Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

Nanostructured lipid carriers (NLCs) are lipid-based nanoparticles composed of a mixture of solid and liquid lipids, which are stabilized by the outer surface of a surfactant.

Objectives

This research aimed to prepare intranasal nanostructured lipid carriers loaded with amisulpride to enhance its dissolution and bioavailability using different formulation compositions.

Methods

Amisulpride nanostructured lipid carriers were formulated using ultra-sonication methods. Solid lipids like stearic acid, palmitic acid, and glyceryl monostearate were used, while liquid lipids like oleic acid, Imwitor 988, and isopropyl myristate were employed. Surfactants used were cremophor®EL, tween 80, and span 20 with different co-surfactants: Transcutol HP, triacetin, and propylene glycol in different ratios. The key metrics used in this study's evaluation were particle size, polydispersity index, zeta potential, entrapment efficiency, and loading efficiency. The formulations with the best characteristics were also subjected to an release test.

Results

The results showed a significant shift in some evaluation criteria with a non-significant change in other characterizations upon switching between different types and ratios of compositions. A biphasic release pattern was also observed. The optimum formula F19 was found to have 68.309±0.38 nm, 0.2408±0.004, -20.64±0.11 mV, 95.75±0.26 and 18.07±0.36, respectively. It was safe on the sheep nasal membrane.

Conclusion

The right combination of the formulation compositions based on studying the effect of each factor on the main formulation characteristics can serve as the basis for a successful intranasal amisulpride-loaded nanostructured lipid carrier.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385301604240226111533
2024-03-06
2025-06-14
Loading full text...

Full text loading...

References

  1. SS.S. MisranM. Optimization and characterization of fatty acid esters (FAES) based nanostructured lipid carrier (NLC) by box-behnken analysis.Sains Malays.20225172119212810.17576/jsm‑2022‑5107‑14
    [Google Scholar]
  2. Gordillo-GaleanoA. Mora-HuertasC.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release.Eur. J. Pharm. Biopharm.201813328530810.1016/j.ejpb.2018.10.01730463794
    [Google Scholar]
  3. KhanS. SharmaA. JainV. An overview of nanostructured lipid carriers and its application in drug delivery through different routes.Adv. Pharm. Bull.202313344646010.34172/apb.2023.05637646052
    [Google Scholar]
  4. ElmowafyM Al-SaneaMM Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm J.2021299999101210.1016/j.jsps.2021.07.015
    [Google Scholar]
  5. ViegasC. PatrícioA.B. PrataJ.M. NadhmanA. ChintamaneniP.K. FonteP. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review.Pharmaceutics2023156159310.3390/pharmaceutics1506159337376042
    [Google Scholar]
  6. ShahS. PatelA.A. PandyaV. TrivediN. PatelS.G. PrajapatiB.G. SinghS. PatelR.J. Breaking barriers: Intranasal delivery of brexpiprazole-nanostructured lipid carriers targets the brain for effective schizophrenia treatment.J. Drug Deliv. Sci. Technol.20239010516010.1016/j.jddst.2023.105160
    [Google Scholar]
  7. AlatawiH.M. AlhwitiS.S. AlsharifK.A. AlbalawiS.S. AbusalehS.M. SrorG.K. QushawyM. Nanostructured lipid carriers (NLCs) as effective drug delivery systems: Methods of preparation and their therapeutic applications.Recent Pat. Nanotechnol.202418217918910.2174/187221051766623012014243938197417
    [Google Scholar]
  8. HaussD.J. Oral lipid-based formulations.Adv. Drug Deliv. Rev.200759766767610.1016/j.addr.2007.05.00617618704
    [Google Scholar]
  9. Blanco-LlameroC. FonsecaJ. DurazzoA. LucariniM. SantiniA. SeñoránsF.J. SoutoE.B. Nutraceuticals and food-grade lipid nanoparticles: From natural sources to a circular bioeconomy approach.Foods20221115231810.3390/foods1115231835954085
    [Google Scholar]
  10. AhmadJ. RizwanullahM. AminS. WarsiM.H. AhmadM.Z. BarkatM.A. Nanostructured lipid carriers (NLCs): Nose-to-brain delivery and theranostic application.Curr. Drug Metab.202021141136114310.2174/138920022166620071900330432682366
    [Google Scholar]
  11. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.23515630065762
    [Google Scholar]
  12. JavedS. ManglaB. AlmoshariY. SultanM.H. AhsanW. Nanostructured lipid carrier system: A compendium of their formulation development approaches, optimization strategies by quality by design, and recent applications in drug delivery.Nanotechnol. Rev.20221111744177710.1515/ntrev‑2022‑0109
    [Google Scholar]
  13. ZhaoX.L. YangC.R. YangK.L. LiK.X. HuH.Y. ChenD.W. Preparation and characterization of nanostructured lipid carriers loaded traditional Chinese medicine, zedoary turmeric oil.Drug Dev. Ind. Pharm.201036777378010.3109/0363904090348571620136496
    [Google Scholar]
  14. AlavianF. ShamsN. Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: Considering its advantages and disadvantages.Curr. Clin. Pharmacol.2020151202910.2174/22123938OTkzpOTU1TcVY31272358
    [Google Scholar]
  15. AhmadE. FengY. QiJ. FanW. MaY. HeH. XiaF. DongX. ZhaoW. LuY. WuW. Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles.Nanoscale2017931174118310.1039/C6NR07581A28009915
    [Google Scholar]
  16. SchoemakerH. ClaustreY. FageD. RouquierL. CherguiK. CuretO. OblinA. GononF. CarterC. BenavidesJ. ScattonB. Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity.J. Pharmacol. Exp. Ther.1997280183978996185
    [Google Scholar]
  17. PerraultG. DepoortereR. MorelE. SangerD.J. ScattonB. Psychopharmacological profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity.J. Pharmacol. Exp. Ther.1997280173828996184
    [Google Scholar]
  18. MöllerH.J. Management of the negative symptoms of schizophrenia: new treatment options.CNS Drugs2003171179382310.2165/00023210‑200317110‑0000312921492
    [Google Scholar]
  19. GamalW. FahmyR.H. MohamedM.I. Development of novel amisulpride-loaded liquid self-nanoemulsifying drug delivery systems via dual tackling of its solubility and intestinal permeability.Drug Dev. Ind. Pharm.20174391530153810.1080/03639045.2017.132260728447878
    [Google Scholar]
  20. HabibA.S. KrankeP. BergeseS.D. ChungF. AyadS. SiddiquiN. MotschJ. LeimanD.G. MelsonT.I. DiemunschP. FoxG.M. CandiottiK.A. Amisulpride for the rescue treatment of postoperative nausea or vomiting in patients failing prophylaxis.Anesthesiology2019130220321210.1097/ALN.000000000000250930475232
    [Google Scholar]
  21. KhanS. ShaharyarM. FazilM. HassanM.Q. BabootaS. AliJ. Tacrolimus-loaded nanostructured lipid carriers for oral delivery-in vivo bioavailability enhancement.Eur. J. Pharm. Biopharm.201610914915710.1016/j.ejpb.2016.10.01127793753
    [Google Scholar]
  22. RajabN.A. JawadM.S. Impact of lipid type and ratio in rizatriptan benzoate nanostructured lipid carrier.Int. J. Drug Deliv. Technol.202313111211910.25258/ijddt.13.1.17
    [Google Scholar]
  23. GabaB. FazilM. KhanS. AliA. BabootaS. AliJ. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride.Bull. Fac. Pharm. Cairo Univ.201553214715910.1016/j.bfopcu.2015.10.001
    [Google Scholar]
  24. PooniaN. KharbR. LatherV. PanditaD. Nanostructured lipid carriers: Versatile oral delivery vehicle.Future Sci. OA201623FSO13510.4155/fsoa‑2016‑003028031979
    [Google Scholar]
  25. NasrA. GardouhA. GhonaimH. AbdelghanyE.L. GhorabM. Effect of oils, surfactants and cosurfactants on phase behavior and physicochemical properties of self-nanoemulsifying drug delivery system (SNEDDS) for irbesartan and olmesartan.Int J Appl Pharm.201681132410.22159/ijap.2016v8i1.10530
    [Google Scholar]
  26. Al-SarrafM.A. HusseinA.A. Al-SarrafZ.A. Comparison between conventional gel and nanostructured lipid carrier gel of zaltoprofen: Preparation and in-vitro/ex-vivo evaluation.Int. J. Drug Deliv. Tech.202111398899510.25258/ijddt.11.3.57
    [Google Scholar]
  27. SalihZ.T. Al-GawhariF. Improvement of entrapment and ocular permeability of ganciclovir nanostructured lipid carriers using various conditions of preparations.Int. J. Drug Deliv. Technol.202313134134610.25258/ijddt.13.1.55
    [Google Scholar]
  28. RajabN.A. JawadM.S. Preparation and evaluation of rizatriptan benzoate loaded nanostructured lipid carrier using diff erent surfactant/co-surfactant systems.Int. J. Drug Deliv. Technol.202313112012610.25258/ijddt.13.1.18
    [Google Scholar]
  29. AbedH.N. HusseinA.A. Formulation and in-vitro evaluation of dabigatran etexilate loaded nanostructured lipid carriers.J. Glob. Pharma Technol.20191103
    [Google Scholar]
  30. KaramiS. RostamizadehK. ShademaniN. ParsaM. Synthesis and investigation of the curcumin-loaded magnetic lipid nanoparticles and their cytotoxicity assessment on human breast carcinoma cell line.Jundishapur J. Nat. Pharm. Prod.2020152e9188610.5812/jjnpp.91886
    [Google Scholar]
  31. BaigM.S. OwidaH. NjorogeW. SiddiquiA-R. YangY. Development and evaluation of cationic nanostructured lipid carriers for ophthalmic drug delivery of besifloxacin.J. Drug Deliv. Sci. Technol.20205510149610.1016/j.jddst.2019.101496
    [Google Scholar]
  32. MallappaD.P. ChelseaF.R. RatnakarR.P. PanchakshariG.A. ShivamurthiM.V. UppinangadyB.S. Development and characterization of mucoadhesive buccal gel containing lipid nanoparticles of triamcinolone acetonide.Indian J Pharm Educ Res2020543ss505s51110.5530/ijper.54.3s.149
    [Google Scholar]
  33. TamerM.A. KassabH.J. The development of a brain targeted mucoadhesive amisulpride loaded nanostructured lipid carrier.Farmacia20237151032104410.31925/farmacia.2023.5.18
    [Google Scholar]
  34. Ala AllahA. HusseinA. Darifenacin Hydrobromide loaded nanostructured lipid carrier for oral administration.Iraqi J. Pharm Sci.2018271536810.31351/vol27iss1pp53‑68
    [Google Scholar]
  35. SabriL.A. HusseinA.A. Comparison between conventional and supersaturable self-nanoemulsion loaded with nebivolol: Preparation and in-vitro/ex-vivo evaluation.Iraqi J. Pharm Sci.202029121622510.31351/vol29iss1pp216‑225
    [Google Scholar]
  36. HashimA.A. RajabN.A. Anastrozole loaded nanostructured lipid carriers: Preparation and evaluation.Iraqi J. Pharm Sci.202130218519510.31351/vol30iss2pp185‑195
    [Google Scholar]
  37. JoganiV.V. ShahP.J. MishraP. MishraA.K. MisraA.R. Intranasal mucoadhesive microemulsion of tacrine to improve brain targeting.Alzheimer Dis. Assoc. Disord.200822211612410.1097/WAD.0b013e318157205b18525282
    [Google Scholar]
  38. ElsenosyF.M. AbdelbaryG.A. ElshafeeyA.H. ElsayedI. FaresA.R. Brain targeting of duloxetine HCL via intranasal delivery of loaded cubosomal gel: In vitro characterization, ex vivo permeation, and in vivo biodistribution studies.Int. J. Nanomedicine2020159517953710.2147/IJN.S27735233324051
    [Google Scholar]
  39. HuF.Q. JiangS.P. DuY.Z. YuanH. YeY.Q. ZengS. Preparation and characteristics of monostearin nanostructured lipid carriers.Int. J. Pharm.20063141838910.1016/j.ijpharm.2006.01.04016563671
    [Google Scholar]
  40. AultonmM. pharmaceuticsthe science of dosage form design2nd edLivingstone2002414418
    [Google Scholar]
  41. TangF. ZhangY. LinS. GuoZ. Solubility and micronization of ganciclovir.In: Advanced Materials Research20121421142610.4028/www.scientific.net/AMR.393‑395.1421
    [Google Scholar]
  42. LeeY.C. DaltonC. ReglerB. HarrisD. Drug solubility in fatty acids as a formulation design approach for lipid-based formulations: A technical note.Drug Dev. Ind. Pharm.20184491551155610.1080/03639045.2018.148339529873584
    [Google Scholar]
  43. CaoY. MarraM. AndersonB.D. Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles.J. Pharm. Sci.200493112768277910.1002/jps.2012615389678
    [Google Scholar]
  44. ChenC.C. TsaiT.H. HuangZ.R. FangJ.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics.Eur. J. Pharm. Biopharm.201074347448210.1016/j.ejpb.2009.12.00820060469
    [Google Scholar]
  45. MehnertW. MäderK. Solid lipid nanoparticles.Adv. Drug Deliv. Rev.2012648310110.1016/j.addr.2012.09.02111311991
    [Google Scholar]
  46. MonteiroL.M. LöbenbergR. CotrimP.C. Barros de AraujoG.L. Bou-ChacraN. Buparvaquone nanostructured lipid carrier: development of an affordable delivery system for the treatment of leishmaniases.BioMed Res. Int.2017201711110.1155/2017/978160328255558
    [Google Scholar]
  47. HejriA. KhosraviA. GharanjigK. HejaziM. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method.Food Chem.2013141111712310.1016/j.foodchem.2013.02.08023768336
    [Google Scholar]
  48. SubramaniamB. SiddikZ.H. NagoorN.H. Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations.J. Nanopart. Res.202022614110.1007/s11051‑020‑04848‑0
    [Google Scholar]
  49. DasS NgWK TanRB Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?Eur J Pharm Sci. 201247113915110.1016/j.ejps.2012.05.010
    [Google Scholar]
  50. RathodV.R. ShahD.A. DaveR.H. Systematic implementation of quality-by-design (QbD) to develop NSAID-loaded nanostructured lipid carriers for ocular application: preformulation screening studies and statistical hybrid-design for optimization of variables.Drug Dev. Ind. Pharm.202046344345510.1080/03639045.2020.172413532037896
    [Google Scholar]
  51. MehnertW MäderK. Solid lipid nanoparticles: Production, characterization and applicationsAdv Drug Deliv Rev200147(2-3)16519610.1016/S0169‑409X(01)00105‑3
    [Google Scholar]
  52. PizzolC. Filippin-MonteiroF. RestrepoJ. PittellaF. SilvaA. Alves de SouzaP. Machado de CamposA. Creczynski-PasaT. Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles.Int. J. Environ. Res. Public Health20141188581859610.3390/ijerph11080858125141003
    [Google Scholar]
  53. GidwaniB. VyasA. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using box-behnken design and response surface methodology.Artif. Cells Nanomed. Biotechnol.201644257158010.3109/21691401.2014.97146225363752
    [Google Scholar]
  54. YuS. TanG. LiuD. YangX. PanW. Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: design, characterization and in vitro cellular inhibition and uptake studies.RSC Advances2017727166681667710.1039/C7RA00552K
    [Google Scholar]
  55. WangG. YuB. WuY. HuangB. YuanY. LiuC.S. Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel.Int. J. Pharm.20134461-2243310.1016/j.ijpharm.2013.02.00423402977
    [Google Scholar]
  56. ZhaoP. LiL. ZhouS. QiuL. QianZ. LiuX. CaoX. ZhangH. TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance.Mater. Sci. Eng. C20188410811710.1016/j.msec.2017.11.04029519418
    [Google Scholar]
  57. HanS.M. BaekJ.S. KimM.S. HwangS.J. ChoC.W. Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells.Chem. Phys. Lipids2018213394710.1016/j.chemphyslip.2018.03.00529550143
    [Google Scholar]
  58. DagtepeP ChikanV. Quantized ostwald ripening of colloidal nanoparticles.J. Phys. Chem. C201011439162631626910.1021/jp105071a
    [Google Scholar]
  59. SheskeyP.J. CookW.G. GableC.G. Handbook ofpharmaceutical excipients.8th edLondonAPhA/Pharmaceutical Press2017413639
    [Google Scholar]
  60. AstleyC. HouacineC. ZaabalawiA. WilkinsonF. LightfootA.P. AlexanderY. WhiteheadD. SinghK.K. AzzawiM. Nanostructured lipid carriers deliver resveratrol, restoring attenuated dilation in small coronary arteries, via the AMPK pathway.Biomedicines2021912185210.3390/biomedicines912185234944670
    [Google Scholar]
  61. AbedH.N. HusseinA.A. Ex-vivo absorption study of a novel dabigatran etexilate loaded nanostructured lipid carrier using non-everted intestinal SAC model.Iraqi J. Pharm Sci.2019282374510.31351/vol28iss2pp37‑45
    [Google Scholar]
  62. YousafR KhanMI AkhtarMF MadniA SohailMF SaleemA IrshadK SharifA RanaM Development and in vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazoleHeliyon202393e14281
    [Google Scholar]
  63. MadanJ. DuaK. KhudeP.A. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery.Int. J. Pharm. Investig.201442606410.4103/2230‑973X.13304725006550
    [Google Scholar]
  64. MerckM.J. O’Neil SmithA. PatriciaE.H. BudavariS. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals.15th edRoyal Society of Chemistry2013502
    [Google Scholar]
  65. SherifA.Y. HarisaG.I. ShahbaA.A. AlanaziF.K. QamarW. Optimization of gefitinib-loaded nanostructured lipid carrier as a biomedical tool in the treatment of metastatic lung cancer.Molecules202328144810.3390/molecules2801044836615641
    [Google Scholar]
  66. Czajkowska-KośnikA. SzymańskaE. CzarnomysyR. JacynaJ. MarkuszewskiM. BasaA. WinnickaK. Nanostructured lipid carriers engineered as topical delivery of etodolac: Optimization and cytotoxicity studies.Materials202114359610.3390/ma1403059633514018
    [Google Scholar]
  67. Sivadasu Praveen GowdaD.V. SrivastavaAtul AliRiyaz OsmaniM. Formulation and evaluation of nanostructured lipid carrier (NLC) for glimepiride.Pharm. Lett.201687251256
    [Google Scholar]
  68. DasS. NgW.K. KanaujiaP. KimS. TanR.B.H. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: Effects of process variables.Colloids Surf. B Biointerfaces201188148348910.1016/j.colsurfb.2011.07.03621831615
    [Google Scholar]
  69. MuL. FengS.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS.J. Control. Release2003861334810.1016/S0168‑3659(02)00320‑612490371
    [Google Scholar]
  70. GorainB. ChoudhuryH. PandeyM. KesharwaniP. Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy.Mater. Sci. Eng. C20189186888010.1016/j.msec.2018.05.05430033322
    [Google Scholar]
  71. TranT.H. RamasamyT. TruongD.H. ChoiH.G. YongC.S. KimJ.O. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement.AAPS PharmSciTech20141561509151510.1208/s12249‑014‑0175‑y25035071
    [Google Scholar]
  72. ElmowafyM. ShalabyK. BadranM.M. AliH.M. Abdel-BakkyM.S. IbrahimH.M. Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation.Int. J. Pharm.20185501-235937110.1016/j.ijpharm.2018.08.06230179701
    [Google Scholar]
  73. Ling TanJ.S. RobertsC.J. BillaN. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B.Pharm. Dev. Technol.201924450451210.1080/10837450.2018.151522530132723
    [Google Scholar]
  74. EgertonR. Physical principles of electron microscopy: An introduction to TEM, SEM and AEM.ChamSpringer20161614710.1007/978‑3‑319‑39877‑8
    [Google Scholar]
  75. AngeloT. El-SayedN. JurisicM. KoennekeA. GelfusoG.M. Cunha-FilhoM. TaveiraS.F. LemorR. SchneiderM. GratieriT. Effect of physical stimuli on hair follicle deposition of clobetasol-loaded Lipid Nanocarriers.Sci. Rep.202010117610.1038/s41598‑019‑56760‑w31932640
    [Google Scholar]
  76. BarakatN.S. OmarS.A. AhmedA A E. Carbamazepine uptake into rat brain following intra-olfactory transport.J. Pharm. Pharmacol.2010581637210.1211/jpp.58.1.000816393465
    [Google Scholar]
  77. JadhavS.A. LandgeS.B. ChoudhariP.M. SolankiP.V. BembalkarS.R. MathadV.T. Stress degradation behavior of paliperidone, an antipsychotic drug, and development of suitable stability-indicating RP-LC method.Chromatogr. Res. Int.2011201111010.4061/2011/256812
    [Google Scholar]
  78. FreitasC. MüllerR.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions.Int. J. Pharm.1998168221229
    [Google Scholar]
  79. HeurtaultB. SaulnierP. PechB. ProustJ.E. BenoitJ.P. Physico-chemical stability of colloidal lipid particles.Biomaterials200324234283430010.1016/S0142‑9612(03)00331‑412853260
    [Google Scholar]
  80. FreitasC. MüllerR.H. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase.Eur. J. Pharm. Biopharm.199947212513210.1016/S0939‑6411(98)00074‑510234536
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385301604240226111533
Loading
/content/journals/pnt/10.2174/0122117385301604240226111533
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test