortex-induced injectable silk fibroin hydrogels. Biophys. J. 2009 97 7 2044 2050 10.1016/j.bpj.2009.07.028 19804736
    [Google Scholar]
  56. Paulusse J.M.J. Sijbesma R.P. Ultrasound in polymer chemistry: Revival of an established technique. J. Polym. Sci. A Polym. Chem. 2006 44 19 5445 5453 10.1002/pola.21646
    [Google Scholar]
  57. Wang X. Kluge J.A. Leisk G.G. Kaplan D.L. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 2008 29 8 1054 1064 10.1016/j.biomaterials.2007.11.003 18031805
    [Google Scholar]
  58. Vu T. Xue Y. Vuong T. Erbe M. Bennet C. Palazzo B. Popielski L. Rodriguez N. Hu X. Comparative study of ultrasonication-induced and naturally self-assembled silk fibroin-wool keratin hydrogel biomaterials. Int. J. Mol. Sci. 2016 17 9 1497 Epub ahead of print 10.3390/ijms17091497 27618011
    [Google Scholar]
  59. Stathopulos P.B. Scholz G.A. Hwang Y.M. Rumfeldt J.A.O. Lepock J.R. Meiering E.M. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 2004 13 11 3017 3027 10.1110/ps.04831804 15459333
    [Google Scholar]
  60. Mason T.J. Peters D. Practical Sonochemistry. 2nd ed Woodhead Publishing 2003 1 155
    [Google Scholar]
  61. Avani F. Damoogh S. Mottaghitalab F. Karkhaneh A. Farokhi M. Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. Int. J. Polym. Mater. 2020 69 1 32 43 10.1080/00914037.2019.1616201
    [Google Scholar]
  62. Wang Y. Kim U.J. Blasioli D.J. Kim H.J. Kaplan D.L. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005 26 34 7082 7094 10.1016/j.biomaterials.2005.05.022 15985292
    [Google Scholar]
  63. Guziewicz N. Best A. Perez-Ramirez B. Kaplan D.L. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials 2011 32 10 2642 2650 10.1016/j.biomaterials.2010.12.023 21216004
    [Google Scholar]
  64. Yodmuang S. McNamara S.L. Nover A.B. Mandal B.B. Agarwal M. Kelly T.A.N. Chao P.G. Hung C. Kaplan D.L. Vunjak-Novakovic G. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015 11 27 36 10.1016/j.actbio.2014.09.032 25281788
    [Google Scholar]
  65. Li Z. Song J. Zhang J. Hao K. Liu L. Wu B. Zheng X. Xiao B. Tong X. Dai F. Topical application of silk fibroin-based hydrogel in preventing hypertrophic scars. Colloids Surf. B Biointerfaces 2020 186 110735 Epub ahead of print 10.1016/j.colsurfb.2019.110735 31865120
    [Google Scholar]
  66. Rockwood D.N. Preda R.C. Yücel T. Wang X. Lovett M.L. Kaplan D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011 6 10 1612 1631 10.1038/nprot.2011.379 21959241
    [Google Scholar]
  67. Murphy A.R. Kaplan D.L. Biomedical applications of chemically-modified silk fibroin. J. Mater. Chem. 2009 19 36 6443 6450 10.1039/b905802h 20161439
    [Google Scholar]
  68. McPherson A. Gavira J.A. Introduction to protein crystallization. Acta Crystallogr. F Struct. Biol. Commun. 2014 70 1 2 20 10.1107/S2053230X13033141 24419610
    [Google Scholar]
  69. Kang C.C. Yamauchi K.A. Vlassakis J. Sinkala E. Duncombe T.A. Herr A.E. Single cell–resolution western blotting. Nat. Protoc. 2016 11 8 1508 1530 10.1038/nprot.2016.089 27466711
    [Google Scholar]
  70. Stevenson C. Characterization of protein and peptide stability and solubility in non-aqueous solvents. Curr. Pharm. Biotechnol. 2000 1 2 165 182 10.2174/1389201003378942 11467335
    [Google Scholar]
  71. Numata K. Katashima T. Sakai T. State of water, molecular structure, and cytotoxicity of silk hydrogels. Biomacromolecules 2011 12 6 2137 2144 10.1021/bm200221u 21517113
    [Google Scholar]
  72. Hanawa T. Watanabe A. Tsuchiya T. Ikoma R. Hidaka M. Sugihara M. New oral dosage form for elderly patients: preparation and characterization of silk fibroin gel. Chem. Pharm. Bull. (Tokyo) 1995 43 2 284 288 10.1248/cpb.43.284 7728934
    [Google Scholar]
  73. Karakutuk I. Ak F. Okay O. Diepoxide-triggered conformational transition of silk fibroin: formation of hydrogels. Biomacromolecules 2012 13 4 1122 1128 10.1021/bm300006r 22360530
    [Google Scholar]
  74. Thananukul K. Jarruwale P. Suttenun N. Thordason P. Punyamoonwongsa P. Silk semi-interpenetrating network hydrogels for biomedical applications. Macromol. Symp. 2015 354 1 251 257 10.1002/masy.201400095
    [Google Scholar]
  75. Floren M. Migliaresi C. Motta A. Processing techniques and applications of silk hydrogels in bioengineering. J. Funct. Biomater. 2016 7 3 26 10.3390/jfb7030026 27649251
    [Google Scholar]
  76. Terry A.E. Knight D.P. Porter D. Vollrath F. pH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm. Biomacromolecules 2004 5 3 768 772 10.1021/bm034381v 15132659
    [Google Scholar]
  77. Matsumoto A. Chen J. Collette A.L. Kim U.J. Altman G.H. Cebe P. Kaplan D.L. Mechanisms of silk fibroin sol-gel transitions. J. Phys. Chem. B 2006 110 43 21630 21638 10.1021/jp056350v 17064118
    [Google Scholar]
  78. Barroso I.A. Man K. Villapun V.M. Cox S.C. Ghag A.K. Methacrylated silk fibroin hydrogels: pH as a tool to control functionality. ACS Biomater. Sci. Eng. 2021 7 10 4779 4791 10.1021/acsbiomaterials.1c00791 34586800
    [Google Scholar]
  79. Ribeiro M. de Moraes M.A. Beppu M.M. Garcia M.P. Fernandes M.H. Monteiro F.J. Ferraz M.P. Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering. Eur. Polym. J. 2015 67 66 77 10.1016/j.eurpolymj.2015.03.056
    [Google Scholar]
  80. Floren M.L. Spilimbergo S. Motta A. Migliaresi C. Carbon dioxide induced silk protein gelation for biomedical applications. Biomacromolecules 2012 13 7 2060 2072 10.1021/bm300450a 22657735
    [Google Scholar]
  81. Mallepally R.R. Marin M.A. McHugh M.A. CO2-assisted synthesis of silk fibroin hydrogels and aerogels. Acta Biomater. 2014 10 10 4419 4424 10.1016/j.actbio.2014.06.007 24954908
    [Google Scholar]
  82. Mu X. Sahoo J.K. Cebe P. Kaplan D.L. Photo-crosslinked silk fibroin for 3d printing. Polymers 2020 12 12 2936 10.3390/polym12122936 33316890
    [Google Scholar]
  83. Heck T. Faccio G. Richter M. Thöny-Meyer L. Enzyme-catalyzed protein crosslinking. Appl. Microbiol. Biotechnol. 2013 97 2 461 475 10.1007/s00253‑012‑4569‑z 23179622
    [Google Scholar]
  84. Raia N.R. Partlow B.P. McGill M. Kimmerling E.P. Ghezzi C.E. Kaplan D.L. Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 2017 131 58 67 10.1016/j.biomaterials.2017.03.046 28376366
    [Google Scholar]
  85. Wang L. Xu B. Nong Y. Wang P. Yu Y. Deng C. Yuan J. Wang Q. Laccase-mediated construction of flexible double-network hydrogels based on silk fibroin and tyramine-modified hyaluronic acid. Int. J. Biol. Macromol. 2020 160 795 805 10.1016/j.ijbiomac.2020.05.258 32497666
    [Google Scholar]
  86. Ahmad Z. Salman S. Khan S.A. Amin A. Rahman Z.U. Al-Ghamdi Y.O. Akhtar K. Bakhsh E.M. Khan S.B. Versatility of hydrogels: From Synthetic strategies, classification, and properties to biomedical applications. Gels 2022 8 3 167 10.3390/gels8030167 35323280
    [Google Scholar]
  87. El Sayed M.M. Production of polymer hydrogel composites and their applications. J. Polym. Environ. 2023 31 7 2855 2879 10.1007/s10924‑023‑02796‑z
    [Google Scholar]
  88. Zhou H. Wang Z. Cao H. Hu H. Luo Z. Yang X. Cui M. Zhou L. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds—a novel approach to corneal tissue engineering. J. Biomater. Sci. Polym. Ed. 2019 30 17 1604 1619 10.1080/09205063.2019.1652418 31438806
    [Google Scholar]
  89. Lv Q. Hu K. Feng Q. Cui F. Fibroin/collagen hybrid hydrogels with crosslinking method: Preparation, properties, and cytocompatibility. J. Biomed. Mater. Res. A 2008 84A 1 198 207 10.1002/jbm.a.31366 17607763
    [Google Scholar]
  90. Jeong J.O. Park J.S. Kim Y.A. Yang S.J. Jeong S.I. Lee J.Y. Lim Y.M. Gamma ray-induced polymerization and cross-linking for optimization of PPy/PVP hydrogel as biomaterial. Polymers 2020 12 1 111 10.3390/polym12010111 31948023
    [Google Scholar]
  91. Kim M.H. Park W.H. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility. Int. J. Nanomedicine 2016 11 2967 2978 27382283
    [Google Scholar]
  92. Dorishetty P. Balu R. Sreekumar A. de Campo L. Mata J.P. Choudhury N.R. Dutta N.K. Robust and tunable hybrid hydrogels from photo-cross-linked soy protein isolate and regenerated silk fibroin. ACS Sustain. Chem.& Eng. 2019 7 10 9257 9271 10.1021/acssuschemeng.9b00147
    [Google Scholar]
  93. Zhou Y. Liang K. Zhao S. Zhang C. Li J. Yang H. Liu X. Yin X. Chen D. Xu W. Xiao P. Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Int. J. Biol. Macromol. 2018 108 383 390 10.1016/j.ijbiomac.2017.12.032 29225174
    [Google Scholar]
  94. Zhang F. Li J. Zhu T. Zhang S. Kundu S.C. Lu S. Potential of biocompatible regenerated silk fibroin/sodium N-lauroyl sarcosinate hydrogels. J. Biomater. Sci. Polym. Ed. 2015 26 12 780 795 10.1080/09205063.2015.1058576 26053789
    [Google Scholar]
  95. Nguyen T.P. Nguyen Q.V. Nguyen V.H. Le T.H. Huynh V.Q.N. Vo D.V.N. Trinh Q.T. Kim S.Y. Le Q.V. Silk fibroin-based biomaterials for biomedical applications: A review. Polymers 2019 11 12 1933 10.3390/polym11121933 31771251
    [Google Scholar]
  96. Singh V. Tripathi D.K. Sharma V.K. Srivastava D. Kumar U. Poluri K.M. Singh B.N. Kumar D. R V.K. Silk fibroin hydrogel: A novel biopolymer for sustained release of vancomycin drug for diabetic wound healing. J. Mol. Struct. 2023 1286 135548 10.1016/j.molstruc.2023.135548
    [Google Scholar]
  97. He S. Shi D. Han Z. Dong Z. Xie Y. Zhang F. Zeng W. Yi Q. Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision. Biomed. Eng. Online 2019 18 1 97 Epub ahead of print 10.1186/s12938‑019‑0716‑4 31578149
    [Google Scholar]
  98. Lee G Ko YG Bae KH Green tea catechin-grafted silk fibroin hydrogels with reactive oxygen species scavenging activity for wound healing applications. Biomater Res. 2022 26 1 62 10.1186/s40824‑022‑00304‑3
    [Google Scholar]
  99. Zheng H. Huang Z. Chen T. Sun Y. Chen S. Bu G. Guan H. Gallium ions incorporated silk fibroin hydrogel with antibacterial efficacy for promoting healing of Pseudomonas aeruginosa-infected wound. Front Chem. 2022 10 1017548 10.3389/fchem.2022.1017548 36385992
    [Google Scholar]
  100. Sundaran S. Kok L.C. Chang H.Y. Fabrication andin vitro evaluation of photo cross-linkable silk fibroin–epsilon-poly-L-lysine hydrogel for wound repair. Biomed. Mater. 2023 18 5 055021 Epub ahead of print 10.1088/1748‑605X/acef86 37567188
    [Google Scholar]
  101. Xie H. Bai Q. Kong F. Li Y. Zha X. Zhang L. Zhao Y. Gao S. Li P. Jiang Q. Allantoin-functionalized silk fibroin/sodium alginate transparent scaffold for cutaneous wound healing. Int. J. Biol. Macromol. 2022 207 859 872 10.1016/j.ijbiomac.2022.03.147 35358577
    [Google Scholar]
  102. Yao Q. Lan Q.H. Jiang X. Du C.C. Zhai Y.Y. Shen X. Xu H.L. Xiao J. Kou L. Zhao Y.Z. Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing. Theranostics 2020 10 25 11719 11736 10.7150/thno.47682 33052243
    [Google Scholar]
  103. Zhang F. Yin C. Qi X. Guo C. Wu X. Silk fibroin crosslinked glycyrrhizic acid and silver hydrogels for accelerated bacteria‐infected wound healing. Macromol. Biosci. 2022 22 4 2100407 10.1002/mabi.202100407 34939312
    [Google Scholar]
  104. Yu Y. Yang B. Tian D. Liu J. Yu A. Wan Y. Thiolated hyaluronic acid/silk fibroin dual-network hydrogel incorporated with bioglass nanoparticles for wound healing. Carbohydr. Polym. 2022 288 119334 Epub ahead of print 10.1016/j.carbpol.2022.119334 35450620
    [Google Scholar]
  105. Okabayashi R Nakamura M Okabayashi T Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full-thickness skin wounds. J. Biomed. Mater. Res - Part B Appl. Biomater 2009 90 641 646 10.1002/jbm.b.31329
    [Google Scholar]
  106. Chen Z. Zhang X. Liang J. Ji Y. Zhou Y. Fang H. Preparation of silk fibroin/carboxymethyl chitosan hydrogel under low voltage as a wound dressing. Int. J. Mol. Sci. 2021 22 14 7610 10.3390/ijms22147610 34299229
    [Google Scholar]
  107. Qian Z. Wang H. Bai Y. Wang Y. Tao L. Wei Y. Fan Y. Guo X. Liu H. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release. ACS Appl. Mater. Interfaces 2020 12 50 55659 55674 10.1021/acsami.0c17142 33327053
    [Google Scholar]
  108. Maity B. Alam S. Samanta S. Prakash R.G. Govindaraju T. Antioxidant silk fibroin composite hydrogel for rapid healing of diabetic wound. Macromol. Biosci. 2022 22 9 2200097 10.1002/mabi.202200097 35920099
    [Google Scholar]
  109. Sabarees G. Velmurugan V. Solomon V.R. Molecular docking and molecular dynamics simulations discover curcumin analogs as potential wound healing agents. Chem. Phys. Impact 2024 8 100441 10.1016/j.chphi.2023.100441
    [Google Scholar]
  110. Karahaliloğlu Z. Curcumin-loaded silk fibroin e-gel scaffolds for wound healing applications. Mater. Technol. 2018 33 4 276 287 10.1080/10667857.2018.1432171
    [Google Scholar]
  111. Jing J. Liang S. Yan Y. Tian X. Li X. Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities. ACS Biomater. Sci. Eng. 2019 5 9 4601 4611 10.1021/acsbiomaterials.9b00604 33448833
    [Google Scholar]
  112. Qian Y. Zheng Y. Jin J. Wu X. Xu K. Dai M. Niu Q. Zheng H. He X. Shen J. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv. Mater. 2022 34 29 2200521 10.1002/adma.202200521 35576814
    [Google Scholar]
  113. Liu Y. Fan J. Lv M. She K. Sun J. Lu Q. Han C. Ding S. Zhao S. Wang G. Zhang Y. Zang G. Photocrosslinking silver nanoparticles–aloe vera–silk fibroin composite hydrogel for treatment of full-thickness cutaneous wounds. Regen. Biomater. 2021 8 6 rbab048 Epub ahead of print 10.1093/rb/rbab048 34513005
    [Google Scholar]
  114. Bhar B. Chakraborty B. Nandi S.K. Mandal B.B. Silk-based phyto-hydrogel formulation expedites key events of wound healing in full-thickness skin defect model. Int. J. Biol. Macromol. 2022 203 623 637 10.1016/j.ijbiomac.2022.01.142 35120938
    [Google Scholar]
  115. Wang R. Ruan L. Jiang G. Li P. Aharodnikau U.E. Yunusov K.E. Gao X. Solomevich S.O. Fabrication of curcumin-loaded silk fibroin and polyvinyl alcohol composite hydrogel films for skin wound healing. ACS Appl. Bio Mater. 2022 5 9 4400 4412 Epub ahead of print 10.1021/acsabm.2c00548 36018308
    [Google Scholar]
  116. Yang C.M. Lee J. Lee H. Park W.H. ZnO nanoparticle-embedded modified silk fibroin-tannin multifunctional hydrogel. Int. J. Biol. Macromol. 2022 210 1 10 10.1016/j.ijbiomac.2022.05.005 35526760
    [Google Scholar]
  117. Xu H.L. Chen P.P. ZhuGe D.L. Zhu Q.Y. Jin B.H. Shen B.X. Xiao J. Zhao Y.Z. Liposomes with silk fibroin hydrogel core to stabilize bfgf and promote the wound healing of mice with deep second‐degree scald. Adv. Healthc. Mater. 2017 6 19 1700344 10.1002/adhm.201700344 28661050
    [Google Scholar]
  118. Thangavel P. Ramachandran B. Kannan R. Muthuvijayan V. Biomimetic hydrogel loaded with silk and l‐proline for tissue engineering and wound healing applications. J. Biomed. Mater. Res. B Appl. Biomater. 2017 105 6 1401 1408 10.1002/jbm.b.33675 27080564
    [Google Scholar]
  119. Hong L.T.A. Kim Y.M. Park H.H. Hwang D.H. Cui Y. Lee E.M. Yahn S. Lee J.K. Song S.C. Kim B.G. An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nat. Commun. 2017 8 1 533 Epub ahead of print 10.1038/s41467‑017‑00583‑8 28912446
    [Google Scholar]
  120. Fenton O.S. Olafson K.N. Pillai P.S. Mitchell M.J. Langer R. Advances in biomaterials for drug delivery. Adv. Mater. 2018 30 29 1705328 Epub ahead of print 10.1002/adma.201705328 29736981
    [Google Scholar]
  121. Singh Y.P. Bhardwaj N. Mandal B.B. Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering. ACS Appl. Mater. Interfaces 2016 8 33 21236 21249 10.1021/acsami.6b08285 27459679
    [Google Scholar]
  122. Gupta P. Adhikary M. M J.C. Kumar M. Bhardwaj N. Mandal B.B. Biomimetic, osteoconductive non-mulberry silk fiber reinforced tricomposite scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces 2016 8 45 30797 30810 10.1021/acsami.6b11366 27783501
    [Google Scholar]
  123. Bose S. Sarkar N. Banerjee D. Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration. Mater. Today Chem. 2018 8 110 120 10.1016/j.mtchem.2018.03.005 30480167
    [Google Scholar]
  124. Jiang R.D. Liu M.Q. Chen Y. Shan C. Zhou Y.W. Shen X.R. Li Q. Zhang L. Zhu Y. Si H.R. Wang Q. Min J. Wang X. Zhang W. Li B. Zhang H.J. Baric R.S. Zhou P. Yang X.L. Shi Z.L. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 2020 182 1 50 58.e8 10.1016/j.cell.2020.05.027 32516571
    [Google Scholar]
  125. Knudsen J.R. Steenberg D.E. Hingst J.R. Hodgson L.R. Henriquez-Olguin C. Li Z. Kiens B. Richter E.A. Wojtaszewski J.F.P. Verkade P. Jensen T.E. Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Mol. Metab. 2020 39 100998 Epub ahead of print 10.1016/j.molmet.2020.100998 32305516
    [Google Scholar]
  126. Schneider J. Pultar M. Holnthoner W. Ex vivo engineering of blood and lymphatic microvascular networks. Vascular Biology 2019 1 1 H17 H22 10.1530/VB‑19‑0012 32923949
    [Google Scholar]
  127. Cheng B. Yan Y. Qi J. Deng L. Shao Z.W. Zhang K.Q. Li B. Sun Z. Li X. Cooperative assembly of a peptide gelator and silk fibroin afford an injectable hydrogel for tissue engineering. ACS Appl. Mater. Interfaces 2018 10 15 12474 12484 10.1021/acsami.8b01725 29584396
    [Google Scholar]
  128. Mitropoulos A.N. Marelli B. Ghezzi C.E. Applegate M.B. Partlow B.P. Kaplan D.L. Omenetto F.G. Transparent, nanostructured silk fibroin hydrogels with tunable mechanical properties. ACS Biomater. Sci. Eng. 2015 1 10 964 970 10.1021/acsbiomaterials.5b00215 33429527
    [Google Scholar]
  129. Kalashnikova I. Das S. Seal S. Nanomaterials for wound healing: Scope and advancement. Nanomedicine (Lond.) 2015 10 16 2593 2612 10.2217/nnm.15.82 26295361
    [Google Scholar]
  130. Korrapati P.S. Karthikeyan K. Satish A. Krishnaswamy V.R. Venugopal J.R. Ramakrishna S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater. Sci. Eng. C 2016 67 747 765 10.1016/j.msec.2016.05.074 27287175
    [Google Scholar]
  131. Langer R Vacanti JP Tissue engineering. Science 1993 260 5110 920 926
    [Google Scholar]
  132. Zhang H. Xu D. Zhang Y. Li M. Chai R. Silk fibroin hydrogels for biomedical applications. Smart. Med 2022 1 1 e20220011 10.1002/SMMD.20220011 39188746
    [Google Scholar]
  133. Li D. Liang R. Wang Y. Zhou Y. Cai W. Preparation of silk fibroin‐derived hydrogels and applications in skin regeneration. Health Sci. Rep. 2024 7 8 e2295 10.1002/hsr2.2295 39139463
    [Google Scholar]
  134. Zheng H. Zuo B. Functional silk fibroin hydrogels: Preparation, properties and applications. J. Mater. Chem. B Mater. Biol. Med. 2021 9 5 1238 1258 10.1039/D0TB02099K 33406183
    [Google Scholar]
  135. Tamilarasi G.P. Sabarees G. Krishnan M. Gouthaman S. Alagarsamy V. Solomon V.R. Electrospun scaffold-based antibiotic therapeutics for chronic wound recovery. Mini Rev. Med. Chem. 2023 23 16 1653 1677 10.2174/1389557523666230221155544 36824003
    [Google Scholar]
  136. Zhang F. General introduction to upconversion luminescence materials. Photon Upconversion Nanomaterials Springer Berlin, Heidelberg 2015 10.1007/978‑3‑662‑45597‑5_1
    [Google Scholar]
  137. Khutoryanskaya O.V. Potgieter M. Khutoryanskiy V.V. Multilayered hydrogel coatings covalently-linked to glass surfaces showing a potential to mimic mucosal tissues. Soft Matter 2010 6 3 551 557 10.1039/B918007A
    [Google Scholar]
  138. Choi J. Konno T. Takai M. Ishihara K. Smart controlled preparation of multilayered hydrogel for releasing bioactive molecules. Curr. Appl. Phys. 2009 9 4 e259 e262 10.1016/j.cap.2009.06.054
    [Google Scholar]
  139. Kim H.H. Park J.B. Kang M.J. Park Y.H. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid–dopamine conjugate. Int. J. Biol. Macromol. 2014 70 516 522 10.1016/j.ijbiomac.2014.06.052 24999272
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385339249241102165029
Loading
/content/journals/pnt/10.2174/0122117385339249241102165029
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: hydrogel ; hydrogel fabrication ; tissue engineering ; Silk fibroin ; wound dressing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test