Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Aims

This study aimed to develop an anti-aging nanoformulation with extract as bioactive substance.

Background

Valeton & Zipj extract has been proven in previous research to have antioxidant, anti-ageing, anti-inflammatory, and wound healing properties, which makes it a potential bioactive material for anti-ageing and sunscreen cosmetic products. Phytoantioxidants need to penetrate into deeper skin layers to ensure effectivity. Thus, a transdermal delivery system is needed to deliver the extract to a deeper skin layer.

Objectives

The objective of the study was to compare the permeability and anti-ageing activity of liposomal and ethosomal formulations of rhizome ethanolic extract.

Methods

In this study, extract was loaded into a phospholipid vesicular system in the form of liposome and ethosome formulations using the ethanolic injection method. The anti-ageing activity was assessed by analyzing the epidermal thickness, number of sunburn cells, distance between collagen fibers, and number of fibroblasts. While the histologic specimen scoring was carried out for the penetration study.

Results

The ethosomal formulation had been found to have better penetration ability since it was able to reach the lower dermis area compared to the liposomes, which only reached the upper dermis. The ethosomal formulation of extract exhibited a better anti-ageing activity based on the parameters of epidermal thickness, sunburn cell count, fibroblast count, and the distance between collagen fibres in rat skin histology.

Conclusion

Ethosomes have been found to be a more proficient carrier system for transdermal delivery of extract compared to liposomes. Meanwhile, their penetration correlated with the effectivity of the formulation, suggesting that the vesicular system enhanced the penetration ability of the extract.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385252518231018161755
2023-11-02
2025-05-25
Loading full text...

Full text loading...

References

  1. Aspollah SukariM. WahT.S. SaadS.M. RashidN.Y. RahmaniM. LajisN.H. HinT.Y.Y. Bioactive sesquiterpenes from Curcuma ochrorhiza and Curcuma heyneana.Nat. Prod. Res.201024983884510.1080/1478641090305295120461629
    [Google Scholar]
  2. WidyowatiR. AgilM. Chemical constituents and bioactivities of several indonesian plants typically used in Jamu.Chem. Pharm. Bull.201866550651810.1248/cpb.c17‑0098329710047
    [Google Scholar]
  3. MarianneC.J. ChrestellaJ. GintingM.A. DalimuntheA. NasutionR. Hepatoprotective activity combination of curanga fel-terrae lour leaves and Curcuma heyneana Val. and Zip. Rhizome in rat induced by combination of rifampicin and isoniazid.Int. J. Pharm. Pharm. Sci.201795232810.22159/ijpps.2017v9i5.16528
    [Google Scholar]
  4. RahayuD.U.C. AdilahS.N. SugitaP. Antioxidant activity of methanol extract from indonesian Curcuma heyneana rhizome.Eur. J. Pharm. Med. Res.201853582588
    [Google Scholar]
  5. KusumawatiI. KurniawanK.O. RullyansyahS. PrijoT.A. WidyowatiR. EkowatiJ. HestianahE.P. MaatS. MatsunamiK. Anti-aging properties of Curcuma heyneana valeton & Zipj: A scientific approach to its use in javanese tradition.J. Ethnopharmacol.2018225647010.1016/j.jep.2018.06.03830008394
    [Google Scholar]
  6. FadusM.C. LauC. BikhchandaniJ. LynchH.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent.J. Tradit. Complement. Med.20177333934610.1016/j.jtcme.2016.08.00228725630
    [Google Scholar]
  7. DonglikarM.M. DeoreS.L. Development and evaluation of herbal sunscreen.Pharmacogn. J.201691839710.5530/pj.2017.1.15
    [Google Scholar]
  8. DiastutiH. SyahY.M. JuliawatyL.D. SinggihM. Antibacterial activity of germacrane type sesquiterpenes from Curcuma heyneana rhizomes.Indonesian J. Chem.2014141323610.22146/ijc.21264
    [Google Scholar]
  9. ChenJ. LiuY. ZhaoZ. QiuJ. Oxidative stress in the skin: Impact and related protection.Int. J. Cosmet. Sci.202143549550910.1111/ics.1272834312881
    [Google Scholar]
  10. PillaiS. OresajoC. HaywardJ. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - A review.Int. J. Cosmet. Sci.2005271173410.1111/j.1467‑2494.2004.00241.x18492178
    [Google Scholar]
  11. D’OrazioJ. JarrettS. Amaro-OrtizA. ScottT. UV radiation and the skin.Int. J. Mol. Sci.2013146122221224810.3390/ijms14061222223749111
    [Google Scholar]
  12. LiC.C. LinY.T. ChenY.T. SieS.F. Chen-YangY.W. Improvement in UV protection retention capability and reduction in skin penetration of benzophenone-3 with mesoporous silica as drug carrier by encapsulation.J. Photochem. Photobiol. B201514827728310.1016/j.jphotobiol.2015.04.02725985148
    [Google Scholar]
  13. WangS.Q. OsterwalderU. JungK. Ex vivo evaluation of radical sun protection factor in popular sunscreens with antioxidants.J. Am. Acad. Dermatol.201165352553010.1016/j.jaad.2010.07.00921624700
    [Google Scholar]
  14. JadoonS KarimS AsadMHH Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity.Oxid Med Cell Longev.201520151710.1155/2015/709628
    [Google Scholar]
  15. KusumawatiI. IndrayantoG. Natural antioxidants in cosmetics.Studies Nat. Prod. Chem.20134048550510.1016/B978‑0‑444‑59603‑1.00015‑1
    [Google Scholar]
  16. FirmanK. KinoshitaT. ItaiA. SankawaU. Terpenoids from curcuma heyneana.Phytochemistry198827123887389110.1016/0031‑9422(88)83038‑3
    [Google Scholar]
  17. AtaieA. SabetkasaeiM. HaghparastA. MoghaddamA.H. KazeminejadB. Neuroprotective effects of the polyphenolic antioxidant agent, Curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat.Pharmacol. Biochem. Behav.201096437838510.1016/j.pbb.2010.06.00920619287
    [Google Scholar]
  18. VaisermanA. KoliadaA. ZayachkivskaA. LushchakO. Nanodelivery of natural antioxidants: An anti-aging perspective.Front. Bioeng. Biotechnol.20207January44710.3389/fbioe.2019.0044731998711
    [Google Scholar]
  19. ForniC FacchianoF BartoliM PierettiS FacchianoA D’ArcangeloD Beneficial role of phytochemicals on oxidative stress and age-related diseases.Biomed Res Int.20192019874825310.1155/2019/8748253
    [Google Scholar]
  20. FreitasJ.V. PraçaF.S.G. Trans -resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV- Fi lters.Int. J. Pharm.201548413113710.1016/j.ijpharm.2015.02.06225724133
    [Google Scholar]
  21. ZhangJ. TangQ. XuX. LiN. Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery.Int. J. Pharm.2013448116817410.1016/j.ijpharm.2013.03.02123524117
    [Google Scholar]
  22. KarataşA. TurhanF. Phyto-phospholipid complexes as drug delivery system for herbal extracts / molecules.Turkey J Pharm Sci.201512193102
    [Google Scholar]
  23. BiliaA.R. BergonziM.C. GuccioneC. ManconiM. FaddaA.M. SinicoC. Vesicles and micelles: Two versatile vectors for the delivery of natural products.J. Drug Deliv. Sci. Technol.2015xxx11510.1016/j.jddst.2015.09.007
    [Google Scholar]
  24. SinghR.P. GangadharappaH.V. MruthunjayaK. Phospholipids: Unique carriers for drug delivery systems.J. Drug Deliv. Sci. Technol.20173916617910.1016/j.jddst.2017.03.027
    [Google Scholar]
  25. Ahmadi AshtianiH.R. BisheP. LashgariN-A. NilforoushzadehM.A. ZareS. Liposomes in cosmetics.J. Skin Stem Cell2016331610.5812/jssc.65815
    [Google Scholar]
  26. MedinaO. ZhuY. KairemoK. Targeted liposomal drug delivery in cancer.Curr. Pharm. Des.200410242981298910.2174/138161204338346715379663
    [Google Scholar]
  27. TampucciS. BurgalassiS. ChetoniP. MontiD. Cutaneous permeation and penetration of sunscreens: Formulation strategies and in vitro methods.Cosmetics20175111710.3390/cosmetics5010001
    [Google Scholar]
  28. BetzG. AeppliA. MenshutinaN. LeuenbergerH. In vivo comparison of various liposome formulations for cosmetic application.Int. J. Pharm.20052961-2445410.1016/j.ijpharm.2005.02.03215885454
    [Google Scholar]
  29. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research.Int. J. Pharm.20073321-211610.1016/j.ijpharm.2006.12.00517222523
    [Google Scholar]
  30. MukherjeeS. RaghuramanH. ChattopadhyayA. Membrane localization and dynamics of nile red: Effect of cholesterol.Biochim. Biophys. Acta Biomembr.200717681596610.1016/j.bbamem.2006.07.01016934217
    [Google Scholar]
  31. MonteiroM.S. OzzettiR.A. VergnaniniA.L. de Brito-GitiranaL. VolpatoN.M. de FreitasZ.M. Ricci-JúniorE. dos SantosE.P. Evaluation of octyl p-methoxycinnamate included in liposomes and cyclodextrins in anti-solar preparations: Preparations, characterizations and in vitro penetration studies.Int. J. Nanomedicine201273045305822787399
    [Google Scholar]
  32. TiwariR. AnsariV.A. SinghS. AkhtarJ. Liposomes : The novel aprroach in cosmeceuticals.World J. Pharm. Pharm. Sci.201540616161640
    [Google Scholar]
  33. HuaS. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives.Front. Pharmacol.20156September21910.3389/fphar.2015.0021926483690
    [Google Scholar]
  34. BensonH. Transdermal drug delivery: Penetration enhancement techniques.Curr. Drug Deliv.200521233310.2174/156720105277291516305405
    [Google Scholar]
  35. Larese FilonF. MauroM. AdamiG. BovenziM. CroseraM. Nanoparticles skin absorption: New aspects for a safety profile evaluation.Regul. Toxicol. Pharmacol.201572231032210.1016/j.yrtph.2015.05.00525979643
    [Google Scholar]
  36. MontiD. TampucciS. ChetoniP. BurgalassiS. SainoV. CentiniM. StaltariL. AnselmiC. Permeation and distribution of ferulic acid and its α-cyclodextrin complex from different formulations in hairless rat skin.AAPS PharmSciTech201112251452010.1208/s12249‑011‑9609‑y21491181
    [Google Scholar]
  37. MorabitoK. ShapleyN.C. SteeleyK.G. TripathiA. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection.Int. J. Cosmet. Sci.201133538539010.1111/j.1468‑2494.2011.00654.x21507015
    [Google Scholar]
  38. MorgantiP. Use and potential of nanotechnology in cosmetic dermatology.Clin Cosmetic Investig Dermatol.2010351310.2147/CCID.S4506
    [Google Scholar]
  39. MaestrelliF. González-RodríguezM.L. RabascoA.M. MuraP. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen–cyclodextrin complexes aimed for transdermal delivery.Int. J. Pharm.20063121-2536010.1016/j.ijpharm.2005.12.04716469460
    [Google Scholar]
  40. LemeshowS. HosmerD.W. KlarJ. LwangaS.K. Adequacy of Sample Size in Health Studies.SingaporeJohn Wiley & Sons Ltd1990
    [Google Scholar]
  41. ReichmanJ. Handbook of Optical Filters for Fluorescence Microscopy.Brattleboro, Vermont, USAChroma Technology Corp1998
    [Google Scholar]
  42. WeberG.F. MenkoA.S. Color image acquisition using a monochrome camera and standard fluorescence filter cubes.Biotechniques20053815256, 54, 5610.2144/05381BM0615679085
    [Google Scholar]
  43. KolmakovK. BelovV.N. BierwagenJ. RingemannC. MüllerV. EggelingC. HellS.W. Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy.Chemistry201016115816610.1002/chem.20090230919950338
    [Google Scholar]
  44. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods610009229065496
    [Google Scholar]
  45. JantaratC. SirathanarunP. BoonmeeS. MeechoosinW. WangpittayaH. Effect of piperine on skin permeation of curcumin from a bacterially derived cellulose-composite double-layer membrane for transdermal curcumin delivery.Sci. Pharm.20188633910.3390/scipharm8603003930216984
    [Google Scholar]
  46. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.20101327428210.4103/0110‑5558.7241522247858
    [Google Scholar]
  47. MadhaviB.B. VennelaK.S. MasanaP. MadipojuB. Enhanced transdermal drug penetration Of.Malays. J. Pharm. Sci.20131114958
    [Google Scholar]
  48. Swarnlata SarafG.J. Topical delivery of curcuma longa extract loaded nanosized ethosomes to combat facial wrinkles research article.J. Pharm. Drug Deliv. Res.20143110.4172/2325‑9604.1000118
    [Google Scholar]
  49. PanahiY. FazlolahzadehO. AtkinS.L. MajeedM. ButlerA.E. JohnstonT.P. SahebkarA. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review.J. Cell. Physiol.201923421165117810.1002/jcp.2709630073647
    [Google Scholar]
  50. KozubekA. GubernatorJ. PrzeworskaE. StasiukM. Liposomal drug delivery, a novel approach: PLARosomes.Acta Biochim. Pol.200047363964910.18388/abp.2000_398511310966
    [Google Scholar]
  51. MaitaniY. SoedaH. JunpingW. TakayamaK. Modified ethanol injection method for liposomes containing β-sitosterol β-D-Glucoside.J. Liposome Res.200111111512510.1081/LPR‑10010317419530923
    [Google Scholar]
  52. RutherfordH. Structural investigations of liposomes : Effect of phospholipid hydrocarbon length and the incorporation of sphingomyelin.Thesis [Masters] University of Saskatchewan.2011
    [Google Scholar]
  53. LaouiniA. Jaafar-MaalejC. Limayem-BlouzaI. SfarS. CharcossetC. FessiH. Preparation, characterization and applications of liposomes: State of the art.J. Colloid Sci, Biotechnol.20121214716810.1166/jcsb.2012.1020
    [Google Scholar]
  54. LuanJ. ZhangD. HaoL. LiC. QiL. GuoH. LiuX. ZhangQ. Design and characterization of Amoitone B-loaded nanostructured lipid carriers for controlled drug release.Drug Deliv.201320832433010.3109/10717544.2013.83500724032657
    [Google Scholar]
  55. RuoziB. BellettiD. TombesiA. TosiG. BondioliL. ForniF. VandelliM.A. AFM, ESEM, TEM, and CLSM in liposomal characterization: A comparative study.Int. J. Nanomedicine2011655756310.2147/IJN.S1461521468358
    [Google Scholar]
  56. PłaczekM. KoselaM. Microscopic methods in analysis of submicron phospholipid dispersions.Acta Pharm.201666112210.1515/acph‑2016‑000326959541
    [Google Scholar]
  57. RobsonA.L. DastoorP.C. FlynnJ. PalmerW. MartinA. SmithD.W. WolduA. HuaS. Advantages and limitations of current imaging techniques for characterizing liposome morphology.Front. Pharmacol.20189FEB8010.3389/fphar.2018.0008029467660
    [Google Scholar]
  58. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh DavaraniF. JavanmardR. DokhaniA. KhorasaniS. MozafariM. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  59. BadranM. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery.Dig. J. Nanomater. Biostruct.2014918391
    [Google Scholar]
  60. PutriD.C.A. DwiastutiR. MarchabanM. NugrohoA.K. Optimization of mixing temperature and sonication duration in liposome preparation.J. Pharmaceut. Sci. Commun.2017142798510.24071/jpsc.142728
    [Google Scholar]
  61. BhattacharjeeS. DLS and zeta potential - What they are and what they are not?J. Control. Release201623533735110.1016/j.jconrel.2016.06.01727297779
    [Google Scholar]
  62. ZandiG. LotfipourF. GhanbarzadehS. MedghalchiM. HamishehkarH. A comparative study on the potentials of nanoliposomes and nanoethosomes for Fluconazole delivery.J. Drug Deliv. Sci. Technol.20184426426910.1016/j.jddst.2018.01.003
    [Google Scholar]
  63. ForeJ. A review of skin and the effects of aging on skin structure and function.Ostomy Wound Manage.2006529243516980727
    [Google Scholar]
  64. LaethemA.V. ClaerhoutS. GarmynM. AgostinisP. The sunburn cell: Regulation of death and survival of the keratinocyte.Int. J. Biochem. Cell Biol.20053781547155310.1016/j.biocel.2005.02.01515896663
    [Google Scholar]
  65. SharmaM.R. MitraniR. WerthV.P. Effect of TNFα blockade on UVB-induced inflammatory cell migration and collagen loss in mice.J. Photochem. Photobiol. B2020213September11207210.1016/j.jphotobiol.2020.11207233181431
    [Google Scholar]
  66. RapiniR.P. Clinical and pathologic findings with differential diagnostic lists.Practical Dermatopathology. RapiniR.P. EdinburghMosby2005143.s10.1016/B978‑0‑323‑01198‑3.50005‑X
    [Google Scholar]
  67. TouitouE. DayanN. BergelsonL. GodinB. EliazM. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties.J. Control. Release200065340341810.1016/S0168‑3659(99)00222‑910699298
    [Google Scholar]
  68. DayanN. TouitouE. Carriers for skin delivery of trihexyphenidyl HCl: Ethosomes vs. liposomes.Biomaterials200021181879188510.1016/S0142‑9612(00)00063‑610919691
    [Google Scholar]
  69. AinbinderD. TouitouE. Testosterone ethosomes for enhanced transdermal delivery.Drug Deliv.200512529730310.1080/1071754050017691016188729
    [Google Scholar]
  70. PaolinoD. LucaniaG. MardenteD. AlhaiqueF. FrestaM. Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers.J. Control. Release20051061-29911010.1016/j.jconrel.2005.04.00715935505
    [Google Scholar]
  71. SinicoC. FaddaA.M. Vesicular carriers for dermal drug delivery.Expert Opin. Drug Deliv.20096881382510.1517/1742524090307102919569979
    [Google Scholar]
  72. El MaghrabyG.M.M. WilliamsA.C. BarryB.W. Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro.J. Pharm. Pharmacol.20105381069107710.1211/002235701177645011518016
    [Google Scholar]
  73. VermaD. VermaS. BlumeG. FahrA. Particle size of liposomes influences dermal delivery of substances into skin.Int. J. Pharm.20032581-214115110.1016/S0378‑5173(03)00183‑212753761
    [Google Scholar]
  74. GeusensB. StrobbeT. BrackeS. DynoodtP. SandersN. GeleM.V. LambertJ. Lipid-mediated gene delivery to the skin.Eur. J. Pharm. Sci.201143419921110.1016/j.ejps.2011.04.00321515366
    [Google Scholar]
  75. KimJ.K. ZebA. QureshiO.S. KimH-S. ChaJ-H. KimH.S. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes.Int. J. Nanomedicine2016113813382410.2147/IJN.S10956527540293
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385252518231018161755
Loading
/content/journals/pnt/10.2174/0122117385252518231018161755
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Curcuma heyneana; ethosome; liposome; medicine; penetration; phospholipid; transdermal delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test