Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

The nasal method for administering nanoformulations to the brain has been examined and proven successful by prior investigators. For the treatment of central nervous system (CNS) disorders such as neuropsychiatric, depression, Alzheimer and anxiety, intranasal administration has become more popular for delivering drugs to the brain. This method offers direct transport through neuronal pathways. The lipid-based nanocarriers like nanostructured lipid carriers (NLC) appear more favorable than other nanosystems for brain administration. The nanostructured lipid carriers (NLC) system can quickly transform into a gelling system to facilitate easy administration into the nasal passages. The various compatibility studies showed that the other lipid structured-based formulations may not work well for various reasons, including a low drug filing capacity; during storage, the formulation showed changes in the solid lipid structures, which gives a chance of medication ejection. Formulations containing NLC can minimize these problems by improving drug solubility and permeation rate by incorporating a ratio of liquid lipids with solid lipids, resulting in improved stability during storage and drug bioavailability because of the higher drug loading capacity. This review aimed to find and emphasize research on lipid-based nanocarrier formulations that have advanced the treatment of central nervous system illnesses using nasal passages to reach the targeted area's drug molecules.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385293436240321090218
2025-02-01
2025-01-06
Loading full text...

Full text loading...

References

  1. QianH. ShuC. XiaoL. WangG. Histamine and histamine receptors: Roles in major depressive disorder.Front. Psychiatry20221382559110.3389/fpsyt.2022.825591 36213905
    [Google Scholar]
  2. JiangY. ZouD. LiY. Monoamine neurotransmitters control basic emotions and affect major depressive disorders.Pharmaceuticals20221510120310.3390/ph15101203 36297314
    [Google Scholar]
  3. KircanskiK. JoormannJ. GotlibI.H. Cognitive aspects of depression.Wiley Interdiscip. Rev. Cogn. Sci.20123330131310.1002/wcs.1177 23240069
    [Google Scholar]
  4. AlbertoM. Paiva-SantosA.C. VeigaF. PiresP.C. Lipid and polymeric nanoparticles: Successful strategies for nose-to-brain drug delivery in the treatment of depression and anxiety disorders.Pharmaceutics20221412274210.3390/pharmaceutics14122742 36559236
    [Google Scholar]
  5. HowesO.D. KambeitzJ. KimE. The nature of dopamine dysfunction in schizophrenia and what this means for treatment.Arch. Gen. Psychiatry201269877678610.1001/archgenpsychiatry.2012.169 22474070
    [Google Scholar]
  6. RagužM. PredrijevacN. DlakaD. Structural changes in brains of patients with disorders of consciousness treated with deep brain stimulation.Sci. Rep.2021111440110.1038/s41598‑021‑83873‑y 33623134
    [Google Scholar]
  7. TrappNT MartynaMR SiddiqiSH BajestanSN The neuropsychiatric approach to the assessment of patients in neurology.Semin Neurol202242208810610.1055/s‑0042‑1745741 35477181
    [Google Scholar]
  8. Discovering the Brain.Washington, DCThe National Academies Press1992
    [Google Scholar]
  9. ZhaoY.F. VerkhratskyA. TangY. IllesP. Astrocytes and major depression: The purinergic avenue.Neuropharmacology202222010925210.1016/j.neuropharm.2022.109252 36122663
    [Google Scholar]
  10. HariniK. GirigoswamiK. GirigoswamiA. Nanopsychiatry: Engineering of nanoassisted drug delivery systems to formulate antidepressants.Int. J. Nanodimens.2022133256266
    [Google Scholar]
  11. LuoY. YangH. ZhouY.F. HuB. Dual and multi-targeted nanoparticles for site-specific brain drug delivery.J. Control. Release202031719521510.1016/j.jconrel.2019.11.037 31794799
    [Google Scholar]
  12. CockburnN. PradhanA. TaingM.W. KiselyS. FordP.J. Oral health impacts of medications used to treat mental illness.J. Affect. Disord.201722318419310.1016/j.jad.2017.07.037 28759866
    [Google Scholar]
  13. SivadasuP. GowdaD.V. SubramaniN.K. VishweshwaraiahB.M. ShivannaS. HatnaS. Direct brain targeted nanostructured lipid carriers for sustained release of schizophrenic drug: Formulation, characterization and pharmacokinetic studies.Indian J Pharm Educ Res2019541738410.5530/ijper.54.1.9
    [Google Scholar]
  14. RaedlerT.J. Cardiovascular aspects of antipsychotics.Curr. Opin. Psychiatry201023657458110.1097/YCO.0b013e32833f46c9 20838345
    [Google Scholar]
  15. HäfnerH. The concept of schizophrenia: From unity to diversity.Adv Psychiat2014201413910.1155/2014/929434
    [Google Scholar]
  16. TangC.H. RamcharranD. YangC.W.W. A nationwide study of the risk of all-cause, sudden death, and cardiovascular mortality among antipsychotic-treated patients with schizophrenia in Taiwan.Schizophr. Res.202123791910.1016/j.schres.2021.08.015 34478937
    [Google Scholar]
  17. PottooF.H. SharmaS. JavedM.N. Lipid-based nanoformulations in the treatment of neurological disorders.Drug Metab. Rev.202052118520410.1080/03602532.2020.1726942 32116044
    [Google Scholar]
  18. TanM.S.A. ParekhH.S. PandeyP. SiskindD.J. FalconerJ.R. Nose-to-brain delivery of antipsychotics using nanotechnology: A review.Expert Opin. Drug Deliv.202017683985310.1080/17425247.2020.1762563 32343186
    [Google Scholar]
  19. KumarR. ChhikaraB.S. GuliaK. ChhillarM. Review of nanotheranostics for molecular mechanisms underlying psychiatric disorders and commensurate nanotherapeutics for neuropsychiatry: The mind knockout.Nanotheranostics20215328830810.7150/ntno.49619 33732601
    [Google Scholar]
  20. GadhaveD.G. TagalpallewarA.A. KokareC.R. Agranulocytosis-protective olanzapine-loaded nanostructured lipid carriers engineered for CNS delivery: Optimization and hematological toxicity studies.AAPS PharmSciTech20192012210.1208/s12249‑018‑1213‑y 30604305
    [Google Scholar]
  21. AgrawalM. SarafS. SarafS. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs.J. Control. Release201828113917710.1016/j.jconrel.2018.05.011 29772289
    [Google Scholar]
  22. KumarM. KakkarV. MishraA.K. ChuttaniK. KaurI.P. Intranasal delivery of streptomycin sulfate (STRS) loaded solid lipid nanoparticles to brain and blood.Int. J. Pharm.20144611-222323310.1016/j.ijpharm.2013.11.038 24286922
    [Google Scholar]
  23. WavikarP.R. VaviaP.R. Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery.J. Liposome Res.201525214114910.3109/08982104.2014.954129 25203610
    [Google Scholar]
  24. YasirM. ZafarA. NoorullaK.M. Nose to brain delivery of donepezil through surface modified NLCs: Formulation development, optimization, and brain targeting study.J. Drug Deliv. Sci. Technol.20227510363110.1016/j.jddst.2022.103631
    [Google Scholar]
  25. CostaC.P. BarreiroS. MoreiraJ.N. in vitro studies on nasal formulations of nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN).Pharmaceuticals202114871110.3390/ph14080711 34451808
    [Google Scholar]
  26. AlamM.I. BabootaS. AhujaA. AliM. AliJ. SahniJ.K. Intranasal administration of nanostructured lipid carriers containing CNS acting drug: Pharmacodynamic studies and estimation in blood and brain.J. Psychiatr. Res.20124691133113810.1016/j.jpsychires.2012.05.014 22749490
    [Google Scholar]
  27. AgrawalM. SarafS. SarafS. DubeyS.K. PuriA. GuptaU. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery.JCR J202032723526510.1016/j.jconrel.2020.07.044
    [Google Scholar]
  28. AbhangP. MominM. InamdarM. KarS. Transmucosal drug delivery- An overview.Drug Deliv. Lett.201441263710.2174/22103031113039990011
    [Google Scholar]
  29. DonnellyR.F. ShaikhR. Raj SinghT.R. GarlandM.J. WoolfsonA.D. Mucoadhesive drug delivery systems.J. Pharm. Bioallied Sci.2011318910010.4103/0975‑7406.76478 21430958
    [Google Scholar]
  30. ManglaB. JavedS. SultanM.H. AhsanW. AggarwalG. KohliK. Nanocarriers-assisted needle-free vaccine delivery through oral and intranasal transmucosal routes: A novel therapeutic conduit.Front. Pharmacol.20221275776110.3389/fphar.2021.757761 35087403
    [Google Scholar]
  31. RuigrokM.J.R. de LangeE.C.M. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies: Towards prediction of nose-to-brain transport in humans.AAPS J.201517349350510.1208/s12248‑015‑9724‑x 25693488
    [Google Scholar]
  32. HanD. ZhangL. Nasal cavity ventilation expansion techniques.Acta Otolaryngol.2011131121244124810.3109/00016489.2011.615760 22017343
    [Google Scholar]
  33. LeeD. MinkoT. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier.Pharmaceutics20211312204910.3390/pharmaceutics13122049 34959331
    [Google Scholar]
  34. JonesN. The nose and paranasal sinuses physiology and anatomy.Adv. Drug Deliv. Rev.2001511-351910.1016/S0169‑409X(01)00172‑7
    [Google Scholar]
  35. FengY. HeH. LiF. LuY. QiJ. WuW. An update on the role of nanovehicles in nose-to-brain drug delivery.Drug Discov. Today20182351079108810.1016/j.drudis.2018.01.005 29330120
    [Google Scholar]
  36. RamvikasM. ArumugamM. ChakrabartiS.R. JaganathanK.S. Nasal vaccine delivery. In: Micro and Nanotechnology in Vaccine Development Micro and Nano Technologies.William Andrew2017279301
    [Google Scholar]
  37. AhmedO.A.A. Badr-EldinS.M. In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: Formulation, characterization, and in vivo performance.Int. J. Nanomedicine2018136325633510.2147/IJN.S181587 30349253
    [Google Scholar]
  38. PokharkarV. GadheP.A. PallaP. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: In-vivo pharmacokinetic and toxicity study.Biomed. Pharmacother.20179415016410.1016/j.biopha.2017.07.067 28759752
    [Google Scholar]
  39. LochheadJ.J. WolakD.J. PizzoM.E. ThorneR.G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration.J. Cereb. Blood Flow Metab.201535337138110.1038/jcbfm.2014.215 25492117
    [Google Scholar]
  40. MarttinE. SchipperN.G.M. VerhoefJ.C. MerkusF.W.H.M. Nasal mucociliary clearance as a factor in nasal drug delivery.Adv. Drug Deliv. Rev.1998291-2133810.1016/S0169‑409X(97)00059‑8
    [Google Scholar]
  41. HanJ. ZhaoD. LiD. WangX. JinZ. ZhaoK. Polymer-based nanomaterials and applications for vaccines and drugs.Polymers20181013110.3390/polym10010031 30966075
    [Google Scholar]
  42. XuJ. TaoJ. WangJ. Design and application in delivery system of intranasal antidepressants.Front. Bioeng. Biotechnol.2020862688210.3389/fbioe.2020.626882 33409272
    [Google Scholar]
  43. DhasN.L. KudarhaR.R. MehtaT.A. Intranasal delivery of nanotherapeutics/nanobiotherapeutics for the treatment of alzheimer’s disease: A proficient approach.Crit. Rev. Ther. Drug Carrier Syst.201936537344710.1615/CritRevTherDrugCarrierSyst.2018026762 32421951
    [Google Scholar]
  44. PandeyM. JainN. KanoujiaJ. HussainZ. GorainB. Advances and challenges in intranasal delivery of antipsychotic agents targeting the central nervous system.Front. Pharmacol.20221386559010.3389/fphar.2022.865590 35401164
    [Google Scholar]
  45. KhanA.R. LiuM. KhanM.W. ZhaiG. Progress in brain targeting drug delivery system by nasal route.JCR J201726836438910.1016/j.jconrel.2017.09.001
    [Google Scholar]
  46. SelvarajK. GowthamarajanK. KarriV.V.S.R. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting.Artif. Cells Nanomed. Biotechnol.20174681810.1080/21691401.2017.1420073 29282995
    [Google Scholar]
  47. MistryA. StolnikS. IllumL. Nanoparticles for direct nose-to-brain delivery of drugs.Int. J. Pharm.2009379114615710.1016/j.ijpharm.2009.06.019 19555750
    [Google Scholar]
  48. PardeshiC.V. BelgamwarV.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting.Expert Opin. Drug Deliv.201310795797210.1517/17425247.2013.790887 23586809
    [Google Scholar]
  49. BhiseS.B. YadavA.V. AvachatA.M. MalayandiR. Bioavailability of intranasal drug delivery system.Asian J. Pharmaceut.200847
    [Google Scholar]
  50. Garcia-GarciaE. AndrieuxK. GilS. CouvreurP. Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain?Int. J. Pharm.2005298227429210.1016/j.ijpharm.2005.03.031 15896933
    [Google Scholar]
  51. XinchenY. JingT. JiaoqiongG. Lipid-based nanoparticles via nose-to-brain delivery: A mini review.Front. Cell Dev. Biol.202311121445010.3389/fcell.2023.1214450 37675144
    [Google Scholar]
  52. KumarN.N. LochheadJ.J. PizzoM.E. Delivery of immunoglobulin G antibodies to the rat nervous system following intranasal administration: Distribution, dose-response, and mechanisms of delivery.J. Control. Release201828646748410.1016/j.jconrel.2018.08.006 30081144
    [Google Scholar]
  53. JelkmannM. LeichnerC. ZaichikS. LaffleurF. SchnürchB.A. A gellan gum derivative as in-situ gelling cationic polymer for nasal drug delivery.Int. J. Biol. Macromol.20201581037104610.1016/j.ijbiomac.2020.04.114 32380110
    [Google Scholar]
  54. ChaturvediM. KumarM. PathakK. A review on mucoadhesive polymer used in nasal drug delivery system.J. Adv. Pharm. Technol. Res.20112421522210.4103/2231‑4040.90876 22247888
    [Google Scholar]
  55. GadhaveD. TupeS. TagalpallewarA. GorainB. ChoudhuryH. KokareC. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: In vitro and in vivo pharmacological studies.Int. J. Pharm.202160712105010.1016/j.ijpharm.2021.121050 34454028
    [Google Scholar]
  56. JainA. HurkatP. JainA. JainA. JainA. JainS.K. Thiolated polymers: Pharmaceutical tool in nasal drug delivery of proteins and peptides.Int. J. Pept. Res. Ther.2019251152610.1007/s10989‑018‑9704‑y
    [Google Scholar]
  57. WangZ. XiongG. TsangW.C. SchätzleinA.G. UchegbuI.F. Nose-to-brain delivery.J. Pharmacol. Exp. Ther.2019370359360110.1124/jpet.119.258152 31126978
    [Google Scholar]
  58. BerilloD. ZharkinbekovZ. KimY. RaziyevaK. TemirkhanovaK. SaparovA. Stimuli-responsive polymers for transdermal, transmucosal and ocular drug delivery.Pharmaceutics20211312205010.3390/pharmaceutics13122050 34959332
    [Google Scholar]
  59. Harshita BarkatMA BegS PottooFH AhmadFJ Nanopaclitaxel therapy: An evidence based review on the battle for next-generation formulation challenges.Nanomedicine201914101323134110.2217/nnm‑2018‑0313 31124758
    [Google Scholar]
  60. LiX. TsibouklisJ. WengT. Nano carriers for drug transport across the blood-brain barrier.J. Drug Target.2017251172810.1080/1061186X.2016.1184272 27126681
    [Google Scholar]
  61. FahmyU.A. AhmedO.A.A. EldinB.S.M. Optimized nanostructured lipid carriers integrated into in situ nasal gel for enhancing brain delivery of flibanserin.Int. J. Nanomedicine2020155253526410.2147/IJN.S258791 32801690
    [Google Scholar]
  62. MajumderJ. TaratulaO. MinkoT. Nanocarrier-based systems for targeted and site specific therapeutic delivery.Adv. Drug Deliv. Rev.2019144577710.1016/j.addr.2019.07.010 31400350
    [Google Scholar]
  63. CunhaS. CostaC.P. LoureiroJ.A. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach: Formulation variables and instrumental parameters.Pharmaceutics202012759910.3390/pharmaceutics12070599 32605177
    [Google Scholar]
  64. CostaC. MoreiraJ.N. AmaralM.H. LoboS.J.M. SilvaA.C. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis.J. Control. Release201929518720010.1016/j.jconrel.2018.12.049 30610952
    [Google Scholar]
  65. NguyenT.T.L. DuongV.A. MaengH.J. Pharmaceutical formulations with p-glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability.Pharmaceutics2021137110310.3390/pharmaceutics13071103 34371794
    [Google Scholar]
  66. DhimanN. AwasthiR. SharmaB. KharkwalH. KulkarniG.T. Lipid nanoparticles as carriers for bioactive delivery.Front Chem.2021958011810.3389/fchem.2021.580118 33981670
    [Google Scholar]
  67. QushawyM. PrabaharK. Abd-AlhaseebM. SwidanS. NasrA. Preparation and evaluation of carbamazepine solid lipid nanoparticle for alleviating seizure activity in pentylenetetrazole-kindled mice.Molecules20192421397110.3390/molecules24213971 31684021
    [Google Scholar]
  68. NguyenT.T.L. MaengH.J. Pharmacokinetics and pharmacodynamics of intranasal solid lipid nanoparticles and nanostructured lipid carriers for nose-to-brain delivery.Pharmaceutics202214357210.3390/pharmaceutics14030572 35335948
    [Google Scholar]
  69. AlamM NajmiAK AhmadI Formulation and evaluation of nano lipid formulation containing CNS acting drug: Molecular docking, in-vitro assessment and bioactivity detail in rats.Artif Cells Nanomed Biotechnol201846sup2465710.1080/21691401.2018.1451873 29560744
    [Google Scholar]
  70. CunhaS. AmaralM.H. LoboJ.M.S. SilvaA.C. Lipid nanoparticles for nasal/intranasal drug delivery.Crit. Rev. Ther. Drug Carrier Syst.201734325728210.1615/CritRevTherDrugCarrierSyst.2017018693 28845761
    [Google Scholar]
  71. FatouhA. ElshafeeyA. AbdelbaryA. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics.Drug Des. Devel. Ther.2017111815182510.2147/DDDT.S102500 28684900
    [Google Scholar]
  72. LingayatV.J. ZarekarN.S. ShendgeR.S. Solid lipid nanoparticles: A review.J. Nanosci. Nanotechnol.20174677210.12691/nnr‑4‑2‑5
    [Google Scholar]
  73. ShahB. KhuntD. BhattH. MisraM. PadhH. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters.Eur. J. Pharm. Sci.201578546610.1016/j.ejps.2015.07.002 26143262
    [Google Scholar]
  74. SamaniM.S. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.235156 30065762
    [Google Scholar]
  75. JazuliI Annu NabiB Optimization of nanostructured lipid carriers of lurasidone hydrochloride using box-behnken design for brain targeting: In vitro and in vivo studies.J. Pharm. Sci.201910893082309010.1016/j.xphs.2019.05.001
    [Google Scholar]
  76. MageedA.H.M. AzizA.E.A.E. MohamedS.A. AbuelEzzNZ. The tiny big world of solid lipid nanoparticles and nanostructured lipid carriers: An updated review.J. Microencapsul.2022391729410.1080/02652048.2021.2021307 34958628
    [Google Scholar]
  77. MuraP. MaestrelliF. D’AmbrosioM. LuceriC. CirriM. Evaluation and comparison of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as vectors to develop hydrochlorothiazide effective and safe pediatric oral liquid formulations.Pharmaceutics202113443710.3390/pharmaceutics13040437 33804945
    [Google Scholar]
  78. TekadeA.R. MitthaP.S. PisalC.S. Nanostructured lipid carriers for nose to brain delivery targeting CNS: Diversified role of liquid lipids for synergistic action.Adv. Pharm. Bull.202112476377110.34172/apb.2022.078 36415627
    [Google Scholar]
  79. AgrawalM. SarafS. SarafS. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting.J. Control. Release202032132137241510.1016/j.jconrel.2020.02.020 32061621
    [Google Scholar]
  80. CunhaS. ForbesB. LoboS.J.M. SilvaA.C. Improving drug delivery for alzheimer’s disease through nose-to-brain delivery using nanoemulsions, nanostructured lipid carriers (NLC) and in situ hydrogels.Int. J. Nanomedicine2021164373439010.2147/IJN.S305851 34234432
    [Google Scholar]
  81. BorrajoM.L. AlonsoM.J. Using nanotechnology to deliver biomolecules from nose to brain — peptides, proteins, monoclonal antibodies and RNA.Drug Deliv. Transl. Res.202212486288010.1007/s13346‑021‑01086‑2 34731414
    [Google Scholar]
  82. AbdullaN.A. BalataG.F. ghamry EHA, Gomaa E. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement.Saudi Pharm. J.202129121466148510.1016/j.jsps.2021.11.006 35002385
    [Google Scholar]
  83. WavikarP. PaiR. VaviaP. Nose to brain delivery of rivastigmine by in situ gelling cationic nanostructured lipid carriers: Enhanced brain distribution and pharmacodynamics.J. Pharm. Sci.2017106123613362210.1016/j.xphs.2017.08.024 28923321
    [Google Scholar]
  84. GadhaveD.G. KokareC.R. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: Optimization and in vivo studies.Drug Dev. Ind. Pharm.201945583985110.1080/03639045.2019.1576724 30702966
    [Google Scholar]
  85. ZafarA. AlsaidanA.O. AlruwailiN.K. Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation.Int. J. Pharm.202262712223210.1016/j.ijpharm.2022.122232 36155794
    [Google Scholar]
  86. PatelH.P. GandhiP.A. ChaudhariP.S. Clozapine loaded nanostructured lipid carriers engineered for brain targeting via nose-to-brain delivery: Optimization and in vivo pharmacokinetic studies.J. Drug Deliv. Sci. Technol.20216410253310.1016/j.jddst.2021.102533
    [Google Scholar]
  87. NoorullaK.M. YasirM. MuzaffarF. Intranasal delivery of chitosan decorated nanostructured lipid carriers of Buspirone for brain targeting: Formulation development, optimization and in-vivo preclinical evaluation.J. Drug Deliv. Sci. Technol.20226710293910.1016/j.jddst.2021.102939
    [Google Scholar]
  88. MasjediM. AzadiA. HeidariR. SamaniM.S. Nose-to-brain delivery of sumatriptan-loaded nanostructured lipid carriers: Preparation, optimization, characterization and pharmacokinetic evaluation.J. Pharm. Pharmacol.202072101341135110.1111/jphp.13316 32579251
    [Google Scholar]
  89. SarmaA. DasM.K. ChakrabortyT. DasS. Nanostructured lipid carriers (NLCS)-based intranasal drug delivery system of tenofovir disoproxil fumerate (Tdf) for brain targeting.Res J Pharm Technol2020135411542410.5958/0974‑360X.2020.00946.4
    [Google Scholar]
  90. AlamM.I. BabootaS. AhujaA. AliM. AliJ. SahniJ.K. Intranasal infusion of nanostructured lipid carriers (NLC) containing CNS acting drug and estimation in brain and blood.Drug Deliv.201320624725110.3109/10717544.2013.822945 23869788
    [Google Scholar]
  91. JojoG.M. KuppusamyG. DeA. KarriV.V.S.N.R. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design.Drug Dev. Ind. Pharm.20194571061107210.1080/03639045.2019.1593439 30922126
    [Google Scholar]
  92. PimpalshendeP.M. GuptaR.N. Formulation and in-vitro drug released mechanism of CNS acting venlafaxine nanostructured lipid carrier for major depressive disorder.IJPER Journal20185223024010.5530/ijper.52.2.26
    [Google Scholar]
  93. ShehataM.K. IsmailA.A. KamelM.A. Nose to brain delivery of astaxanthin-loaded nanostructured lipid carriers in rat model of alzheimer’s disease: Preparation, in vitro and in vivo evaluation.Int. J. Nanomedicine2023181631165810.2147/IJN.S402447 37020692
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385293436240321090218
Loading
/content/journals/pnt/10.2174/0122117385293436240321090218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test