Skip to content
2000
image of A Comprehensive Review on Oleic Acid Vesicles: A Novel Approach to Drug Delivery

Abstract

The implementation of several innovative drug delivery technologies has made medication distribution more focused and managed in recent years. These days, a vesicular drug delivery system defines the rate of distribution and the site of action in order to improve the action and increase patient compliance; there are various kinds of newly developed vesicular drug delivery systems, including transferosomes, niosomes, aquasomes, ufasomes, pharmacosomes, and phytosomes. Ufasomes are unsaturated fatty acid vesicles with a limited pH range of 7 to 9. They are a suspension of closed lipid bilayers made of fatty acids and their ionized species. The hydrocarbon tails of fatty acid molecules are oriented toward the membrane's inner core, and their carboxyl groups are in contact with water. The two fatty acids that are most frequently employed in the ufasomes’ manufacturing process are oleic and linoleic acids. It is a common practice to produce fatty acid vesicles the thin film hydration process. The manufacture of stable ufasomes is mostly dependent on the choice of fatty acids, amount of cholesterol, pH range, buffer, etc. This article goes into additional detail regarding unsaturated fatty acids’ characteristics, benefits, and drawbacks.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385317956241008074909
2024-10-24
2025-01-19
Loading full text...

Full text loading...

References

  1. Kamboj S. Saini V. Magon N. Bala S. Jhawat V. Vesicular drug delivery systems: A novel approach for drug targeting. Int. J. Drug Deliv. 2013 5 121 130
    [Google Scholar]
  2. Manish G. Vimukta S. Targeted drug delivery system: Are view. Res J Chem Sci 2011 1 2 135 138
    [Google Scholar]
  3. Arundhasree R. R R, R A, Kumar AR, Kumar SS, Nair SC. Ufasomes: Unsaturated fatty acid based vesicular drug delivery system. Int J Appl Pharmaceut 2021 13 2 76 83 10.22159/ijap.2021v13i2.39526
    [Google Scholar]
  4. Kapoor B. Gupta R. Gulati M. Singh S.K. Khursheed R. Gupta M. The Why, Where, Who, How, and What of the vesicular delivery systems. Adv. Colloid Interface Sci. 2019 271 101985 10.1016/j.cis.2019.07.006 31351415
    [Google Scholar]
  5. Ashara K.C. Paun J.S. Soniwala M.M. Vesicular drug delivery system: A novel approach. Mintage J Pharm Med Sci 2014 3 3 1 4
    [Google Scholar]
  6. Sankhyan A. Pawar P. Recent Trends in Niosome as Vesicular Drug: Delivery System. J. Appl. Pharmaceut Sci. 2012 2 6 20 32
    [Google Scholar]
  7. Modi K.A. Shelat P.K. Applications of novel vesicular drug delivery system as ocular drug vehicles: A review. Int. J. Pharm. Sci. Res. 2012 3 12 4554
    [Google Scholar]
  8. Jadhav SM Morey P Karpe MM Kadam V Novel vesicular system: An overview J Appl Pharmaceut Sci 2012 20 Issue 193 202
    [Google Scholar]
  9. Myneni G.S. Radha G. Soujanya G.V. Novel vesicular drug delivery systems: A review. J. Pharm. Res. 2021 11 4 1650 1664
    [Google Scholar]
  10. Chandra D. Yadav K.K. Singh V.K. Patel A. Chaurasia S. An overview: The novel carrier for vesicular drug delivery system. World J. Pharm. Res. 2014 3 6 1299 1322
    [Google Scholar]
  11. Sinico C. Fadda A.M. Vesicular carriers for dermal drug delivery. Expert Opin. Drug Deliv. 2009 6 8 813 825 10.1517/17425240903071029 19569979
    [Google Scholar]
  12. Salama A.H. Aburahma M.H. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: Preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging. Pharm. Dev. Technol. 2016 21 6 706 715 10.3109/10837450.2015.1048553
    [Google Scholar]
  13. Nair Athira J. Aswathi K. Ashitha G. Athira P.P. Nair Sreeja C. UFASOME: A potential phospholipid carrier as a novel pharmaceutical formulation. Int Res J Pharm 2014 5 4 250 253
    [Google Scholar]
  14. Choudhary S. Waghmare S. Kamble H.A. REVIEW: TARGETED DRUG DELIVERY SYSTEM. World J. Pharm. Res. 2021 10 12 521 531
    [Google Scholar]
  15. Bagmar NA Hatwar PR Bakal RL A REVIEW ON TARGETED DRUG DELIVERY SYSTEM
    [Google Scholar]
  16. Prabahar K. Alanazi Z. Qushawy M. Targeted drug delivery system: Advantages, carriers and strategies. Indian J Pharmaceut Edu Res 2021 55 2 346 353 10.5530/ijper.55.2.72
    [Google Scholar]
  17. Han S. Molecular dynamics simulation of oleic acid/oleate bilayers: An atomistic model for a ufasome membrane. Chem. Phys. Lipids 2013 175-176 79 83 10.1016/j.chemphyslip.2013.08.004 23994553
    [Google Scholar]
  18. Dhule K.D. Nandgude T.D. Lipid Nano-System Based Topical Drug Delivery for Management of Rheumatoid Arthritis: An Overview. Adv. Pharm. Bull. 2023 13 4 663 677 10.34172/apb.2023.075 38022817
    [Google Scholar]
  19. Stefanov S.R. Andonova V.Y. Lipid nanoparticulate drug delivery systems: Recent advances in the treatment of skin disorders. Pharmaceuticals (Basel) 2021 14 11 1083 10.3390/ph14111083 34832865
    [Google Scholar]
  20. Cristiano M.C. Froiio F. Mancuso A. Oleuropein-laded ufasomes improve the nutraceutical efficacy. Nanomaterials (Basel) 2021 11 1 105 10.3390/nano11010105 33406805
    [Google Scholar]
  21. Fan Y. Fang Y. Ma L. The self-crosslinked ufasome of conjugated linoleic acid: Investigation of morphology, bilayer membrane and stability. Colloids Surf. B Biointerfaces 2014 123 8 14 10.1016/j.colsurfb.2014.08.028 25217809
    [Google Scholar]
  22. Hashem S.M. Gad M.K. Anwar H.M. Saleh N.M. Shamma R.N. Elsherif N.I. Itraconazole-Loaded Ufasomes: Evaluation, Characterization, and Anti-Fungal Activity against Candida albicans. Pharmaceutics 2022 15 1 26 10.3390/pharmaceutics15010026 36678655
    [Google Scholar]
  23. Kumar B. Pandey M. Aggarwal R. Sahoo P.K. A comprehensive review on invasomal carriers incorporating natural terpenes for augmented transdermal delivery. Future J Pharmaceut Sci 2022 8 1 50 10.1186/s43094‑022‑00440‑6
    [Google Scholar]
  24. Verma S. Bhardwaj A. Vij M. Bajpai P. Goutam N. Kumar L. Oleic acid vesicles: A new approach for topical delivery of antifungal agent. Artif. Cells Nanomed. Biotechnol. 2014 42 2 95 101 10.3109/21691401.2013.794351 23656670
    [Google Scholar]
  25. Lakshmi V.S. Manohar R.D. Mathan S. Dharan S.S. Ufasomes: A Potential Vesicular Carrier System. J Pharmaceut Sci Res 2020 12 10 1332 1335
    [Google Scholar]
  26. Pattnaik S. Swain K. Singh S.P. Sirbaiya A.K. Lipid vesicles: Potentials as drug delivery systems.Nanoengineered Biomaterials for Advanced Drug Delivery. Amsterdam Elsevier 2020 163180 10.1016/B978‑0‑08‑102985‑5.00008‑5
    [Google Scholar]
  27. Jain S. Jain V. Mahajan S.C. Lipid based vesicular drug delivery systems. Advances Pharmaceut 2014 2014 1 12 10.1155/2014/574673
    [Google Scholar]
  28. Witika B.A. Mweetwa L.L. Tshiamo K.O. Vesicular drug delivery for the treatment of topical disorders: Current and future perspectives. J. Pharm. Pharmacol. 2021 73 11 1427 1441 10.1093/jpp/rgab082 34132342
    [Google Scholar]
  29. Haranath C. Poojitha N. Ahad H.A. Yarra S. Eranti B. Recent advances in lipid based nanovesicles for transdermal drug delivery. JMPAS 2021 11 6 4273
    [Google Scholar]
  30. Kotla N.G. Chandrasekar B. Rooney P. Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents. ACS Biomater. Sci. Eng. 2017 3 7 1262 1272 10.1021/acsbiomaterials.6b00681 33440514
    [Google Scholar]
  31. Tushar Rukari Prashant Pingale Chandrashekhar Upasani Vesicular drug delivery systems for the fungal infections’ treatment through topical application-a systemic review. J Curr Sci Technol 2023 13 2 500 516 10.59796/jcst.V13N2.2023.1856
    [Google Scholar]
  32. Rao B.L. Krishnan S.P. Reddy C.B. Vesicular and stealth vesicular drug delivery–A review. J. Pharmaceut Res. Int. 2021 33 47 B33098 10.9734/jpri/2021/v33i47B33098
    [Google Scholar]
  33. Tagrida M. Prodpran T. Zhang B. Aluko R.E. Benjakul S. Liposomes loaded with betel leaf (Piper betle L.) ethanolic extract prepared by thin film hydration and ethanol injection methods: Characteristics and antioxidant activities. J. Food Biochem. 2021 45 12 e14012 10.1111/jfbc.14012 34800041
    [Google Scholar]
  34. Bhattacharya S. Preparation and characterizations of glyceryl oleate ufasomes of terbinafine hydrochloride: A novel approach to trigger Candida albicans fungal infection. Future J Pharmaceut Sci 2021 7 1 3 10.1186/s43094‑020‑00143‑w
    [Google Scholar]
  35. Sharma A. Arora S. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate. ISRN Pharm. 2012 2012 873653 10.5402/2012/873653
    [Google Scholar]
  36. Atef B. Ishak R.A.H. Badawy S.S. Osman R. 10-Hydroxy decanoic acid-based vesicles as a novel topical delivery system: Would it be a better platform than conventional oleic acid ufasomes for skin cancer treatment? Pharmaceutics 2023 15 5 1461 10.3390/pharmaceutics15051461 37242703
    [Google Scholar]
  37. Umbarkar M. Thakare S. Surushe T. Giri A. Chopade V. Formulation and evaluation of liposome by thin film hydration method. J. Drug Deliv. Ther. 2021 11 1 72 76 10.22270/jddt.v11i1.4677
    [Google Scholar]
  38. Al-Amin M.D. Bellato F. Mastrotto F. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: Formulation challenges. Int. J. Mol. Sci. 2020 21 5 1611 10.3390/ijms21051611 32111100
    [Google Scholar]
  39. Ravalika V. Sailaja A.K. Formulation and evaluation of etoricoxib niosomes by thin film hydration technique and ether injection method. Nano Biomed. Eng. 2017 9 3 242 248 10.5101/nbe.v9i3.p242‑248
    [Google Scholar]
  40. Al-Rubaie M.S. Abdullah T.S. Multi Lamellar Vesicles (Mlvs) Liposomes Preparation by Thin Film Hydration Technique. Eng Tech J 2014 32 3 1 11
    [Google Scholar]
  41. Bhattacharjee A. Das P.J. Dey S. Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design. Colloids Surf. A Physicochem. Eng. Asp. 2020 585 124071 10.1016/j.colsurfa.2019.124071
    [Google Scholar]
  42. Sultana S.S. Krishna Sailaja A. Formulation and evaluation of diclofenac sodium transferosomes using different surfactants by thin film hydration method. Pharm. Lett. 2015 7 11 43 53
    [Google Scholar]
  43. Sailaja K. Supraja R. Formulation of mefenamic acid loaded transfersomal gel by thin film hydration technique and hand shaking method. Nanomed. J. 2017 4 2 126 134
    [Google Scholar]
  44. Khoee S. Yaghoobian M. Niosomes: A novel approach in modern drug delivery systems.Nanostructures for Drug Delivery: Micro and Nano Technologies. Amsterdam Elsevier 2017 10.1016/B978‑0‑323‑46143‑6.00006‑3
    [Google Scholar]
  45. Chen S. Hanning S. Falconer J. Locke M. Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019 144 18 39 10.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  46. Bolla P.K. Meraz C.A. Rodriguez V.A. Clotrimazole loaded ufosomes for topical delivery: Formulation development and in-vitro studies. Molecules 2019 24 17 3139 10.3390/molecules24173139 31470517
    [Google Scholar]
  47. Luke P.M. Joseph T. Ufasomes: Rising technology for delivery of drugs. Int J Med Phar Sci 2021 11 11 1
    [Google Scholar]
  48. Martin N. Douliez J.P. Fatty acid vesicles and coacervates as model prebiotic protocells. ChemSystemsChem 2021 3 6 e2100024 10.1002/syst.202100024
    [Google Scholar]
  49. Walde P. Wick R. Fresta M. Mangone A. Luisi P.L. Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc. 1994 116 26 11649 11654 10.1021/ja00105a004
    [Google Scholar]
  50. Mittal R. Sharma A. Arora S. Ufasomes mediated cutaneous delivery of dexamethasone: Formulation and evaluation of anti-inflammatory activity by carrageenin-induced rat paw edema model. J. Pharm. (Cairo) 2013 2013 680580 10.1155/2013/680580
    [Google Scholar]
  51. Shende M. Bodele S. Ghode S. Shende C. Baravkar A. Nalawade N. Ufasomes: An Emerging Vesicular System For Futuristic Drug Delivery Applications. World J Pharmaceut Med Res 2021 7 11 217 223
    [Google Scholar]
  52. Limongi T. Susa F. Marini M. Lipid-based nanovesicular drug delivery systems. Nanomaterials (Basel) 2021 11 12 3391 10.3390/nano11123391 34947740
    [Google Scholar]
  53. Patel D.M. Jani R.H. Patel C.N. Ufasomes: A vesicular drug delivery. Syst Rev Pharm 2011 2 2 86290 10.4103/0975‑8453.86290
    [Google Scholar]
  54. Gebicki J.M. Hicks M. Preparation and properties of vesicles enclosed by fatty acid membranes. Chem. Phys. Lipids 1976 16 2 142 160 10.1016/0009‑3084(76)90006‑2 1269068
    [Google Scholar]
  55. Patel H. A Vesicular Drug Delivery for Futuristic Drug Delivery Applications: Ufasomes Indian J Pharmaceut Biol Res 2022 10 04
    [Google Scholar]
  56. Thabet Y. Elsabahy M. Eissa N.G. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods 2022 199 9 15 10.1016/j.ymeth.2021.05.004 34000392
    [Google Scholar]
  57. Adler K. Schiemann J. Characterization of liposomes by scanning electron microscopy and the freeze-fracture technique. Micron Microscopica Acta 1985 16 2 109 113 10.1016/0739‑6260(85)90039‑5
    [Google Scholar]
  58. Ishii F Takamura A Noro S Observation of liposomes by scanning electron microscope membrane 1982 7 5 307 308 10.5360/membrane.7.307
    [Google Scholar]
  59. Ruozi B. Tosi G. Forni F. Fresta M. Vandelli M.A. Atomic force microscopy and photon correlation spectroscopy: Two techniques for rapid characterization of liposomes. Eur. J. Pharm. Sci. 2005 25 1 81 89 10.1016/j.ejps.2005.01.020
    [Google Scholar]
  60. Moon M.H. Park I. Kim Y. Size characterization of liposomes by flow field-flow fractionation and photon correlation spectroscopy. J. Chromatogr. A 1998 813 1 91 100 10.1016/S0021‑9673(98)00325‑2 9697317
    [Google Scholar]
  61. Ran C. Chen D. Xu M. Du C. Li Q. Jiang Y. A study on characteristic of different sample pretreatment methods to evaluate the entrapment efficiency of liposomes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016 1028 56 62 10.1016/j.jchromb.2016.06.008 27322630
    [Google Scholar]
  62. Brgles M. Jurašin D. Sikirić M.D. Frkanec R. Tomašić J. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential. J. Liposome Res. 2008 18 3 235 248 10.1080/08982100802312762 18770073
    [Google Scholar]
  63. Were L.M. Bruce B.D. Davidson P.M. Weiss J. Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J. Agric. Food Chem. 2003 51 27 8073 8079 10.1021/jf0348368 14690399
    [Google Scholar]
  64. Demetzos C. Differential Scanning Calorimetry (DSC): A tool to study the thermal behavior of lipid bilayers and liposomal stability. J. Liposome Res. 2008 18 3 159 173 10.1080/08982100802310261 18770070
    [Google Scholar]
  65. Biltonen R.L. Lichtenberg D. The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem. Phys. Lipids 1993 64 1-3 129 142 10.1016/0009‑3084(93)90062‑8
    [Google Scholar]
  66. Abdelkader H. Ismail S. Kamal A. Alany R.G. Preparation of niosomes as an ocular delivery system for naltrexone hydrochloride: Physicochemical characterization. Pharmazie 2010 65 11 811 817 21155387
    [Google Scholar]
  67. Witika B.A. Development, manufacture and characterization of niosomes for the delivery for nevirapine. Pharmazie 2019 74 2 91 96
    [Google Scholar]
  68. Sezgin-Bayindir Z. Antep M.N. Yuksel N. Development and characterization of mixed niosomes for oral delivery using candesartan cilexetil as a model poorly water-soluble drug. AAPS PharmSciTech 2015 16 1 108 117 10.1208/s12249‑014‑0213‑9 25204859
    [Google Scholar]
  69. Wu I.Y. Bala S. Škalko-Basnet N. di Cagno M.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur. J. Pharm. Sci. 2019 138 105026 10.1016/j.ejps.2019.105026 31374254
    [Google Scholar]
  70. Zhang H. Zhu X. Shen J. Characterization of a liposome-based artificial skin membrane for in vitro permeation studies using Franz diffusion cell device. J. Liposome Res. 2017 27 4 302 311 10.1080/08982104.2016.1231205 27581379
    [Google Scholar]
  71. Aboud H.M. Ali A.A. El-Menshawe S.F. Elbary A.A. Nanotransfersomes of carvedilol for intranasal delivery: Formulation, characterization and in vivo evaluation. Drug Deliv. 2016 23 7 2471 2481 10.3109/10717544.2015.1013587 25715807
    [Google Scholar]
  72. Bendas E.R. Tadros M.I. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech 2007 8 4 213 10.1208/pt0804107 18181528
    [Google Scholar]
  73. Marto J. Vitor C. Guerreiro A. Ethosomes for enhanced skin delivery of griseofulvin. Colloids Surf. B Biointerfaces 2016 146 616 623 10.1016/j.colsurfb.2016.07.021 27429295
    [Google Scholar]
  74. Nurleni N. Iskandarsyah I. Aulia A. Formulation and penetration testing of ethosome azelaic acid on abdominal skin white male rats (Rattus norvegicus) with franz diffusion cell. Asian J. Pharm. Clin. Res. 2018 11 4 327 330 10.22159/ajpcr.2018.v11i4.22193
    [Google Scholar]
  75. Ascenso A. Batista C. Cardoso P. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes. Int. J. Nanomedicine 2015 10 5837 5851 10.2147/IJN.S86186 26425085
    [Google Scholar]
  76. Pineau A. Guillard O. Fauconneau B. In vitro study of percutaneous absorption of aluminum from antiperspirants through human skin in the Franz™ diffusion cell. J. Inorg. Biochem. 2012 110 21 26 10.1016/j.jinorgbio.2012.02.013 22459170
    [Google Scholar]
  77. Vlachou M.D. Rekkas D.M. Dallas P.P. Choulis N.H. Development and in vitro evaluation of griseofulvin gels using Franz diffusion cells. Int. J. Pharm. 1992 82 1-2 47 52 10.1016/0378‑5173(92)90070‑I
    [Google Scholar]
  78. Lakshmi V.S. Manohar R.D. Mathan S. Dharan S.S. Formulation and Evaluation of Ufasomal Topical Gel Containing Selected Non Steroidal Anti Inflammatory Drug(NSAIDs). J Pharmaceut Sci Res 2021 13 1 38 48
    [Google Scholar]
  79. Hicks M. Gebicki J.M. Microscopic studies of fatty acid vesicles. Chem. Phys. Lipids 1977 20 3 3243 3252 10.1016/0009‑3084(77)90040‑8
    [Google Scholar]
  80. Kashyap K. Ufasomes: From Present era Drug delivery Innovations to Futuristic applications. World J Advance Healthcare Res 2021 5 3 71 77
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385317956241008074909
Loading
/content/journals/pnt/10.2174/0122117385317956241008074909
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Ufasomes ; rotary evaporator ; fatty acid vesicle ; linoleic acid ; thin film hydration ; oleic acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test