Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Lung cancer, a leading cause of cancer-related deaths globally, is gaining research interest more than ever before. Owing to the burden of pathogenesis on the quality of life of patients and subsequently the healthcare system, research efforts focus on its management and amelioration. In an effort to improve bioavailability, enhance stability, minimize adverse effects and reduce the incidence of resistance, nanotechnological platforms have been harnessed for drug delivery and improving treatment outcomes. Lipid nanoparticles, in particular, offer an interesting clinical opportunity with respect to the delivery of a variety of agents. These include synthetic chemotherapeutic agents, immunotherapeutic molecules, as well as phytoconstituents with promising anticancer benefits. In addition to this, these systems are being studied for their usage in conjunction with other treatment strategies. However, their applications remain limited owing to a number of challenges, chiefly clinical translation. There is a need to address the scalability of such technologies, in order to improve accessibility. The authors aim to offer a comprehensive understanding of the evolution of lipid nanoparticles and their application in lung cancer, the interplay of disease pathways and their mechanism of action and the potential for delivery of a variety of agents. Additionally, a discussion with respect to results from preclinical studies has also been provided. The authors have also provided a well-rounded insight into the limitations and future perspectives. While the possibilities are endless, there is a need to undertake focused research to expedite clinical translation and offer avenues for wider applications in disease management.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385286781240228060152
2024-03-11
2025-01-07
Loading full text...

Full text loading...

References

  1. HoyH. LynchT. BeckM. Surgical treatment of lung cancer.Crit. Care Nurs. Clin. North Am.201931330331310.1016/j.cnc.2019.05.00231351552
    [Google Scholar]
  2. SusterD.I. KenudsonM.M. Molecular pathology of primary non-small cell lung cancer.Arch. Med. Res.202051878479810.1016/j.arcmed.2020.08.00432873398
    [Google Scholar]
  3. BadeB.C. CruzD.C.S. Lung cancer 2020.Clin. Chest Med.202041112410.1016/j.ccm.2019.10.00132008623
    [Google Scholar]
  4. EssaM.L. El-KemaryM.A. SaiedE.E.M. LeporattiS. HanafyN.N.A. Nano targeted therapies made of lipids and polymers have promising strategy for the treatment of lung cancer.Materials20201323539710.3390/ma1323539733261031
    [Google Scholar]
  5. AshiqueS. GargA. MishraN. RainaN. MingL.C. TulliH.S. BehlT. RaniR. GuptaM. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC).Naunyn Schmiedebergs Arch. Pharmacol.2023396112769279210.1007/s00210‑023‑02522‑537219615
    [Google Scholar]
  6. EzhilarasanD. LakshmiT. MallineniS.K. Nano-based targeted drug delivery for lung cancer: Therapeutic avenues and challenges.Nanomedicine202217241855186910.2217/nnm‑2021‑036435311343
    [Google Scholar]
  7. SheoranS. AroraS. SamsonrajR. GovindaiahP. vureeS. Lipid-based nanoparticles for treatment of cancer.Heliyon202285e0940310.1016/j.heliyon.2022.e0940335663739
    [Google Scholar]
  8. EygerisY. GuptaM. KimJ. SahayG. Chemistry of lipid nanoparticles for RNA delivery.Acc. Chem. Res.202255121210.1021/acs.accounts.1c0054434850635
    [Google Scholar]
  9. KatheN. HenriksenB. ChauhanH. Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations.Drug Dev. Ind. Pharm.201440121565157510.3109/03639045.2014.90984024766553
    [Google Scholar]
  10. LópezK.L. RavasioA. AramundizG.J.V. ZacconiF.C. Solid Lipid Nanoparticles (SLN) and nanostructured lipid carriers (NLC) prepared by microwave and ultrasound-assisted synthesis: Promising green strategies for the nanoworld.Pharmaceutics2023155133310.3390/pharmaceutics1505133337242575
    [Google Scholar]
  11. DudhipalaN. JangaK.Y. GorreT. Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation.Artif. Cells Nanomed. Biotechnol.201846sup261662510.1080/21691401.2018.146506829688077
    [Google Scholar]
  12. FonteP. AndradeF. AraújoF. AndradeC. NevesJ.D. SarmentoB. Chitosan-coated solid lipid nanoparticles for insulin delivery. In: Methods in Enzymology.Elsevier201250829531410.1016/B978‑0‑12‑391860‑4.00015‑X
    [Google Scholar]
  13. PinkD.L. LoruthaiO. ZiolekR.M. WasutrasawatP. TerryA.E. LawrenceM.J. LorenzC.D. On the structure of solid lipid nanoparticles.Small20191545190315610.1002/smll.20190315631532892
    [Google Scholar]
  14. SoutoE.B. AlmeidaA.J. MüllerR.H. Lipid nanoparticles (SLN<SUP>®</SUP>, NLC<SUP>®</SUP>) for cutaneous drug delivery: Structure, protection and skin effects.J. Biomed. Nanotechnol.20073431733110.1166/jbn.2007.049
    [Google Scholar]
  15. NaseriN. ValizadehH. MilaniZ.P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  16. XuL. WangX. LiuY. YangG. FalconerR.J. ZhaoC.X. Lipid nanoparticles for drug delivery.Adv. NanoBiomed Res.202222210010910.1002/anbr.20210010935179344
    [Google Scholar]
  17. ViegasC. PatrícioA.B. PrataJ.M. NadhmanA. ChintamaneniP.K. FonteP. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review.Pharmaceutics2023156159310.3390/pharmaceutics1506159337376042
    [Google Scholar]
  18. RajpootK. Solid lipid nanoparticles: A promising nanomaterial in drug delivery.Curr. Pharm. Des.201925373943395910.2174/138161282566619090315532131481000
    [Google Scholar]
  19. PriyadarshaniA. Advantages and disadvantages of solid lipid nanoparticles.J. Nanomedine Biotherapeut. Discov.202212173
    [Google Scholar]
  20. DhimanN. AwasthiR. SharmaB. KharkwalH. KulkarniG.T. Lipid nanoparticles as carriers for bioactive delivery.Front Chem.2021958011810.3389/fchem.2021.58011833981670
    [Google Scholar]
  21. SamaniM.S. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.23515630065762
    [Google Scholar]
  22. GanesanP. NarayanasamyD. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery.Sustain. Chem. Pharm.20176375610.1016/j.scp.2017.07.002
    [Google Scholar]
  23. DuanY. DharA. PatelC. KhimaniM. NeogiS. SharmaP. KumarS.N. VekariyaR.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems.RSC Adv.20201045267772679110.1039/D0RA03491F35515778
    [Google Scholar]
  24. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  25. FengzhenW. MingwanZ. DongshengZ. YuanH. LiC. SunminJ. KunS. RuiL. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery.J. Biomed. Res.201832641142310.7555/JBR.32.2016017030174319
    [Google Scholar]
  26. PatravaleV.B. MiraniA.G. Preparation and characterization of solid lipid nanoparticles-based gel for topical delivery.Pharmaceutical Nanotechnology. WeissigV. ElbayoumiT. New York, NYSpringer New York2019Vol. 200029330210.1007/978‑1‑4939‑9516‑5_20
    [Google Scholar]
  27. PatilH. KulkarniV. MajumdarS. RepkaM.A. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion.Int. J. Pharm.20144711-215315610.1016/j.ijpharm.2014.05.02424853459
    [Google Scholar]
  28. JagdaleS.C. BafnaM.S. ChabukswarA.R. Transdermal anti-inflammatory delivery for solid lipid nanoparticles of ketoprofen by microwave-assisted microemulsion.Recent Adv. Inflamm. Allergy Drug Discov.2022152879810.2174/277227081666622012610580235081901
    [Google Scholar]
  29. MaddiboyinaB. JhawatV. NakkalaR.K. DesuP.K. GandhiS. Design expert assisted formulation, characterization and optimization of microemulsion based solid lipid nanoparticles of repaglinide.Prog. Biomater.202110430932010.1007/s40204‑021‑00174‑334813041
    [Google Scholar]
  30. ArduinoI. LiuZ. RahikkalaA. FigueiredoP. CorreiaA. CutrignelliA. DenoraN. SantosH.A. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique.Acta Biomater.202112156657810.1016/j.actbio.2020.12.02433326887
    [Google Scholar]
  31. ArduinoI. LiuZ. IacobazziR.M. LopedotaA.A. LopalcoA. CutrignelliA. LaquintanaV. PorcelliL. AzzaritiA. FrancoM. SantosH.A. DenoraN. Microfluidic preparation and in vitro evaluation of iRGD-functionalized solid lipid nanoparticles for targeted delivery of paclitaxel to tumor cells.Int. J. Pharm.202161012124610.1016/j.ijpharm.2021.12124634737115
    [Google Scholar]
  32. WangT. HuQ. ZhouM. XiaY. NiehM.P. LuoY. Development of “all natural” layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.Eur. J. Pharm. Biopharm.201610727328510.1016/j.ejpb.2016.07.02227470922
    [Google Scholar]
  33. NguyenV.H. Manh LeK.N. NguyenM.C.N. Spray-dried solid lipid nanoparticles for enhancing berberine bioavailability via oral administration.Curr. Pharm. Des.202329383050305910.2174/011381612826398223110206274537961862
    [Google Scholar]
  34. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.200254S1S131S15510.1016/S0169‑409X(02)00118‑712460720
    [Google Scholar]
  35. BeloquiA. SolinísM.Á. GascónR.A. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.00426410277
    [Google Scholar]
  36. GabaB. FazilM. AliA. BabootaS. SahniJ.K. AliJ. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration.Drug Deliv.201522669170010.3109/10717544.2014.89811024670099
    [Google Scholar]
  37. PathakK. KeshriL. ShahM. Lipid nanocarriers: Influence of lipids on product development and pharmacokinetics.Crit. Rev. Ther. Drug Carrier Syst.201128435739310.1615/CritRevTherDrugCarrierSyst.v28.i4.2021967401
    [Google Scholar]
  38. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.90982224813223
    [Google Scholar]
  39. SgorlaD. BunhakÉ.J. CavalcantiO.A. FonteP. SarmentoB. Exploitation of lipid-polymeric matrices at nanoscale for drug delivery applications.Expert Opin. Drug Deliv.20161391301130910.1080/17425247.2016.118249227110648
    [Google Scholar]
  40. ViegasC. SeckF. FonteP. An insight on lipid nanoparticles for therapeutic proteins delivery.J. Drug Deliv. Sci. Technol.20227710383910.1016/j.jddst.2022.103839
    [Google Scholar]
  41. DuM. YinJ. Dual-drug nanosystem: Etoposide prodrug and cisplatin coloaded nanostructured lipid carriers for lung cancer therapy.Drug Des. Devel. Ther.2022164139414910.2147/DDDT.S38610036506793
    [Google Scholar]
  42. CaoC. WangQ. LiuY. Lung cancer combination therapy: Doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers.Drug Des. Devel. Ther.2019131087109810.2147/DDDT.S19800331118562
    [Google Scholar]
  43. GuoS. ZhangY. WuZ. ZhangL. HeD. LiX. WangZ. Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin.Biomed. Pharmacother.201911810922510.1016/j.biopha.2019.10922531325705
    [Google Scholar]
  44. ZhouJ. SunM. JinS. FanL. ZhuW. SuiX. CaoL. YangC. HanC. Combined using of paclitaxel and salinomycin active targeting nanostructured lipid carriers against non-small cell lung cancer and cancer stem cells.Drug Deliv.201926128128910.1080/10717544.2019.158079930880491
    [Google Scholar]
  45. SherifA.Y. HarisaG.I. ShahbaA.A. AlanaziF.K. QamarW. Optimization of gefitinib-loaded nanostructured lipid carrier as a biomedical tool in the treatment of metastatic lung cancer.Molecules202328144810.3390/molecules2801044836615641
    [Google Scholar]
  46. ZhouQ. HouK. FuZ. Transferrin-modified mangiferin-loaded SLNs: Preparation, characterization, and application in A549 lung cancer cell.Drug Des. Devel. Ther.2022161767177810.2147/DDDT.S36653135707686
    [Google Scholar]
  47. LiK. PiC. WenJ. HeY. YuanJ. ShenH. ZhaoW. ZengM. SongX. LeeR.J. WeiY. ZhaoL. Formulation of the novel structure curcumin derivative–loaded solid lipid nanoparticles: Synthesis, optimization, characterization and anti-tumor activity screening in vitro.Drug Deliv.20222912044205710.1080/10717544.2022.209223535775475
    [Google Scholar]
  48. ZhangL. ZhuK. ZengH. ZhangJ. PuY. WangZ. ZhangT. WangB. Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity.Int. J. Nanomedicine2019146061607110.2147/IJN.S21113031534336
    [Google Scholar]
  49. YangY. HuangZ. LiJ. MoZ. HuangY. MaC. WangW. PanX. WuC. PLGA porous microspheres dry powders for codelivery of afatinib‐loaded solid lipid nanoparticles and paclitaxel: Novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer.Adv. Healthc. Mater.2019823190096510.1002/adhm.20190096531664795
    [Google Scholar]
  50. AhmedM.M. FatimaF. AnwerM.K. AldawsariM.F. AlsaidanY.S.M. AlfaizS.A. HaqueA. AzA. AlhazzaniK. Development and characterization of Brigatinib loaded solid lipid nanoparticles: In-vitro cytotoxicity against human carcinoma A549 lung cell lines.Chem. Phys. Lipids202023310500310.1016/j.chemphyslip.2020.10500333096096
    [Google Scholar]
  51. AlaviM. HamidiM. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles.Drug Metab. Pers. Ther.201934110.1515/dmpt‑2018‑003230707682
    [Google Scholar]
  52. YangL. GongL. WangP. ZhaoX. ZhaoF. ZhangZ. LiY. HuangW. Recent advances in lipid nanoparticles for delivery of mRNA.Pharmaceutics20221412268210.3390/pharmaceutics1412268236559175
    [Google Scholar]
  53. WangH.L. WangZ.G. LiuS.L. Lipid nanoparticles for mRNA delivery to enhance cancer immunotherapy.Molecules20222717560710.3390/molecules2717560736080373
    [Google Scholar]
  54. ChaudhuriA. KumarD.N. ShaikR.A. EidB.G. Abdel-NaimA.B. MdS. AhmadA. AgrawalA.K. Lipid-based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy.Int. J. Mol. Sci.202223171006810.3390/ijms23171006836077466
    [Google Scholar]
  55. ZhangM. GaoS. YangD. FangY. LinX. JinX. LiuY. LiuX. SuK. ShiK. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B20211182265228510.1016/j.apsb.2021.03.03334522587
    [Google Scholar]
  56. ShenP.W. HoC.T. HsiaoS.H. ChouY.T. ChangY.C. LiuJ.J. Disruption of cytosolic folate integrity aggravates resistance to epidermal growth factor receptor tyrosine kinase inhibitors and modulates metastatic properties in non-small-cell lung cancer cells.Int. J. Mol. Sci.20212216883810.3390/ijms2216883834445544
    [Google Scholar]
  57. SongZ. ShiY. HanQ. DaiG. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles.Biomed. Pharmacother.2018105182610.1016/j.biopha.2018.05.09529843041
    [Google Scholar]
  58. KatoT. JinC.S. UjiieH. LeeD. FujinoK. WadaH. HuH. WeersinkR.A. ChenJ. KajiM. KagaK. MatsuiY. WilsonB.C. ZhengG. YasufukuK. Nanoparticle targeted folate receptor 1-enhanced photodynamic therapy for lung cancer.Lung Cancer2017113596810.1016/j.lungcan.2017.09.00229110850
    [Google Scholar]
  59. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.1309831049986
    [Google Scholar]
  60. FernandesC. SuaresD. YergeriM.C. Tumor microenvironment targeted nanotherapy.Front. Pharmacol.20189123010.3389/fphar.2018.0123030429787
    [Google Scholar]
  61. ChoiI.K. StraussR. RichterM. YunC.O. LieberA. Strategies to increase drug penetration in solid tumors.Front. Oncol.2013319310.3389/fonc.2013.0019323898462
    [Google Scholar]
  62. LiuX. WangY. BauerA.T. KirschfinkM. DingP. GebhardtC. BorsigL. TütingT. RennéT. HäffnerK. HuW. SchneiderS.W. GorzelannyC. Neutrophils activated by membrane attack complexes increase the permeability of melanoma blood vessels.Proc. Natl. Acad. Sci.202211933e212271611910.1073/pnas.212271611935960843
    [Google Scholar]
  63. HeQ. YeA. YeW. LiaoX. QinG. XuY. YinY. LuoH. YiM. XianL. ZhangS. QinX. ZhuW. LiY. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1.Cell Death Dis.202112657610.1038/s41419‑021‑03803‑834088891
    [Google Scholar]
  64. PellicaniR. PolettoE. AndreuzziE. PaulittiA. DolianaR. BizzottoD. BraghettaP. ColladelR. TarticchioG. SabatelliP. BucciottiF. BressanG. IozzoR.V. ColombattiA. BonaldoP. MongiatM. Multimerin-2 maintains vascular stability and permeability.Matrix Biol.202087112510.1016/j.matbio.2019.08.00231422156
    [Google Scholar]
  65. YangX. LiY. LiM. ZhangL. FengL. ZhangN. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer.Cancer Lett.2013334233834510.1016/j.canlet.2012.07.00222776563
    [Google Scholar]
  66. HamishehkarH. BahadoriM.B. VandghanooniS. EskandaniM. NakhlbandA. EskandaniM. Preparation, characterization and anti-proliferative effects of sclareol-loaded solid lipid nanoparticles on A549 human lung epithelial cancer cells.J. Drug Deliv. Sci. Technol.20184527228010.1016/j.jddst.2018.02.017
    [Google Scholar]
  67. AltorkiN.K. MarkowitzG.J. GaoD. PortJ.L. SaxenaA. StilesB. McGrawT. MittalV. The lung microenvironment: An important regulator of tumour growth and metastasis.Nat. Rev. Cancer201919193110.1038/s41568‑018‑0081‑930532012
    [Google Scholar]
  68. PangJ. XingH. SunY. FengS. WangS. Non-small cell lung cancer combination therapy: Hyaluronic acid modified, epidermal growth factor receptor targeted, pH sensitive lipid-polymer hybrid nanoparticles for the delivery of erlotinib plus bevacizumab.Biomed. Pharmacother.202012510986110.1016/j.biopha.2020.10986132070872
    [Google Scholar]
  69. XuM. XueB. WangY. WangD. GaoD. YangS. ZhaoQ. ZhouC. RuanS. YuanZ. Temperature‐feedback nanoplatform for NIR‐II penta‐modal imaging‐guided synergistic photothermal therapy and CAR‐NK immunotherapy of lung cancer.Small20211743210139710.1002/smll.20210139734159726
    [Google Scholar]
  70. UpadhyayD. ScaliaS. VogelR. WheateN. SalamaR.O. YoungP.M. TrainiD. ChrzanowskiW. Magnetised thermo responsive lipid vehicles for targeted and controlled lung drug delivery.Pharm. Res.20122992456246710.1007/s11095‑012‑0774‑922584949
    [Google Scholar]
  71. LiuW. WangB. ZhouM. LiuD. ChenF. ZhaoX. LuY. Redox dysregulation in the tumor microenvironment contributes to cancer metastasis.Antioxid. Redox Signal.2023397-947249010.1089/ars.2023.027237002890
    [Google Scholar]
  72. RosiniE. PollegioniL. Reactive oxygen species as a double‐edged sword: The role of oxidative enzymes in antitumor therapy.Biofactors202248238439910.1002/biof.178934608689
    [Google Scholar]
  73. GuR. XiaY. LiP. ZouD. LuK. RenL. ZhangH. SunZ. Ferroptosis and its role in gastric cancer.Front. Cell Dev. Biol.20221086034410.3389/fcell.2022.86034435846356
    [Google Scholar]
  74. KamiyaT. Regulation of extracellular redox homeostasis in tumor microenvironment.Yakugaku Zasshi201913991139114410.1248/yakushi.19‑0012831474628
    [Google Scholar]
  75. WangG. WangZ. LiC. DuanG. WangK. LiQ. TaoT. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy.Biomed. Pharmacother.201810627528410.1016/j.biopha.2018.06.13729966971
    [Google Scholar]
  76. HouX. ZaksT. LangerR. DongY. Lipid nanoparticles for mRNA delivery.Nat. Rev. Mater.20216121078109410.1038/s41578‑021‑00358‑034394960
    [Google Scholar]
  77. AbdulbaqiI.M. AssiR.A. YaghmurA. DarwisY. MohtarN. ParumasivamT. SaqallahF.G. WahabH.A. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: An update.Pharmaceuticals202114872510.3390/ph1408072534451824
    [Google Scholar]
  78. AkandaM. MithuM.D.S.H. DouroumisD. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment.J. Drug Deliv. Sci. Technol.20238610470910.1016/j.jddst.2023.104709
    [Google Scholar]
  79. HuangT. PengL. HanY. WangD. HeX. WangJ. OuC. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects.Front. Immunol.20221392230110.3389/fimmu.2022.92230136090974
    [Google Scholar]
  80. DaneE.L. Belessiotis-RichardsA. BacklundC. WangJ. HidakaK. MillingL.E. BhagchandaniS. MeloM.B. WuS. LiN. DonahueN. NiK. MaL. OkaniwaM. StevensM.M. KatzA.A. IrvineD.J. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity.Nat. Mater.202221671072010.1038/s41563‑022‑01251‑z35606429
    [Google Scholar]
  81. KotmakçıM. ÇetintaşV.B. KantarcıA.G. Preparation and characterization of lipid nanoparticle/pDNA complexes for STAT3 downregulation and overcoming chemotherapy resistance in lung cancer cells.Int. J. Pharm.2017525110111110.1016/j.ijpharm.2017.04.03428428090
    [Google Scholar]
  82. MaroufiN.F. VahedianV. MazrakhondiS.A.M. KootiW. KhiavyH.A. BazzazR. RamezaniF. PirouzpanahS.M. GhorbaniM. AkbarzadehM. HajipourH. GhanbarzadehS. SabzichiM. Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism.Naunyn Schmiedebergs Arch. Pharmacol.2020393111110.1007/s00210‑019‑01692‑531372697
    [Google Scholar]
  83. ShahrivarR.Y. FakhrZ.A. AbbasgholinejadE. DoroudianM. Smart lipid‐based nanoparticles in lung cancer treatment: Current status and future directions.Adv. Ther.2023612230027510.1002/adtp.202300275
    [Google Scholar]
  84. ConlonK.C. MiljkovicM.D. WaldmannT.A. Cytokines in the treatment of cancer.J. Interferon Cytokine Res.201939162110.1089/jir.2018.001929889594
    [Google Scholar]
  85. LiuJ.Q. ZhangC. ZhangX. YanJ. ZengC. TalebianF. LynchK. ZhaoW. HouX. DuS. KangD.D. DengB. McCombD.W. BaiX.F. DongY. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy.J. Control. Release202234530631310.1016/j.jconrel.2022.03.02135301053
    [Google Scholar]
  86. ZhangZ. HuangY. LiJ. SuF. KuoJ.C.T. HuY. ZhaoX. LeeR.J. Antitumor activity of anti‐miR‐21 delivered through lipid nanoparticles.Adv. Healthc. Mater.2023126220241210.1002/adhm.20220241236412002
    [Google Scholar]
  87. YangG. ZhouD. DaiY. LiY. WuJ. LiuQ. DengX. Construction of PEI‐EGFR‐PD‐L1‐siRNA dual functional nano‐vaccine and therapeutic efficacy evaluation for lung cancer.Thorac. Cancer202213212941295010.1111/1759‑7714.1461836117149
    [Google Scholar]
  88. NakamuraT. SatoT. EndoR. SasakiS. TakahashiN. SatoY. HyodoM. HayakawaY. HarashimaH. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation.J. Immunother. Cancer202197e00285210.1136/jitc‑2021‑00285234215690
    [Google Scholar]
  89. KaczmarekJ.C. KauffmanK.J. FentonO.S. SadtlerK. PatelA.K. HeartleinM.W. DeRosaF. AndersonD.G. Optimization of a degradable polymer–lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells.Nano Lett.201818106449645410.1021/acs.nanolett.8b0291730211557
    [Google Scholar]
  90. BruallaM.J. de MiguelD. LostaoM.L. AnelA. DR5 up-regulation induced by dichloroacetate sensitizes tumor cells to lipid nanoparticles decorated with TRAIL.J. Clin. Med.202312260810.3390/jcm1202060836675536
    [Google Scholar]
  91. PeterR.M. ChouP.J. ShannarA. PatelK. PanY. DaveP.D. XuJ. SarwarM.S. KongA.N.T. An update on potential molecular biomarkers of dietary phytochemicals targeting lung cancer interception and prevention.Pharm. Res.202340112699271410.1007/s11095‑023‑03595‑w37726406
    [Google Scholar]
  92. HengW.S. KruytF.A.E. CheahS.C. Understanding lung carcinogenesis from a morphostatic perspective: Prevention and therapeutic potential of phytochemicals for targeting cancer stem cells.Int. J. Mol. Sci.20212211569710.3390/ijms2211569734071790
    [Google Scholar]
  93. MaiuthedA. ChantarawongW. ChanvorachoteP. Lung cancer stem cells and cancer stem cell-targeting natural compounds.Anticancer Res.20183873797380910.21873/anticanres.1266329970499
    [Google Scholar]
  94. ZhouQ. PanH. LiJ. Molecular insights into potential contributions of natural polyphenols to lung cancer treatment.Cancers20191110156510.3390/cancers1110156531618955
    [Google Scholar]
  95. WattanathamsanO. HayakawaY. PongrakhananonV. Molecular mechanisms of natural compounds in cell death induction and sensitization to chemotherapeutic drugs in lung cancer.Phytother. Res.201933102531254710.1002/ptr.642231293008
    [Google Scholar]
  96. ZhangZ. LiX. SangS. McClementsD.J. ChenL. LongJ. JiaoA. JinZ. QiuC. Polyphenols as plant-based nutraceuticals: Health effects, encapsulation, nano-delivery, and application.Foods20221115218910.3390/foods1115218935892774
    [Google Scholar]
  97. OliveiraG.P. OteroP. PereiraA.G. ChamorroF. CarpenaM. EchaveJ. CorralF.M. GandaraS.J. PrietoM.A. Status and challenges of plant-anticancer compounds in cancer treatment.Pharmaceuticals202114215710.3390/ph1402015733673021
    [Google Scholar]
  98. VermaM. FatimaS. AnsariI.A. Phytofabricated nanoparticle formulation for cancer treatment: A comprehensive review.Curr. Drug Metab.2022231081882610.2174/138920022366622042710142735490313
    [Google Scholar]
  99. PatelP. RavalM. AiraoV. BhattV. ShahP. Silibinin loaded inhalable solid lipid nanoparticles for lung targeting.J. Microencapsul.202239112410.1080/02652048.2021.200244834825627
    [Google Scholar]
  100. GanthalaP.D. AlavalaS. ChellaN. AndugulapatiS.B. BathiniN.B. SistlaR. Co-encapsulated nanoparticles of Erlotinib and Quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition.Colloids Surf. B Biointerfaces202221111230510.1016/j.colsurfb.2021.11230534998178
    [Google Scholar]
  101. NafeeN. GaberD.M. ElzoghbyA.O. HelmyM.W. AbdallahO.Y. Promoted antitumor activity of myricetin against lung carcinoma via nanoencapsulated phospholipid complex in respirable microparticles.Pharm. Res.20203748210.1007/s11095‑020‑02794‑z32291520
    [Google Scholar]
  102. LiS. WangL. LiN. LiuY. SuH. Combination lung cancer chemotherapy: Design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin.Biomed. Pharmacother.20179554855510.1016/j.biopha.2017.08.09028869892
    [Google Scholar]
  103. JaradatE. WeaverE. MezianeA. LamprouD.A. Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy.Int. J. Pharm.202262812232010.1016/j.ijpharm.2022.12232036272514
    [Google Scholar]
  104. El MoukhtariS.H. GarbayoE. AmundarainA. Pascual-GilS. Carrasco-LeónA. ProsperF. AgirreX. Blanco-PrietoM.J. Lipid nanoparticles for siRNA delivery in cancer treatment.J. Control. Release202336113014610.1016/j.jconrel.2023.07.05437532145
    [Google Scholar]
  105. FarjadianF. GhasemiA. GohariO. RoointanA. KarimiM. HamblinM.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities.Nanomedicine20191419312610.2217/nnm‑2018‑012030451076
    [Google Scholar]
  106. PaunRA JurchukS TabrizianM A landscape of recent advances in lipid nanoparticles and their translational potential for the treatment of solid tumors.Bioeng. & Transla Med20232023e1060110.1002/btm2.10601
    [Google Scholar]
  107. AkbariJ. SaeediM. AhmadiF. HashemiS.M.H. BabaeiA. YaddollahiS. RostamkalaeiS.S. Asare-AddoK. NokhodchiA. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration.Pharm. Dev. Technol.202227552554410.1080/10837450.2022.208455435635506
    [Google Scholar]
  108. WuR. ZhangZ. WangB. ChenG. ZhangY. DengH. TangZ. MaoJ. WangL. Combination chemotherapy of lung cancer – co-delivery of docetaxel prodrug and cisplatin using aptamer-decorated lipid–polymer hybrid nanoparticles.Drug Des. Devel. Ther.2020142249226110.2147/DDDT.S24657432606595
    [Google Scholar]
  109. AlaviM. NokhodchiA. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges.Drug Discov. Today202227257658410.1016/j.drudis.2021.10.00734688912
    [Google Scholar]
  110. CurcioM. BrindisiM. CirilloG. FrattaruoloL. LeggioA. RagoV. NicolettaF.P. CappelloA.R. IemmaF. Smart lipid–polysaccharide nanoparticles for targeted delivery of doxorubicin to breast cancer cells.Int. J. Mol. Sci.2022234238610.3390/ijms2304238635216501
    [Google Scholar]
  111. DasR. KanjilalP. MedeirosJ. ThayumanavanS. What’s next after lipid nanoparticles? a perspective on enablers of nucleic acid therapeutics.Bioconjug. Chem.202233111996200710.1021/acs.bioconjchem.2c0005835377622
    [Google Scholar]
  112. OzgencE. KarpuzM. ArzukE. AlvarezG.M. SanzM.B. GundogduE. Gonzalez-AlvarezI. Radiolabeled trastuzumab solid lipid nanoparticles for breast cancer cell: In vitro and in vivo studies.ACS Omega2022734300153002710.1021/acsomega.2c0302336061662
    [Google Scholar]
  113. MukaiH. OgawaK. KatoN. KawakamiS. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics.Drug Metab. Pharmacokinet.20224410045010.1016/j.dmpk.2022.10045035381574
    [Google Scholar]
  114. JungH.N. LeeS.Y. LeeS. YounH. ImH.J. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging.Theranostics202212177509753110.7150/thno.7725936438494
    [Google Scholar]
  115. JorgeA. PaisA. VitorinoC. Targeted siRNA delivery using lipid nanoparticles.Drug Delivery Systems. JainK.K. New York, NYSpringer New York2020Vol. 205925928310.1007/978‑1‑4939‑9798‑5_14
    [Google Scholar]
  116. LoughreyD. DahlmanJ.E. Non-liver mRNA delivery.Acc. Chem. Res.2022551132310.1021/acs.accounts.1c0060134859663
    [Google Scholar]
  117. EljackS. DavidS. FaggadA. ChourpaI. VannierA.E. Nanoparticles design considerations to co-deliver nucleic acids and anti-cancer drugs for chemoresistance reversal.Int. J. Pharm. X2022410012610.1016/j.ijpx.2022.10012636147518
    [Google Scholar]
  118. ShemeshC.S. HsuJ.C. HosseiniI. ShenB.Q. RotteA. TwomeyP. GirishS. WuB. Personalized cancer vaccines: Clinical landscape, challenges, and opportunities.Mol. Ther.202129255557010.1016/j.ymthe.2020.09.03833038322
    [Google Scholar]
  119. KimE. BanC. KimS.O. LimS. ChoiY.J. Applications and perspectives of polyphenol-loaded solid lipid nanoparticles and nanostructured lipid carriers for foods.Food Sci. Biotechnol.20223181009102610.1007/s10068‑022‑01093‑035873373
    [Google Scholar]
  120. MohammedH.A. KhanR.A. SinghV. YusufM. AkhtarN. SulaimanG.M. AlbukhatyS. AbdellatifA.A.H. KhanM. MohammedS.A.A. Al-SubaiyelA.M. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development.Nanotechnol. Rev.20231212022051710.1515/ntrev‑2022‑0517
    [Google Scholar]
  121. ChenJ. YeZ. HuangC. QiuM. SongD. LiY. XuQ. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8 + T cell response.Proc. Natl. Acad. Sci.202211934e220784111910.1073/pnas.220784111935969778
    [Google Scholar]
  122. RahmanM.A. AliA. RahamathullaM. SalamS. HaniU. WahabS. WarsiM.H. YusufM. AliA. MittalV. HarwanshR.K. Fabrication of sustained release curcumin-loaded solid lipid nanoparticles (Cur-SLNs) as a potential drug delivery system for the treatment of lung cancer: Optimization of formulation and in vitro biological evaluation.Polymers202315354210.3390/polym1503054236771843
    [Google Scholar]
  123. RawalS. KhotS. BoraV. PatelB. PatelM.M. Surface-modified nanoparticles of docetaxel for chemotherapy of lung cancer: An intravenous to oral switch.Int. J. Pharm.202363612284610.1016/j.ijpharm.2023.12284636921744
    [Google Scholar]
  124. Rodenak-KladniewB. CastroM.A. GambaroR.C. GirottiJ. CisnerosJ.S. ViñaS. PadulaG. CrespoR. CastroG.R. GehringS. ChainC.Y. IslanG.A. Cytotoxic screening and enhanced anticancer activity of Lippia alba and Clinopodium nepeta essential oils-loaded biocompatible lipid nanoparticles against lung and colon cancer cells.Pharmaceutics2023158204510.3390/pharmaceutics1508204537631258
    [Google Scholar]
  125. ElzayatE.M. SherifA.Y. NasrF.A. AttwaM.W. AlshoraD.H. AhmadS.F. AlqahtaniA.S. Enhanced codelivery of gefitinib and azacitidine for treatment of metastatic-resistant lung cancer using biodegradable lipid nanoparticles.Materials20231615536410.3390/ma1615536437570067
    [Google Scholar]
  126. SethuramanV. JanakiramanK. KrishnaswamiV. NatesanS. KandasamyR. In vivo synergistic anti-tumor effect of lumefantrine combined with pH responsive behavior of nano calcium phosphate based lipid nanoparticles on lung cancer.Eur. J. Pharm. Sci.202115810565710.1016/j.ejps.2020.10565733271276
    [Google Scholar]
  127. TulbahA.S. In vitro bio-characterization of solid lipid nanoparticles of favipiravir in A549 human lung epithelial cancer cells.J. Taibah Univ. Med. Sci.20231851076108610.1016/j.jtumed.2023.02.01436994222
    [Google Scholar]
  128. PiC. ZhaoW. ZengM. YuanJ. ShenH. LiK. SuZ. LiuZ. WenJ. SongX. LeeR.J. WeiY. ZhaoL. Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo.Drug Deliv.20222911878189110.1080/10717544.2022.208693835748365
    [Google Scholar]
  129. MaoK. ZhangW. YuL. YuY. LiuH. ZhangX. Transferrin-decorated protein-lipid hybrid nanoparticle efficiently delivers cisplatin and docetaxel for targeted lung cancer treatment.Drug Des. Devel. Ther.2021153475348610.2147/DDDT.S29625334413632
    [Google Scholar]
  130. MoroM. Di PaoloD. MilioneM. CentonzeG. BornaghiV. BorziC. GandelliniP. PerriP. PastorinoU. PonzoniM. SozziG. FortunatoO. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models.J. Control. Release2019308445610.1016/j.jconrel.2019.07.00631299263
    [Google Scholar]
  131. VeluswamyR. MackP.C. HouldsworthJ. ElkhoulyE. HirschF.R. KRAS G12C–mutant non–small cell lung cancer.J. Mol. Diagn.202123550752010.1016/j.jmoldx.2021.02.00233618059
    [Google Scholar]
  132. AnthiyaS. ÖztürkS.C. YanikH. TavukcuogluE. ŞahinA. DattaD. CharisseK. ÁlvarezD.M. LozaM.I. CalvoA. SulheimE. LoevenichS. KlinkenbergG. SchmidR. ManoharanM. EsendağlıG. AlonsoM.J. Targeted siRNA lipid nanoparticles for the treatment of KRAS-mutant tumors.J. Control. Release2023357678310.1016/j.jconrel.2023.03.01636921725
    [Google Scholar]
  133. SainiN. GrewalA.S. LatherV. GahlawatS.K. Natural alkaloids targeting EGFR in non-small cell lung cancer: Molecular docking and ADMET predictions.Chem. Biol. Interact.202235810990110.1016/j.cbi.2022.10990135341731
    [Google Scholar]
  134. WangB. WuK. LiuR. HuangY. ChangZ. GaoY. LiuY. ChenH. WangZ. CuiY. WangL. MaP. ZhangL. Phyllanthi tannin loaded solid lipid nanoparticles for lung cancer therapy: Preparation, characterization, pharmacodynamics and safety evaluation.Molecules20232821739910.3390/molecules2821739937959818
    [Google Scholar]
  135. SivadasanD. RamakrishnanK. MahendranJ. RanganathanH. KaruppaiahA. RahmanH. Solid lipid nanoparticles: Applications and prospects in cancer treatment.Int. J. Mol. Sci.2023247619910.3390/ijms2407619937047172
    [Google Scholar]
  136. MairA. NoceraF. WolfD. PircherA. Lipid nanoparticles in the treatment of lung cancer—hype or hope?Mag. Eur. Med. Oncol.202316319319710.1007/s12254‑023‑00904‑2
    [Google Scholar]
  137. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  138. KulkarniJ.A. WitzigmannD. ThomsonS.B. ChenS. LeavittB.R. CullisP.R. van der MeelR. The current landscape of nucleic acid therapeutics.Nat. Nanotechnol.202116663064310.1038/s41565‑021‑00898‑034059811
    [Google Scholar]
  139. ZhuQ. ChenZ. PaulP.K. LuY. WuW. QiJ. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives.Acta Pharm. Sin. B20211182416244810.1016/j.apsb.2021.04.00134522593
    [Google Scholar]
  140. LuizM.T. DutraJ.A.P. ViegasJ.S.R. de AraújoJ.T.C. JuniorT.A.G. ChorilliM. Hybrid magnetic lipid-based nanoparticles for cancer therapy.Pharmaceutics202315375110.3390/pharmaceutics1503075136986612
    [Google Scholar]
  141. MontotoS.S. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  142. YangQ. YangJ. SunS. ZhaoJ. LiangS. FengY. LiuM. ZhangJ. Rhodojaponin III-loaded chitosan derivatives-modified solid lipid nanoparticles for multimodal antinociceptive effects in vivo.Int. J. Nanomedicine2022173633365310.2147/IJN.S36244335996527
    [Google Scholar]
  143. ShiD. BeasockD. FesslerA. SzebeniJ. LjubimovaJ.Y. AfoninK.A. DobrovolskaiaM.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives.Adv. Drug Deliv. Rev.202218011407910.1016/j.addr.2021.11407934902516
    [Google Scholar]
  144. MalikZ. ParveenR. AbassS. Irfan DarM. HusainS.A. AhmadS. Receptor-mediated targeting in breast cancer through solid lipid nanoparticles and its mechanism.Curr. Drug Metab.2022231080081710.2174/138920022366622041621363935430962
    [Google Scholar]
  145. KhairnarS.V. PagareP. ThakreA. NambiarA.R. JunnuthulaV. AbrahamM.C. KolimiP. NyavanandiD. DyawanapellyS. Review on the scale-up methods for the preparation of solid lipid nanoparticles.Pharmaceutics2022149188610.3390/pharmaceutics1409188636145632
    [Google Scholar]
  146. LinZ. ZouZ. PuZ. WuM. ZhangY. Application of microfluidic technologies on COVID-19 diagnosis and drug discovery.Acta Pharm. Sin. B20231372877289610.1016/j.apsb.2023.02.01436855672
    [Google Scholar]
  147. LiuY. ChengW. XinH. LiuR. WangQ. CaiW. PengX. YangF. XinH. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy.Cancer Nanotechnol.20231412810.1186/s12645‑023‑00174‑x37009262
    [Google Scholar]
  148. MichelsA. HoN. BuchholzC.J. Precision medicine: In vivo CAR therapy as a showcase for receptor-targeted vector platforms.Mol. Ther.20223072401241510.1016/j.ymthe.2022.05.01835598048
    [Google Scholar]
  149. HallanS.S. SguizzatoM. EspositoE. CortesiR. Challenges in the physical characterization of lipid nanoparticles.Pharmaceutics202113454910.3390/pharmaceutics1304054933919859
    [Google Scholar]
  150. FanY. MarioliM. ZhangK. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery.J. Pharm. Biomed. Anal.202119211364210.1016/j.jpba.2020.11364233011580
    [Google Scholar]
  151. KumbharP. ManjappaA. ShahR. JhaN.K. SinghS.K. DuaK. DisouzaJ. PatravaleV. Inhalation delivery of repurposed drugs for lung cancer: Approaches, benefits and challenges.J. Control. Release202234111510.1016/j.jconrel.2021.11.01534780880
    [Google Scholar]
  152. KimJ. JozicA. LinY. EygerisY. BloomE. TanX. AcostaC. MacDonaldK.D. WelsherK.D. SahayG. Engineering lipid nanoparticles for enhanced intracellular delivery of mrna through inhalation.ACS Nano2022169147921480610.1021/acsnano.2c0564736038136
    [Google Scholar]
  153. KimM. JeongM. HurS. ChoY. ParkJ. JungH. SeoY. WooH.A. NamK.T. LeeK. LeeH. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver.Sci. Adv.202179eabf439810.1126/sciadv.abf439833637537
    [Google Scholar]
  154. LiB. MananR.S. LiangS.Q. GordonA. JiangA. VarleyA. GaoG. LangerR. XueW. AndersonD. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing.Nat. Biotechnol.202341101410141510.1038/s41587‑023‑01679‑x36997680
    [Google Scholar]
  155. DilliardS.A. SunY. BrownM.O. SungY.C. ChatterjeeS. FarbiakL. VaidyaA. LianX. WangX. LemoffA. SiegwartD.J. The interplay of quaternary ammonium lipid structure and protein corona on lung-specific mRNA delivery by selective organ targeting (SORT) nanoparticles.J. Control. Release202336136137210.1016/j.jconrel.2023.07.05837536547
    [Google Scholar]
  156. BaiettiM.F. SewduthR.N. Novel therapeutic approaches targeting post-translational modifications in lung cancer.Pharmaceutics202315120610.3390/pharmaceutics1501020636678835
    [Google Scholar]
  157. SubramaniamS. JoyceP. DonnellanL. YoungC. WignallA. HoffmannP. PrestidgeC.A. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles.J. Colloid Interface Sci.2023641364710.1016/j.jcis.2023.03.04836924544
    [Google Scholar]
  158. VishweshwaraiahY.L. DokholyanN.V. mRNA vaccines for cancer immunotherapy.Front. Immunol.202213102906910.3389/fimmu.2022.102906936591226
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385286781240228060152
Loading
/content/journals/pnt/10.2174/0122117385286781240228060152
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test