Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Nanoparticles have found applications across diverse sectors, including agriculture, food, cosmetics, chemicals, mechanical engineering, automotive, and oil and gas industries. In the medical field, nanoparticles have garnered considerable attention due to their great surface area, high solubility, rapid dissolution, and enhanced bioavailability. Nanopharmaceuticals are specifically designed to precisely deliver drug substances to targeted tissues and cells, aiming to optimize therapeutic efficacy while minimizing potential adverse effects. Furthermore, nanopharmaceuticals offer advantages, such as expedited therapeutic onset, reduced dosages, minimized variability between fed and fasted states, and enhanced patient compliance. The increasing interest in nanopharmaceuticals research among scientists and industry stakeholders highlights their potential for various medical applications from disease management to cancer treatment. This review examines the distinctive characteristics of ideal nanoparticles for efficient drug delivery, explores the current types of nanoparticles utilized in medicine, and delves into the applications of nanopharmaceuticals, including drug and gene delivery, as well as transdermal drug administration. This review provides insights into the nanopharmaceuticals field, contributing to the development of novel drug delivery systems and enhancing the potential of nanotechnology in healthcare.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385324246240826042254
2024-09-25
2025-06-17
Loading full text...

Full text loading...

References

  1. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules2501011231892180
    [Google Scholar]
  2. WeissigV. PettingerT. MurdockN. Nanopharmaceuticals (part 1): Products on the market.Int. J. Nanomedicine201494357437310.2147/IJN.S4690025258527
    [Google Scholar]
  3. MalikS. MuhammadK. WaheedY. Nanotechnology: A revolution in modern industry.Molecules202328266110.3390/molecules2802066136677717
    [Google Scholar]
  4. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  5. LiuL. YeQ. LuM. LoY.C. HsuY.H. WeiM.C. ChenY.H. LoS.C. WangS.J. BainD.J. HoC. A new approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs.Sci. Rep.2015511088110.1038/srep1088126039249
    [Google Scholar]
  6. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.J Biomed Technol2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  7. SoaresS. SousaJ. PaisA. VitorinoC. Nanomedicine: Principles, properties, and regulatory issues.Front Chem.2018636010.3389/fchem.2018.0036030177965
    [Google Scholar]
  8. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers2023157159610.3390/polym1507159637050210
    [Google Scholar]
  9. Al-KassasR. BansalM. ShawJ. Nanosizing techniques for improving bioavailability of drugs.J. Control. Release201726020221210.1016/j.jconrel.2017.06.00328603030
    [Google Scholar]
  10. ZhangQ. KuangG. ZhangL. ZhuY. Nanocarriers for platinum drug delivery.J Biomed Technol20232778910.1016/j.bmt.2022.11.011
    [Google Scholar]
  11. WangY. PiC. FengX. HouY. ZhaoL. WeiY. The influence of nanoparticle properties on oral bioavailability of drugs.Int. J. Nanomedicine2020156295631010.2147/IJN.S25726932943863
    [Google Scholar]
  12. NaseriN. AjorlouE. AsghariF. Pilehvar-SoltanahmadiY. An update on nanoparticle-based contrast agents in medical imaging.Artif. Cells Nanomed. Biotechnol.20184661111112110.1080/21691401.2017.137901428933183
    [Google Scholar]
  13. FarjadianF. GhasemiA. GohariO. RoointanA. KarimiM. HamblinM.R. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities.Nanomedicine20191419312610.2217/nnm‑2018‑012030451076
    [Google Scholar]
  14. JosephT. Kar MahapatraD. EsmaeiliA. PiszczykŁ. HasaninM. KattaliM. HaponiukJ. ThomasS. Nanoparticles: Taking a unique position in medicine.Nanomaterials202313357410.3390/nano1303057436770535
    [Google Scholar]
  15. BanerjeeA. QiJ. GogoiR. WongJ. MitragotriS. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.J. Control. Release201623817618510.1016/j.jconrel.2016.07.05127480450
    [Google Scholar]
  16. HaripriyaaM. SuthindhiranK. Pharmacokinetics of nanoparticles: Current knowledge, future directions and its implications in drug delivery.Futur. J. Pharm. Sci.20239111310.1186/s43094‑023‑00569‑y
    [Google Scholar]
  17. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.01229379334
    [Google Scholar]
  18. Heuer-JungemannA. FeliuN. BakaimiI. HamalyM. AlkilanyA. ChakrabortyI. MasoodA. CasulaM.F. KostopoulouA. OhE. SusumuK. StewartM.H. MedintzI.L. StratakisE. ParakW.J. KanarasA.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles.Chem. Rev.201911984819488010.1021/acs.chemrev.8b0073330920815
    [Google Scholar]
  19. SzetoG.L. LavikE.B. Materials design at the interface of nanoparticles and innate immunity.J. Mater. Chem. B Mater. Biol. Med.2016491610161810.1039/C5TB01825K27453783
    [Google Scholar]
  20. DiJ. GaoX. DuY. ZhangH. GaoJ. ZhengA. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci202116444445810.1016/j.ajps.2020.07.00534703494
    [Google Scholar]
  21. SukJ.S. XuQ. KimN. HanesJ. EnsignL.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699Pt A285110.1016/j.addr.2015.09.01226456916
    [Google Scholar]
  22. ClogstonJ.D. PatriA.K. Zeta potential measurement.Methods Mol. Biol.2011697637010.1007/978‑1‑60327‑198‑1_621116954
    [Google Scholar]
  23. AwashraM. MłynarzP. The toxicity of nanoparticles and their interaction with cells: An in vitro metabolomic perspective.Nanoscale Adv.20235102674272310.1039/D2NA00534D37205285
    [Google Scholar]
  24. HühnD. KantnerK. GeidelC. BrandholtS. De CockI. SoenenS.J.H. Rivera GilP. MontenegroJ.M. BraeckmansK. MüllenK. NienhausG.U. KlapperM. ParakW.J. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge.ACS Nano2013743253326310.1021/nn305929523566380
    [Google Scholar]
  25. ForoozandehP. AzizA.A. Insight into cellular uptake and intracellular trafficking of nanoparticles.Nanoscale Res. Lett.201813133910.1186/s11671‑018‑2728‑630361809
    [Google Scholar]
  26. KumarB. JalodiaK. KumarP. GautamH.K. Recent advances in nanoparticle-mediated drug delivery.J. Drug Deliv. Sci. Technol.20174126026810.1016/j.jddst.2017.07.019
    [Google Scholar]
  27. ShenS. WuY. LiuY. WuD. High drug-loading nanomedicines: Progress, current status, and prospects.Int. J. Nanomedicine2017124085410910.2147/IJN.S13278028615938
    [Google Scholar]
  28. NagalA. K SinglaR. Nanoparticles in different delivery systems: A brief review.Indo Glob. J. Pharm. Sci.2013329610610.35652/IGJPS.2013.12
    [Google Scholar]
  29. HsuC.Y. RheimaA.M. KadhimM.M. AhmedN.N. MohammedS.H. AbbasF.H. AbedZ.T. MahdiZ.M. AbbasZ.S. HachimS.K. AliF.K. MahmoudZ.H. KianfarE. An overview of nanoparticles in drug delivery: Properties and applications.S. Afr. J. Chem. Eng.20234623327010.1016/j.sajce.2023.08.009
    [Google Scholar]
  30. LestariW.A. WahyuningsihS. Gomez-RuizS. WibowoF.R. Drug loading ability and release study of various size small mesoporous silica nanoparticle as drug carrier.J. Phys. Conf. Ser.20222190101203210.1088/1742‑6596/2190/1/012032
    [Google Scholar]
  31. BhartiC. GulatiN. NagaichU. PalA.K. Mesoporous silica nanoparticles in target drug delivery system: A review.Int. J. Pharm. Investig.20155312413310.4103/2230‑973X.16084426258053
    [Google Scholar]
  32. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.00419186176
    [Google Scholar]
  33. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  34. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  35. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.60162633613290
    [Google Scholar]
  36. WongK.Y. WongM.S. LiuJ. Aptamer-functionalized liposomes for drug delivery.Biomed. J.202310068510068510.1016/j.bj.2023.10068538081386
    [Google Scholar]
  37. ZwickeG.L. Ali MansooriG. JefferyC.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics.Nano Rev.2012311849610.3402/nano.v3i0.1849623240070
    [Google Scholar]
  38. LiuQ. ZouJ. ChenZ. HeW. WuW. Current research trends of nanomedicines.Acta Pharm. Sin. B202313114391441610.1016/j.apsb.2023.05.01837969727
    [Google Scholar]
  39. ThapaR.K. KimJ.O. Nanomedicine-based commercial formulations: Current developments and future prospects.J. Pharm. Investig.2023531193310.1007/s40005‑022‑00607‑636568502
    [Google Scholar]
  40. GiordaniS. MarassiV. ZattoniA. RodaB. ReschiglianP. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols.J. Pharm. Biomed. Anal.202323611575110.1016/j.jpba.2023.11575137778202
    [Google Scholar]
  41. LombardoD. KiselevM.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application.Pharmaceutics202214354310.3390/pharmaceutics1403054335335920
    [Google Scholar]
  42. Sriwidodo UmarA.K. WathoniN. ZothantluangaJ.H. DasS. LuckanagulJ.A. Liposome-polymer complex for drug delivery system and vaccine stabilization.Heliyon202282e0893410.1016/j.heliyon.2022.e08934
    [Google Scholar]
  43. RommasiF. EsfandiariN. Liposomal nanomedicine: Applications for drug delivery in cancer therapy.Nanoscale Res. Lett.20211619510.1186/s11671‑021‑03553‑834032937
    [Google Scholar]
  44. AwadN.S. PaulV. MahmoudM.S. Al SawaftahN.M. KawakP.S. Al SayahM.H. HusseiniG.A. Effect of pegylation and targeting moieties on the ultrasound-mediated drug release from liposomes.ACS Biomater. Sci. Eng.202061485710.1021/acsbiomaterials.8b0130133463192
    [Google Scholar]
  45. TaherM. SusantiD. HarisM.S. RushdanA.A. WidodoR.T. SyukriY. KhotibJ. PEGylated liposomes enhance the effect of cytotoxic drug: A review.Heliyon202393e1382310.1016/j.heliyon.2023.e1382336873538
    [Google Scholar]
  46. ChisA.A. DobreaC. MorgovanC. ArseniuA.M. RusL.L. ButucaA. JuncanA.M. TotanM. Vonica-TincuA.L. CormosG. MunteanA.C. MuresanM.L. GligorF.G. FrumA. Applications and limitations of dendrimers in biomedicine.Molecules20202517398210.3390/molecules2517398232882920
    [Google Scholar]
  47. SantosA. VeigaF. FigueirasA. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications.Materials20191316510.3390/ma1301006531877717
    [Google Scholar]
  48. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  49. Palmerston MendesL. PanJ. TorchilinV. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy.Molecules2017229140110.3390/molecules2209140128832535
    [Google Scholar]
  50. SongC. ShenM. RodriguesJ. MignaniS. MajoralJ.P. ShiX. Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review.Coord. Chem. Rev.202042121346310.1016/j.ccr.2020.213463
    [Google Scholar]
  51. KoopaieM. 22 - Nanoparticulate systems for dental drug delivery.Nanoengineered Biomaterials for Advanced Drug Delivery. MozafariM. Elsevier202052555910.1016/B978‑0‑08‑102985‑5.00022‑X
    [Google Scholar]
  52. TrivediR. KompellaU.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles.Nanomedicine20105348550510.2217/nnm.10.1020394539
    [Google Scholar]
  53. WangQ. AtluriK. TiwariA.K. BabuR.J. Exploring the application of micellar drug delivery systems in cancer nanomedicine.Pharmaceuticals202316343310.3390/ph1603043336986532
    [Google Scholar]
  54. XuW. LingP. ZhangT. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs.J. Drug Deliv.2013201311510.1155/2013/34031523936656
    [Google Scholar]
  55. BoseA. Roy BurmanD. SikdarB. PatraP. Nanomicelles: Types, properties and applications in drug delivery.IET Nanobiotechnol.2021151192710.1049/nbt2.1201834694727
    [Google Scholar]
  56. PerumalS. AtchudanR. LeeW. A review of polymeric micelles and their applications.Polymers20221412251010.3390/polym1412251035746086
    [Google Scholar]
  57. MishraS. ShahH. PatelA. TripathiS.M. MalviyaR. PrajapatiB.G. Applications of bioengineered polymer in the field of nano-based drug delivery.ACS Omega202491819610.1021/acsomega.3c0735638222544
    [Google Scholar]
  58. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano1007140332707641
    [Google Scholar]
  59. YokotaJ. KyotaniS. Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs.J. Chin. Med. Assoc.201881651151910.1016/j.jcma.2018.01.00829555445
    [Google Scholar]
  60. SoutoE.B. Blanco-LlameroC. KrambeckK. KiranN.S. YashaswiniC. PostwalaH. SeverinoP. PrieferR. PrajapatiB.G. MaheshwariR. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives.Acta Biomater.202418011710.1016/j.actbio.2024.04.01038604468
    [Google Scholar]
  61. Chandra HembramK. PrabhaS. ChandraR. AhmedB. NimeshS. Advances in preparation and characterization of chitosan nanoparticles for therapeutics.Artif. Cells Nanomed. Biotechnol.201644130531410.3109/21691401.2014.94854825137489
    [Google Scholar]
  62. WuX. ZhengY. YangD. ChenT. FengB. WengJ. WangJ. ZhangK. ZhangX. A strategy using mesoporous polymer nanospheres as nanocarriers of Bcl-2 siRNA towards breast cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20197347748710.1039/C8TB02463D32254735
    [Google Scholar]
  63. PathakC. VaidyaF.U. PandeyS.M. Mechanism for development of nanobased drug delivery system.Applications of Targeted Nano Drugs and Delivery Systems. MohapatraS.S. RanjanS. DasguptaN. MishraR.K. ThomasS. Elsevier2019356710.1016/B978‑0‑12‑814029‑1.00003‑X
    [Google Scholar]
  64. DengS. GigliobiancoM.R. CensiR. Di MartinoP. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities.Nanomaterials202010584710.3390/nano1005084732354008
    [Google Scholar]
  65. StiufiucG.F. StiufiucR.I. Magnetic nanoparticles: Synthesis, characterization, and their use in biomedical field.Appl. Sci.2024144162310.3390/app14041623
    [Google Scholar]
  66. AhmadM MinhasM SohailM FaisalM RashidH. Comprehensive review on magnetic drug delivery systems: A novel approach for drug targeting.J. Pharm. Altern. Med.20132
    [Google Scholar]
  67. MajidiS. Zeinali SehrigF. FarkhaniS.M. Soleymani GoloujehM. AkbarzadehA. Current methods for synthesis of magnetic nanoparticles.Artif. Cells Nanomed. Biotechnol.201644272273410.3109/21691401.2014.98280225435409
    [Google Scholar]
  68. Nowak-JaryJ. MachnickaB. In vivo biodistribution and clearance of magnetic iron oxide nanoparticles for medical applications.Int. J. Nanomedicine2023184067410010.2147/IJN.S41506337525695
    [Google Scholar]
  69. Nowak-JaryJ. MachnickaB. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.J. Nanobiotechnology202220130510.1186/s12951‑022‑01510‑w35761279
    [Google Scholar]
  70. PondmanK. Le GacS. KishoreU. Nanoparticle-induced immune response: Health risk versus treatment opportunity?Immunobiology2023228215231710.1016/j.imbio.2022.15231736592542
    [Google Scholar]
  71. LevyM. LucianiN. AlloyeauD. ElgrabliD. DeveauxV. PechouxC. ChatS. WangG. VatsN. GendronF. FactorC. LotersztajnS. LucianiA. WilhelmC. GazeauF. Long term in vivo biotransformation of iron oxide nanoparticles.Biomaterials201132163988399910.1016/j.biomaterials.2011.02.03121392823
    [Google Scholar]
  72. SivamaruthiB.S. KapoorD.U. KukkarR.R. GaurM. ElossailyG.M. PrajapatiB.G. ChaiyasutC. Mesoporous silica nanoparticles: Types, synthesis, role in the treatment of alzheimer’s disease, and other applications.Pharmaceutics20231512266610.3390/pharmaceutics1512266638140007
    [Google Scholar]
  73. PatelR.J. PandeyP. PatelA.A. PrajapatiB.G. AlexanderA. PandyaV. TrivediN. ShahS. PatelV. Ordered mesoporous silica nanocarriers: An innovative paradigm and a promising therapeutic efficient carrier for delivery of drugs.J. Drug Deliv. Sci. Technol.20238210430610.1016/j.jddst.2023.104306
    [Google Scholar]
  74. NarayanR. NayakU.Y. RaichurA.M. GargS. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances.Pharmaceutics201810311810.3390/pharmaceutics1003011830082647
    [Google Scholar]
  75. DjayantiK. MaharjanP. ChoK.H. JeongS. KimM.S. ShinM.C. MinK.A. Mesoporous silica nanoparticles as a potential nanoplatform: Therapeutic applications and considerations.Int. J. Mol. Sci.2023247634910.3390/ijms2407634937047329
    [Google Scholar]
  76. WuH. LiF. WangS. LuJ. LiJ. DuY. SunX. ChenX. GaoJ. LingD. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing.Biomaterials2018151667710.1016/j.biomaterials.2017.10.01829078200
    [Google Scholar]
  77. FarshbafM. SalehiR. AnnabiN. KhalilovR. AkbarzadehA. DavaranS. pH- and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and in vitro studies on A549 lung cancer cell and MR imaging.Drug Dev. Ind. Pharm.201844345246210.1080/03639045.2017.139768629098882
    [Google Scholar]
  78. AriaeenejadS. JokarF. HadianP. Ma’maniL. GharaghaniS. FereidoonnezhadM. SalekdehG.H. An efficient nano-biocatalyst for lignocellulosic biomass hydrolysis: Xylanase immobilization on organically modified biogenic mesoporous silica nanoparticles.Int. J. Biol. Macromol.20201643462347310.1016/j.ijbiomac.2020.08.21132888986
    [Google Scholar]
  79. HajebiS. RabieeN. BagherzadehM. AhmadiS. RabieeM. Roghani-MamaqaniH. TahririM. TayebiL. HamblinM.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems.Acta Biomater.20199211810.1016/j.actbio.2019.05.01831096042
    [Google Scholar]
  80. SindhuR.K. GuptaR. WadheraG. KumarP. Modern herbal nanogels: Formulation, delivery methods, and applications.Gels2022829710.3390/gels802009735200478
    [Google Scholar]
  81. YangS. WangF. HanH. SantosH.A. ZhangY. ZhangH. WeiJ. CaiZ. Fabricated technology of biomedical micro-nano hydrogel.J Biomed Technol20232314810.1016/j.bmt.2022.11.012
    [Google Scholar]
  82. ManimaranV. NivethaR.P. TamilanbanT. NarayananJ. VetriselvanS. FuloriaN.K. ChinniS.V. SekarM. FuloriaS. WongL.S. BiswasA. RamachawolranG. SelvarajS. Nanogels as novel drug nanocarriers for CNS drug delivery.Front. Mol. Biosci.202310123210910.3389/fmolb.2023.123210937621994
    [Google Scholar]
  83. GabizonA. MartinF. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours.Drugs199754Suppl. 4152110.2165/00003495‑199700544‑000059361957
    [Google Scholar]
  84. HamimedS. JabberiM. ChattiA. Nanotechnology in drug and gene delivery.Naunyn Schmiedebergs Arch. Pharmacol.2022395776978710.1007/s00210‑022‑02245‑z35505234
    [Google Scholar]
  85. ChoiJ. RuiY. KimJ. GorelickN. WilsonD.R. KozielskiK. MangravitiA. SankeyE. BremH. TylerB. GreenJ.J. JacksonE.M. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies.Nanomedicine20202310211510.1016/j.nano.2019.10211531655205
    [Google Scholar]
  86. SuZ. Erdene-OchirT. GanboldT. BaigudeH. Design of curdlan-based pH-sensitive polymers with endosome buffering functionality for siRNA delivery.Int. J. Biol. Macromol.202014677378010.1016/j.ijbiomac.2019.10.12931778701
    [Google Scholar]
  87. Erdene-OchirT. GanboldT. ZandanJ. HanS. BorjihanG. BaigudeH. Alkylation enhances biocompatibility and siRNA delivery efficiency of cationic curdlan nanoparticles.Int. J. Biol. Macromol.202014311812510.1016/j.ijbiomac.2019.12.04831816379
    [Google Scholar]
  88. ShahS. MadhuH. SoniwalaM. MoriD. VyasA. ChauhanA. PrajapatiB. Lipid-based nanoparticles.Nanocarrier VaccinesWiley Online Library202424124310.1002/9781394175482.ch7
    [Google Scholar]
  89. FranciaV. SchiffelersR.M. CullisP.R. WitzigmannD. The biomolecular corona of lipid nanoparticles for gene therapy.Bioconjug. Chem.20203192046205910.1021/acs.bioconjchem.0c0036632786370
    [Google Scholar]
  90. JayeoyeT.J. NwudeE.F. SinghS. PrajapatiB.G. KapoorD.U. MuangsinN. Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: A review.Bionanoscience202410.1007/s12668‑024‑01436‑7
    [Google Scholar]
  91. PengL.H. HuangY.F. ZhangC.Z. NiuJ. ChenY. ChuY. JiangZ.H. GaoJ.Q. MaoZ.W. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity.Biomaterials201610313714910.1016/j.biomaterials.2016.06.05727376562
    [Google Scholar]
  92. VinhasR. MendesR. FernandesA.R. BaptistaP.V. Nanoparticles—emerging potential for managing leukemia and lymphoma.Front. Bioeng. Biotechnol.201757910.3389/fbioe.2017.0007929326927
    [Google Scholar]
  93. AkinyeluJ. SinghM. Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells.Appl. Nanosci.20199171710.1007/s13204‑018‑0896‑4
    [Google Scholar]
  94. GaneshkumarM. SathishkumarM. PonrasuT. DineshM.G. SugunaL. Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery.Colloids Surf. B Biointerfaces201310620821610.1016/j.colsurfb.2013.01.03523434714
    [Google Scholar]
  95. BaggaP. AnsariT.M. SiddiquiH.H. SyedA. BahkaliA.H. RahmanM.A. KhanM.S. Bromelain capped gold nanoparticles as the novel drug delivery carriers to aggrandize effect of the antibiotic levofloxacin.EXCLI J.20161577278028337108
    [Google Scholar]
  96. AhangariA. SaloutiM. HeidariZ. KazemizadehA.R. SafariA.A. Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci.Drug Deliv.2013201343910.3109/10717544.2012.74640223311651
    [Google Scholar]
  97. CapanemaN.S.V. CarvalhoI.C. MansurA.A.P. CarvalhoS.M. LageA.P. MansurH.S. Hybrid hydrogel composed of carboxymethylcellulose–silver nanoparticles–doxorubicin for anticancer and antibacterial therapies against melanoma skin cancer cells.ACS Appl. Nano Mater.20192117393740810.1021/acsanm.9b01924
    [Google Scholar]
  98. FarooqU. AhmadT. KhanA. SarwarR. ShafiqJ. RazaY. AhmedA. UllahS. Ur RehmanN. Al-HarrasiA. Rifampicin conjugated silver nanoparticles: A new arena for development of antibiofilm potential against methicillin resistant Staphylococcus aureus and Klebsiella pneumoniae. Int. J. Nanomedicine2019143983399310.2147/IJN.S19819431213810
    [Google Scholar]
  99. Amarnath PraphakarR. JeyarajM. AhmedM. Suresh KumarS. RajanM. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery.Int. J. Biol. Macromol.2018118Pt B1627163810.1016/j.ijbiomac.2018.07.00829981824
    [Google Scholar]
  100. ShakilM.S. HasanM.A. SarkerS.R. Iron oxide nanoparticles for breast cancer theranostics.Curr. Drug Metab.201920644645610.2174/138920022066618112210504330465497
    [Google Scholar]
  101. JinL. WangQ. ChenJ. WangZ. XinH. ZhangD. Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells.Pharmaceutics2019111161510.3390/pharmaceutics1111061531744202
    [Google Scholar]
  102. KapoorD.U. PatelR.J. GaurM. ParikhS. PrajapatiB.G. Metallic and metal oxide nanoparticles in treating Pseudomonas aeruginosa infections.J. Drug Deliv. Sci. Technol.20249110529010.1016/j.jddst.2023.105290
    [Google Scholar]
  103. BhaktaG. SharmaR.K. GuptaN. CoolS. NurcombeV. MaitraA. Multifunctional silica nanoparticles with potentials of imaging and gene delivery.Nanomedicine20117447247910.1016/j.nano.2010.12.00821215332
    [Google Scholar]
  104. MarwahM. PerrieY. BadhanR.K.S. LowryD. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer.J. Liposome Res.202030213614910.1080/08982104.2019.160474631010367
    [Google Scholar]
  105. FarjadianF. RezaeifardS. NaeimiM. GhasemiS. Mohammadi-SamaniS. WellandM.E. TayebiL. Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly (vinylcaprolactam).Int. J. Nanomedicine2019146901691510.2147/IJN.S21446731564860
    [Google Scholar]
  106. XiaB. ZhangW. TongH. LiJ. ChenZ. ShiJ. Multifunctional chitosan/porous silicon@au nanocomposite hydrogels for long-term and repeatedly localized combinatorial therapy of cancer via a single injection.ACS Biomater. Sci. Eng.2019541857186710.1021/acsbiomaterials.8b0153333405559
    [Google Scholar]
  107. SadrjavadiK. ShahbaziB. FattahiA. De-esterified tragacanth-chitosan nano-hydrogel for methotrexate delivery; Optimization of the formulation by Taguchi design.Artif. Cells Nanomed. Biotechnol.201846sup288389310.1080/21691401.2018.147148229764208
    [Google Scholar]
  108. GhaemB. SadeghiM. BardajeeG.R. Synthesis of nano-polymer supported on nano-hydrogel chitosan base and its application for DOX delivery.J. Polym. Environ.20202892457246810.1007/s10924‑020‑01775‑y
    [Google Scholar]
  109. LinF. LiY. CuiW. Injectable hydrogel microspheres in cartilage repair.Biomedical Technology20231182910.1016/j.bmt.2022.11.002
    [Google Scholar]
  110. PalmerB. DeLouiseL. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting.Molecules20162112171910.3390/molecules2112171927983701
    [Google Scholar]
  111. LiuL. ZhaoW. MaQ. GaoY. WangW. ZhangX. DongY. ZhangT. LiangY. HanS. CaoJ. WangX. SunW. MaH. SunY. Functional nano-systems for transdermal drug delivery and skin therapy.Nanoscale Adv.2023561527155810.1039/D2NA00530A36926556
    [Google Scholar]
  112. LaptevaM. MondonK. MöllerM. GurnyR. KaliaY.N. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis.Mol. Pharm.20141192989300110.1021/mp400639e25057896
    [Google Scholar]
  113. GoebelA.S.B. NeubertR.H.H. WohlrabJ. Dermal targeting of tacrolimus using colloidal carrier systems.Int. J. Pharm.20114041-215916810.1016/j.ijpharm.2010.11.02921094231
    [Google Scholar]
  114. Eroğluİ. AzizoğluE. ÖzyazıcıM. NenniM. Gürer OrhanH. ÖzbalS. TekmenI. Ertamİ. Ünalİ. ÖzerÖ. Effective topical delivery systems for corticosteroids: Dermatological and histological evaluations.Drug Deliv.20162351502151325259424
    [Google Scholar]
  115. SiddiqueM.I. KatasH. AminM.C.I.M. NgS.F. ZulfakarM.H. JamilA. In-vivo dermal pharmacokinetics, efficacy, and safety of skin targeting nanoparticles for corticosteroid treatment of atopic dermatitis.Int. J. Pharm.20165071-2728210.1016/j.ijpharm.2016.05.00527154252
    [Google Scholar]
  116. TakeuchiI. TakeshitaT. SuzukiT. MakinoK. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs.Colloids Surf. B Biointerfaces201716052052610.1016/j.colsurfb.2017.10.01129017147
    [Google Scholar]
  117. AkhtarB. MuhammadF. AslamB. SaleemiM.K. SharifA. Biodegradable nanoparticle based transdermal patches for gentamicin delivery: Formulation, characterization and pharmacokinetics in rabbits.J. Drug Deliv. Sci. Technol.20205710168010.1016/j.jddst.2020.101680
    [Google Scholar]
  118. RavirajV. PhamB.T.T. KimB.J. PhamN.T.H. KokL.F. PainterN. DelicN.C. JonesS.K. HawkettB.S. LyonsJ.G. Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles.Cancer Nanotechnol.2021121610.1186/s12645‑021‑00079‑7
    [Google Scholar]
  119. DalwadiS. ThakkarV. PrajapatiB. Optimizing neuroprotective nano-structured lipid carriers for transdermal delivery through artificial neural network.Pharm. Nanotechnol.20241211510.2174/012211738529496924032605231238616760
    [Google Scholar]
  120. YuniarsihN. ChaerunisaaA. ElaminK. WathoniN. Polymeric nanohydrogel in topical drug delivery system.Int. J. Nanomedicine2024192733275410.2147/IJN.S44212338505165
    [Google Scholar]
  121. RajputR. NarkhedeJ. NaikJ.B. Nanogels as nanocarriers for drug delivery: A review.ADMET DMPK20208111510.5599/admet.72435299773
    [Google Scholar]
  122. MohammedN. RejinoldN.S. MangalathillamS. BiswasR. NairS.V. JayakumarR. Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections.J. Biomed. Nanotechnol.2013991521153110.1166/jbn.2013.164723980500
    [Google Scholar]
  123. KaratiD. MukherjeeS. SinghS. PrajapatiB.G. BasuB. Biopolymer-based nano-formulations for mitigation of ocular infections: A review.Polym. Bull.20248197631765810.1007/s00289‑023‑05095‑8
    [Google Scholar]
  124. ZhouH.Y. HaoJ.L. WangS. ZhengY. ZhangW.S. Nanoparticles in the ocular drug delivery.Int. J. Ophthalmol.20136339039623826539
    [Google Scholar]
  125. Bravo-OsunaI. Andrés-GuerreroV. Pastoriza AbalP. Molina-MartínezI.T. Herrero-VanrellR. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases.Drug Deliv. Transl. Res.20166668670710.1007/s13346‑016‑0336‑527766598
    [Google Scholar]
  126. QamarZ. QizilbashF.F. IqubalM.K. AliA. NarangJ.K. AliJ. BabootaS. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective.Recent Pat. Drug Deliv. Formul.202013424625410.2174/187221131466619122411521131884933
    [Google Scholar]
  127. ChaiyasanW. SrinivasS.P. TiyaboonchaiW. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery.Mol. Vis.2015211224123426604662
    [Google Scholar]
  128. KhamesA. KhaleelM.A. El-BadawyM.F. El-NezhawyA.O.H. Natamycin solid lipid nanoparticles – sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: Preparation and optimization.Int. J. Nanomedicine2019142515253110.2147/IJN.S19050231040672
    [Google Scholar]
  129. EidH.M. ElkomyM.H. El MenshaweS.F. SalemH.F. Development, optimization, and in vitro/in vivo characterization of enhanced lipid nanoparticles for ocular delivery of ofloxacin: The influence of pegylation and chitosan coating.AAPS PharmSciTech201920518310.1208/s12249‑019‑1371‑631054011
    [Google Scholar]
  130. dos SantosG.A. Ferreira-NunesR. DalmolinL.F. dos Santos RéA.C. AnjosJ.L.V. MendanhaS.A. AiresC.P. LopezR.F.V. Cunha-FilhoM. GelfusoG.M. GratieriT. Besifloxacin liposomes with positively charged additives for an improved topical ocular delivery.Sci. Rep.20201011928510.1038/s41598‑020‑76381‑y33159142
    [Google Scholar]
  131. BonechiC. MahdizadehF.F. TalaricoL. PepiS. TamasiG. LeoneG. ConsumiM. DonatiA. MagnaniA. Liposomal encapsulation of citicoline for ocular drug delivery.Int. J. Mol. Sci.202324231686410.3390/ijms24231686438069187
    [Google Scholar]
  132. PrajapatiB. ModiC. PatelU. KendreP. Nanoemulsion based in-situ gel for ocular delivery of brimonidine tartrate.Curr. Drug Ther.202419333634510.2174/1574885518666230626164030
    [Google Scholar]
  133. YousryC. ZikryP.M. BasaliousE.B. El-GazayerlyO.N. Self-nanoemulsifying system optimization for higher terconazole solubilization and non-irritant ocular administration.Adv. Pharm. Bull.202010338939810.34172/apb.2020.04732665897
    [Google Scholar]
  134. GrimaudoM.A. AmatoG. CarboneC. Diaz-RodriguezP. MusumeciT. ConcheiroA. Alvarez-LorenzoC. PuglisiG. Micelle-nanogel platform for ferulic acid ocular delivery.Int. J. Pharm.202057611898610.1016/j.ijpharm.2019.11898631870956
    [Google Scholar]
  135. LiuR. SunL. FangS. WangS. ChenJ. XiaoX. LiuC. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: Development, characterization, in vitro permeation and in vivo pharmacokinetic studies.Pharm. Dev. Technol.201621557658210.3109/10837450.2015.102660726024239
    [Google Scholar]
  136. ZorattoN. ForcinaL. MatassaR. MoscaL. FamiliariG. MusaròA. MatteiM. CovielloT. Di MeoC. MatricardiP. Hyaluronan-cholesterol nanogels for the enhancement of the ocular delivery of therapeutics.Pharmaceutics20211311178110.3390/pharmaceutics1311178134834195
    [Google Scholar]
  137. KyriakidesT.R. RajA. TsengT.H. XiaoH. NguyenR. MohammedF.S. HalderS. XuM. WuM.J. BaoS. SheuW.C. Biocompatibility of nanomaterials and their immunological properties.Biomed. Mater.202116404200510.1088/1748‑605X/abe5fa33578402
    [Google Scholar]
  138. SuS. KangP.M. Systemic review of biodegradable nanomaterials in nanomedicine.Nanomaterials202010465610.3390/nano1004065632244653
    [Google Scholar]
  139. DesaiN. Challenges in development of nanoparticle-based therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑422407288
    [Google Scholar]
  140. FengJ. MarkwalterC.E. TianC. ArmstrongM. Prud’hommeR.K. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale.J. Transl. Med.201917120010.1186/s12967‑019‑1945‑931200738
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385324246240826042254
Loading
/content/journals/pnt/10.2174/0122117385324246240826042254
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test