Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

The primary goal of drug formulation is to improve a drug’s bioavailability in the body. However, poorly water-soluble drugs present challenging issues related to their solubility and bioavailability factors. Emerging technologies, such as lipid-based drug delivery systems, including micro- or nanoemulsifying drug delivery systems, have become increasingly relevant to address the above challenges. This review presents a thorough overview of self-emulsifying drug delivery systems (SEDDS). It covers the properties, principles, self-emulsification mechanism, formulation strategies, and characterization methods of SEDDS. This review also addresses the delivery of antiviral agents through SEDDS. Moreover, it summarizes the marketed formulations of SEDDS consisting of antiviral agents. This review offers a comprehensive and valuable resource for future perspectives on SEDDS and their potential applications in antiviral drug delivery.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385280541231130055458
2024-01-08
2025-01-01
Loading full text...

Full text loading...

References

  1. AithalG.C. NarayanR. NayakU.Y. Nanoemulgel: A promising phase in drug delivery.Curr. Pharm. Des.202026227929110.2174/138161282666619122610024131878849
    [Google Scholar]
  2. DuY. XueJ. HongZ. Raman and terahertz spectroscopic characterization of solid-state cocrystal formation within specific active pharmaceutical ingredients.Curr. Pharm. Des.202026384829484610.2174/138161282666620052317344832445442
    [Google Scholar]
  3. BhardwajK. SharmaA. KumarR. TyagiV. KumarR. Improving oral bioavailability of herbal drugs: A focused review of self-emulsifying drug delivery system for colon cancer.Curr. Drug Deliv.202337151062
    [Google Scholar]
  4. BhattacharyaS. MishraS. PrajapatiB.G. Design and development of docetaxel solid self-microemulsifying drug delivery system using principal component analysis and d-optimal design.Asian J. Pharm.2018121S122
    [Google Scholar]
  5. RehmanM.U. TariqL. ArafahA. AliS. BeighS. DarM.A. DarT.H. DarA.I. AlsaffarR.M. MasoodiM.H. Nanogel-Based transdermal drug delivery system: A therapeutic strategy with under discussed potential.Curr. Top. Med. Chem.2023231446110.2174/156802662266622081811272835984019
    [Google Scholar]
  6. PiresP.C. Paiva-SantosA.C. VeigaF. Nano and microemulsions for the treatment of depressive and anxiety disorders: An efficient approach to improve solubility, brain bioavailability and therapeutic efficacy.Pharmaceutics20221412282510.3390/pharmaceutics1412282536559318
    [Google Scholar]
  7. NainwalN. SinghR. JawlaS. SaharanV.A. The solubility-permeability interplay for solubility-enabling oral formulations.Curr. Drug Targets201920141434144610.2174/138945012066619071711452131333138
    [Google Scholar]
  8. PatelS.M. PatelR.P. PrajapatiB.G. Solubility enhancement of benfotiamine, a lipid derivative of thiamine by solid dispersion technique.J. Pharm. Bioallied Sci.20124510410.4103/0975‑7406.9415723066179
    [Google Scholar]
  9. KumarM. KumarD. KumarS. KumarA. MandalU.K. A recent review on bio-availability enhancement of poorly water-soluble drugs by using bioenhancer and nanoparticulate drug delivery system.Curr. Pharm. Des.202228393212322410.2174/138161282966622102115235436281868
    [Google Scholar]
  10. MurugesanS. GowrammaB. LakshmananK. Reddy KarriV.V.S. RadhakrishnanA. Oral modified drug release solid dosage form with special reference to design; an overview.Curr. Drug Res. Rev.2020121162510.2174/258997751166619112109452031755398
    [Google Scholar]
  11. Harshita BarkatM.A. DasS.S. PottooF.H. BegS. RahmanZ. Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications.Curr. Pharm. Des.202026111167118010.2174/138161282666620020609452932026769
    [Google Scholar]
  12. RamachandraD.P. SudheerP. Self-micro emulsifying drug delivery via intestinal lymphatics: A lucrative approach to drug targeting.Pharm. Nanotechnol.202311323826410.2174/221173851166623011212323537293951
    [Google Scholar]
  13. AboulFotouhK. AllamA.A. El-BadryM. El-SayedA.M. Development and in vitro / in vivo performance of self-nanoemulsifying drug delivery systems loaded with candesartan cilexetil.Eur. J. Pharm. Sci.201710950351310.1016/j.ejps.2017.09.00128889028
    [Google Scholar]
  14. BalakumarK. RaghavanC.V. selvanN.T. prasadR.H. AbduS. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation.Colloids Surf. B Biointerfaces201311233734310.1016/j.colsurfb.2013.08.02524012665
    [Google Scholar]
  15. DashR.N. MohammedH. HumairaT. ReddyA.V. Solid supersaturatable self-nanoemulsifying drug delivery systems for improved dissolution, absorption and pharmacodynamic effects of glipizide.J. Drug Deliv. Sci. Technol.201528283610.1016/j.jddst.2015.05.004
    [Google Scholar]
  16. Ait-TouchenteZ. ZineN. Jaffrezic-RenaultN. ErrachidA. LebazN. FessiH. ElaissariA. Exploring the versatility of microemulsions in cutaneous drug delivery: Opportunities and challenges.Nanomaterials20231310168810.3390/nano1310168837242104
    [Google Scholar]
  17. ElgartA. CherniakovI. AldoubyY. DombA.J. HoffmanA. Improved oral bioavailability of BCS class 2 compounds by self nano-emulsifying drug delivery systems (SNEDDS): The underlying mechanisms for amiodarone and talinolol.Pharm. Res.201330123029304410.1007/s11095‑013‑1063‑y23686373
    [Google Scholar]
  18. AboulFotouhK. Self-emulsifying drug delivery systems: Easy to prepare multifunctional vectors for efficient oral delivery. In: Current and Future Aspects of Nanomedicine.IntechOpen2019
    [Google Scholar]
  19. AboulFotouhK. AllamA.A. El-BadryM. El-SayedA.M. Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability.Colloids Surf. B Biointerfaces2018167829210.1016/j.colsurfb.2018.03.03429627681
    [Google Scholar]
  20. AdamsonC.S. ChibaleK. GossR.J.M. JasparsM. NewmanD.J. DorringtonR.A. Antiviral drug discovery: Preparing for the next pandemic.Chem. Soc. Rev.20215063647365510.1039/D0CS01118E33524090
    [Google Scholar]
  21. GeraghtyR. AliotaM. BonnacL. Broad-spectrum antiviral strategies and nucleoside analogues.Viruses202113466710.3390/v1304066733924302
    [Google Scholar]
  22. XueW. ZhuF. YangF. YangJ. ZhangZ. TuG. YaoX. Recent advances in computer-aided antiviral drug design targeting HIV-1 integrase and reverse transcriptase associated ribonuclease H.Curr. Med. Chem.202229101664167610.2174/092986732866621070809012334238145
    [Google Scholar]
  23. PathakS. BhardwajM. GodelaR. Analytical and bioanalytical methods for the quantification of the nucleotide polymerase inhibitor - sofosbuvir: A critical review (2015-2021).Curr. Pharm. Anal.2023191516510.2174/1573412918666221011112422
    [Google Scholar]
  24. KhanM.A. GuptaK.K. SinghS.K. A review on pharmacokinetics properties of antiretroviral drugs to treat HIV-1 infections.Curr. Computeraided Drug Des.202117785086410.2174/157340991666620100614300733023454
    [Google Scholar]
  25. MahalapbutrP. SangkhawasiM. KammarabutrJ. ChamniS. RungrotmongkolT. Rosmarinic acid as a potent influenza neuraminidase inhibitor: In vitro and in silico study.Curr. Top. Med. Chem.202020232046205510.2174/156802661966619111811015531738149
    [Google Scholar]
  26. VoshavarC. Protease inhibitors for the treatment of HIV/AIDS: Recent advances and future challenges.Curr. Top. Med. Chem.201919181571159810.2174/156802661966619061911524331237209
    [Google Scholar]
  27. CelebiogluA. UyarT. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery.Mater. Sci. Eng. C202111811151410.1016/j.msec.2020.11151433255070
    [Google Scholar]
  28. NelM. SamsodienH. AucampM.E. Using natural excipients to enhance the solubility of the poorly water-soluble antiretroviral, efavirenz.J. Drug Deliv. Sci. Technol.20227110333210.1016/j.jddst.2022.103332
    [Google Scholar]
  29. WaisU. JacksonA.W. HeT. ZhangH. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles.Nanoscale2016841746176910.1039/C5NR07161E26731460
    [Google Scholar]
  30. DelshadiR. BahramiA. McClementsD.J. MooreM.D. WilliamsL. Development of nanoparticle-delivery systems for antiviral agents: A review.J. Control. Release2021331304410.1016/j.jconrel.2021.01.01733450319
    [Google Scholar]
  31. RaniS. RanaR. SaraogiG.K. KumarV. GuptaU. Self-emulsifying oral lipid drug delivery systems: Advances and challenges.AAPS PharmSciTech201920312910.1208/s12249‑019‑1335‑x30815765
    [Google Scholar]
  32. WarnkenZ SmythHDC WilliamsRO Route-specific challenges in the delivery of poorly water-soluble drugs.Formulating Poorly Water Soluble Drug201613910.1007/978‑3‑319‑42609‑9_1
    [Google Scholar]
  33. Ruela CorrêaJ.C. D’ArcyD.M. dos Reis SerraC.H. Nunes SalgadoH.R. Darunavir: A critical review of its properties, use and drug interactions.Pharmacology2012901-210210910.1159/00033986222797653
    [Google Scholar]
  34. JanaS. MandlekarS. MaratheP. Prodrug design to improve pharmacokinetic and drug delivery properties: Challenges to the discovery scientists.Curr. Med. Chem.201017323874390810.2174/09298671079320542620858214
    [Google Scholar]
  35. SahinG. Akbal-DagistanO. CulhaM. ErturkA. BasarirN.S. SancarS. Yildiz-PekozA. Antivirals and the potential benefits of orally inhaled drug administration in COVID-19 treatment.J. Pharm. Sci.2022111102652266110.1016/j.xphs.2022.06.00435691607
    [Google Scholar]
  36. KanwalT. RehmanK. SaifullahS. PerveenS. MaharjanR. YasmeenS. ShahM.R. Development of positively charged amphiphile containing self-nanoemulsifying drug delivery system for improved therapeutic efficacy of metronidazole against Helicobacter pylori.J. Drug Deliv. Sci. Technol.20238610467610.1016/j.jddst.2023.104676
    [Google Scholar]
  37. HajebiS. YousefiaslS. RahimmaneshI. DahimA. AhmadiS. KadumudiF.B. RahgozarN. AmaniS. KumarA. KamraniE. RabieeM. BorzacchielloA. WangX. RabieeN. Dolatshahi-PirouzA. MakvandiP. Genetically engineered viral vectors and organic‐based non‐viral nanocarriers for drug delivery applications.Adv. Healthc. Mater.20221120220158310.1002/adhm.20220158335916145
    [Google Scholar]
  38. TewabeA. AbateA. TamrieM. SeyfuA. Abdela SirajE. Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives.J. Multidiscip. Healthc.2021141711172410.2147/JMDH.S31396834267523
    [Google Scholar]
  39. PaulS. MukherjeeS. BanerjeeP. Recent advancement in the Nanomaterials encapsulated drug delivery vehicles towards combating of Cancer, COVID-19 and HIV like chronic diseases.Mater Adv2023420426110.1039/D2MA01075E
    [Google Scholar]
  40. Sohail ArshadM. ZafarS. YousefB. AlyassinY. AliR. AlAsiriA. ChangM.W. AhmadZ. Ali ElkordyA. FaheemA. PittK. A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing.Adv. Drug Deliv. Rev.202117811384010.1016/j.addr.2021.11384034147533
    [Google Scholar]
  41. MaY. Frutos-BeltránE. KangD. PannecouqueC. De ClercqE. Menéndez-AriasL. LiuX. ZhanP. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses.Chem. Soc. Rev.20215074514454010.1039/D0CS01084G33595031
    [Google Scholar]
  42. ParedesA.J. McKennaP.E. RamöllerI.K. NaserY.A. Volpe-ZanuttoF. LiM. AbbateM.T.A. ZhaoL. ZhangC. Abu-ErshaidJ.M. DaiX. DonnellyR.F. Microarray patches: Poking a hole in the challenges faced when delivering poorly soluble drugs.Adv. Funct. Mater.2021311200579210.1002/adfm.202005792
    [Google Scholar]
  43. AmonooH.L. DearyE.C. WangA. NewcombR.A. DaskalakisE. WeberD. HolmbeckK.E. ChoeJ.J. NabilyA. CutlerC. TraegerL.N. El-JawahriA. Medication adherence in patients with hematologic malignancies who are hematopoietic stem cell transplantation survivors: A qualitative study.Transplant. Cell. Ther.20232910620.e1620.e1110.1016/j.jtct.2023.07.01937516379
    [Google Scholar]
  44. WilliamsH.D. FordL. IgoninA. ShanZ. BottiP. MorgenM.M. HuG. PoutonC.W. ScammellsP.J. PorterC.J.H. BenameurH. Unlocking the full potential of lipid-based formulations using lipophilic salt/ionic liquid forms.Adv. Drug Deliv. Rev.2019142759010.1016/j.addr.2019.05.00831150666
    [Google Scholar]
  45. BhattacharyaS. PrajapatiB.G. Formulation and optimization of celecoxib nanoemulgel.Asian J. Pharm. Clin. Res.201710835336510.22159/ajpcr.2017.v10i8.19510
    [Google Scholar]
  46. KolekarM.T. PatadiyaM.N. Self-emulsifying drug delivery Systems (SEDDS): A novel dissolution enhancement technique.Int. J. Trend Innov. Res.2020251020
    [Google Scholar]
  47. TranP. ParkJ.S. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs.J. Pharm. Investig.202151443946310.1007/s40005‑021‑00516‑0
    [Google Scholar]
  48. PrajapatiB.G. PaliwalH. ShahP.A. In vitro characterization of self-emulsifying drug delivery system-based lipsticks loaded with ketoconazole.Fut. J. Pharmaceut. Sci.2023913510.1186/s43094‑023‑00485‑136620352
    [Google Scholar]
  49. Raman KallakuntaV. DudhipalaN. NyavanandiD. SarabuS. Yadav JangaK. AjjarapuS. BandariS. RepkaM.A. Formulation and processing of solid self-emulsifying drug delivery systems (HME S-SEDDS): A single-step manufacturing process via hot-melt extrusion technology through response surface methodology.Int. J. Pharm.202364112305510.1016/j.ijpharm.2023.12305537207857
    [Google Scholar]
  50. NikolakakisI. PartheniadisI. Self-emulsifying granules and pellets: Composition and formation mechanisms for instant or controlled release.Pharmaceutics2017945010.3390/pharmaceutics904005029099779
    [Google Scholar]
  51. WejnerowskaG. CiaciuchA. Optimisation of oil extraction from quinoa seeds with supercritical carbon dioxide with co-solvents.Czech J. Food Sci.2018361818710.17221/122/2017‑CJFS
    [Google Scholar]
  52. TenjarlaS. Microemulsions: An overview and pharmaceutical applications.Crit. Rev. Ther. Drug Carrier Syst.19991656210.1615/CritRevTherDrugCarrierSyst.v16.i5.2010635455
    [Google Scholar]
  53. RajpootD.A.K. KumarA. SharmaS. KumarH. Self-emulsifying drug delivery system: A review.Int. J. Pharm. Biol. Arch.201910117
    [Google Scholar]
  54. CholakovaD. VinarovZ. TcholakovaS. DenkovN.D. Self-emulsification in chemical and pharmaceutical technologies.Curr. Opin. Colloid Interface Sci.20225910157610.1016/j.cocis.2022.101576
    [Google Scholar]
  55. SalawiA. Self-emulsifying drug delivery systems: A novel approach to deliver drugs.Drug Deliv.20222911811182310.1080/10717544.2022.208372435666090
    [Google Scholar]
  56. UdomratiS. PantoaT. GohtaniS. NakajimaM. UemuraK. KobayashiI. Oil‐in‐water emulsions containing tamarind seed gum during In vitro gastrointestinal digestion: Rheological properties, stability, and lipid digestibility.J. Sci. Food Agric.202010062473248110.1002/jsfa.1026831960429
    [Google Scholar]
  57. GausuzzamanS.A.L. SahaM. DipS.J. AlamS. KumarA. DasH. SharkerS.M. RashidM.A. KaziM. RezaH.M. A QbD approach to design and to optimize the self-emulsifying resveratrol–phospholipid complex to enhance drug bioavailability through lymphatic transport.Polymers20221415322010.3390/polym1415322035956734
    [Google Scholar]
  58. ZöllerK. ToD. KnollP. Bernkop-SchnürchA. Digestion of lipid excipients and lipid-based nanocarriers by pancreatic lipase and pancreatin.Eur. J. Pharm. Biopharm.2022176324210.1016/j.ejpb.2022.05.00335584719
    [Google Scholar]
  59. CunhaS. CostaC.P. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review.Nanomedicine20202810220610.1016/j.nano.2020.10220632334097
    [Google Scholar]
  60. BhattacharyaS. PrajapatiB.G. Formulation approach of self emulsifying drug delivery system.Int J. Pharm. Formulat Anal.20156116
    [Google Scholar]
  61. ReddyM.S. GurramA.K. DeshpandeP.B. KarS.S. NayakU.Y. UdupaN. Role of components in the formation of self-microemulsifying drug delivery systems.Indian J. Pharm. Sci.201577324925710.4103/0250‑474X.15959626180269
    [Google Scholar]
  62. MatsaridouI. BarmpalexisP. SalisA. NikolakakisI. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution.AAPS PharmSciTech20121341319133010.1208/s12249‑012‑9855‑723054984
    [Google Scholar]
  63. SriamornsakP LimmatvapiratS PiriyaprasarthS MansukmaneeP HuangZ. A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution.Asian J. Pharmaceut. Sci.2015102121710.1016/j.ajps.2014.10.003
    [Google Scholar]
  64. KohliK. ChopraS. DharD. AroraS. KharR.K. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability.Drug Discov. Today20101521-2295896510.1016/j.drudis.2010.08.00720727418
    [Google Scholar]
  65. BetageriG.V. Self-emulsifying drug delivery systems and their marketed products: A review.Asian J. Pharm.20191302
    [Google Scholar]
  66. DasS.S. SinghA. KarS. GhoshR. PalM. FatimaM. Application of QbD framework for development of self-emulsifying drug delivery systems. In: Pharmaceutical Quality by Design.Elsevier2019297350
    [Google Scholar]
  67. BenjasirimongkolP. PiriyaprasarthS. MoribeK. SriamornsakP. Use of risk assessment and Plackett–Burman design for developing resveratrol spray-dried emulsions: A quality-by-design approach.AAPS PharmSciTech20192011410.1208/s12249‑018‑1220‑z30565000
    [Google Scholar]
  68. SharmaT. JainA. KaurR. SainiS. KatareO.P. SinghB. Supersaturated LFCS type III self-emulsifying delivery systems of sorafenib tosylate with improved biopharmaceutical performance: QbD-enabled development and evaluation.Drug Deliv. Transl. Res.202010483986110.1007/s13346‑020‑00772‑x32415654
    [Google Scholar]
  69. ŠahinovićM. HassanA. KristóK. RegdonG.Jr VranićE. SoványT. Quality by design-based development of solid Self-Emulsifying Drug Delivery System (SEDDS) as a potential carrier for oral delivery of lysozyme.Pharmaceutics202315399510.3390/pharmaceutics1503099536986855
    [Google Scholar]
  70. BenjasirimongkolP. PiriyaprasarthS. SriamornsakP. Improving dissolution and photostability of resveratrol using redispersible dry emulsion: Application of design space for optimizing formulation and spray-drying process.J. Drug Deliv. Sci. Technol.20195141141810.1016/j.jddst.2019.03.005
    [Google Scholar]
  71. EcheverryS.M. ReyD. ValderramaI.H. AraujoB.V. AragónD.M. Development of a self-emulsifying drug delivery system (SEDDS) to improve the hypoglycemic activity of Passiflora ligularis leaves extract.J. Drug Deliv. Sci. Technol.20216410260410.1016/j.jddst.2021.102604
    [Google Scholar]
  72. BalakrishnanP. LeeB.J. OhD.H. KimJ.O. HongM.J. JeeJ.P. KimJ.A. YooB.K. WooJ.S. YongC.S. ChoiH.G. Enhanced oral bioavailability of dexibuprofen by a novel solid Self-emulsifying drug delivery system (SEDDS).Eur. J. Pharm. Biopharm.200972353954510.1016/j.ejpb.2009.03.00119298857
    [Google Scholar]
  73. JahagirdarA.S. ShendeS. GadeA. RaiM. Bioinspired synthesis of copper nanoparticles and its efficacy on seed viability and seedling growth in mungbean (Vigna radiata L.).Curr. Nanosci.202016224625210.2174/1573413715666190325170054
    [Google Scholar]
  74. FriedlJ.D. WaltherM. VestweberP.K. WächterJ. KnollP. JörgensenA.M. Bernkop-SchnürchA. WindbergsM. SEDDS-loaded mucoadhesive fiber patches for advanced oromucosal delivery of poorly soluble drugs.J. Control. Release202234869270510.1016/j.jconrel.2022.06.02335718212
    [Google Scholar]
  75. NernplodT. WeerapolY. SriamornsakP. Preparation of solid self-emulsifying drug delivery system of manidipine hydrochloride.Adv. Mat. Res.201374714314610.4028/www.scientific.net/AMR.747.143
    [Google Scholar]
  76. JörgensenA.M. FriedlJ.D. WibelR. ChamiehJ. CottetH. Bernkop-SchnürchA. Cosolvents in self-emulsifying drug delivery systems (SEDDS): do they really solve our solubility problems?Mol. Pharm.20201793236324510.1021/acs.molpharmaceut.0c0034332658482
    [Google Scholar]
  77. BashirM.A. KhanA. ShahS.I. UllahM. KhudaF. AbbasM. GohK.W. MingL.C. Development and Evaluation of Self-Emulsifying Drug-Delivery System–Based Tablets for Simvastatin, a BCS Class II Drug.Drug Des. Devel. Ther.20231726127210.2147/DDDT.S37768636726738
    [Google Scholar]
  78. RehmanF.U. FaridA. ShahS.U. DarM.J. RehmanA.U. AhmedN. RashidS.A. ShaukatI. ShahM. AlbadraniG.M. KamelM. AltyarA.E. Abdel-DaimM.M. ShahK.U. Self-emulsifying drug delivery systems (SEDDS): Measuring energy dynamics to determine thermodynamic and kinetic stability.Pharmaceuticals2022159106410.3390/ph1509106436145285
    [Google Scholar]
  79. WeerapolY. LimmatvapiratS. JansakulC. TakeuchiH. SriamornsakP. Enhanced dissolution and oral bioavailability of nifedipine by spontaneous emulsifying powders: Effect of solid carriers and dietary state.Eur. J. Pharm. Biopharm.201591253410.1016/j.ejpb.2015.01.01125615879
    [Google Scholar]
  80. YangX. GaoP. JiangZ. LuoQ. MuC. CuiM. Preparation and evaluation of self-emulsifying drug delivery system (SEDDS) of cepharanthine.AAPS PharmSciTech202122112
    [Google Scholar]
  81. MahmoodA. HaneefR. Al MeslamaniA.Z. BostanudinM.F. SohailM. SarfrazM. ArafatM. Papain-decorated mucopenetrating SEDDS: A tentative approach to combat absorption issues of acyclovir via the oral route.Pharmaceutics2022148158410.3390/pharmaceutics1408158436015210
    [Google Scholar]
  82. ChairukP. TubtimsriS. JansakulC. SriamornsakP. WeerapolY. Enhancing oral absorption of poorly water-soluble herb ( Kaempferia parviflora ) extract using self-nanoemulsifying formulation.Pharm. Dev. Technol.202025334035010.1080/10837450.2019.170313431814494
    [Google Scholar]
  83. KaziM. AlhajriA. AlshehriS.M. ElzayatE.M. Al MeanazelO.T. ShakeelF. NomanO. AltamimiM.A. AlanaziF.K. Enhancing oral bioavailability of apigenin using a bioactive self-nanoemulsifying drug delivery system (Bio-SNEDDS): In vitro, In vivo and stability evaluations.Pharmaceutics202012874910.3390/pharmaceutics1208074932785007
    [Google Scholar]
  84. ThotaS.K. DudhipalaN. KatlaV. VeerabrahmaK. Cationic solid smedds of efavirenz for improved oral delivery: Development by central composite design, in vitro and in vivo evaluation.AAPS PharmSciTech20232413810.1208/s12249‑022‑02495‑336653545
    [Google Scholar]
  85. BiradarMM. MehtaP. Dolutegravir loaded solid self-micro-emulsifying drug delivery system for enhanced solubility and dissolution.Int. J. Pharm. Sci. Drug Res.20231521596810.25004/IJPSDR.2023.150207
    [Google Scholar]
  86. DjekicL. JankovićJ. RaškovićA. PrimoracM. Semisolid self-microemulsifying drug delivery systems (SMEDDSs): Effects on pharmacokinetics of acyclovir in rats.Eur. J. Pharm. Sci.201812128729210.1016/j.ejps.2018.06.00529883728
    [Google Scholar]
  87. MödingerY. KnaubK. DharsonoT. WackerR. MeyratR. LandM.H. PetragliaA.L. SchönC. Enhanced oral bioavailability of β-caryophyllene in healthy subjects using the VESIsorb® formulation technology, a novel self-emulsifying drug delivery system (SEDDS).Molecules2022279286010.3390/molecules2709286035566210
    [Google Scholar]
  88. ChaudhariK.S. AkamanchiK.G. Novel bicephalous heterolipid based self-microemulsifying drug delivery system for solubility and bioavailability enhancement of efavirenz.Int. J. Pharm.201956020521810.1016/j.ijpharm.2019.01.06530742985
    [Google Scholar]
  89. DeokuleHA PimpleSS MahajanKC Fabrication and evaluation of self-emulsifying drug delivery system (sedds) of antiretroviral drug for treatment of HIV.Int. J. Pharmaceut. Res.2020202009752366
    [Google Scholar]
  90. CaonT. KratzJ.M. KuminekG. HellerM. MickeG.A. de AraujoB.V. KoesterL.S. SimõesC.M.O. Pharmacokinetics of Saquinavir Mesylate from Oral Self-Emulsifying Lipid-Based Delivery Systems.Eur. J. Drug Metab. Pharmacokinet.201742113514110.1007/s13318‑016‑0321‑x26846485
    [Google Scholar]
  91. DjekicL. JankovicJ. ČalijaB. PrimoracM. Development of semisolid self-microemulsifying drug delivery systems (SMEDDSs) filled in hard capsules for oral delivery of aciclovir.Int. J. Pharm.20175281-237238010.1016/j.ijpharm.2017.06.02828619449
    [Google Scholar]
  92. JankovićJ. DjekicL. DobričićV. PrimoracM. Evaluation of critical formulation parameters in design and differentiation of self-microemulsifying drug delivery systems (SMEDDSs) for oral delivery of aciclovir.Int. J. Pharm.20164971-230131110.1016/j.ijpharm.2015.11.01126611669
    [Google Scholar]
  93. AbonyiJ.I. UronnachiE.M. UmeyorC.E. ChimeS.A. KenechukwuF.C. AttamaA.A. Pharmacokinetics and Bio-Distribution Properties of a Self-Emulsifying Drug Delivery System Containing Nevirapine.J Drug Discov Develop and Deliv.2020611035
    [Google Scholar]
  94. InugalaS EedaraBB SunkavalliS DhurkeR KandadiP JukantiR Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: In vitro and In vivo evaluation.Euro. J. Pharmaceut. Sci.201574110
    [Google Scholar]
  95. KaziM. Al-AmriK.A. AlanaziF.K. The role of lipid-based drug delivery systems for enhancing solubility of highly selective antiviral agent acyclovir.Pharm. Dev. Technol.201722331232110.3109/10837450.2015.108989926458371
    [Google Scholar]
  96. JoK. KimH. KhadkaP. JangT. KimS.J. HwangS.H. LeeJ. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems.Asian Journal of Pharmaceutical Sciences202015333634610.1016/j.ajps.2018.11.00932636951
    [Google Scholar]
  97. SavlaR. BrowneJ. PlassatV. WasanK.M. WasanE.K. Review and analysis of FDA approved drugs using lipid-based formulations.Drug Dev. Ind. Pharm.201743111743175810.1080/03639045.2017.134265428673096
    [Google Scholar]
  98. KimR. JangD.J. KimY. YoonJ.H. MinK. MaengH.J. ChoK. Flurbiprofen-loaded solid SNEDDS preconcentrate for the enhanced solubility, in-vitro dissolution and bioavailability in rats.Pharmaceutics201810424710.3390/pharmaceutics1004024730487449
    [Google Scholar]
  99. YadollahzadehM. EskandariM. RohamM. ZamaniF. LaaliA. KalantariS. Evaluation of sovodak (sofosbuvir/daclatasvir) treatment outcome in COVID-19 patient’s compared with kaletra (Lopinavir/ritonavir): A randomized clinical trial.Res. Square2021202125776210.21203/rs.3.rs‑257762/v1
    [Google Scholar]
  100. HandaU. MalikA. KumarG. A review on the concept of superfluity mechanism in solubility enhancement.Res. J. Pharma. Technol.20221583769377510.52711/0974‑360X.2022.00633
    [Google Scholar]
  101. PrajapatiBG PatelH RaoS Solid self-emulsifying drug delivery system of furosemide.E-J. Sci. Technol.20172017
    [Google Scholar]
  102. SchirmE. TobiH. VriesT.W. ChoonaraI. De Jong-van den BergL.T.W. Lack of appropriate formulations of medicines for children in the community.Acta Paediatr.200392121486148910.1111/j.1651‑2227.2003.tb00837.x14971804
    [Google Scholar]
  103. ChatterjeeB. Hamed AlmurisiS. Ahmed Mahdi DukhanA. MandalU.K. SenguptaP. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view.Drug Deliv.20162393639365210.1080/10717544.2016.121499027685505
    [Google Scholar]
  104. JoyceP. DeningT.J. MeolaT.R. SchultzH.B. HolmR. ThomasN. PrestidgeC.A. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges.Adv. Drug Deliv. Rev.201914210211710.1016/j.addr.2018.11.00630529138
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385280541231130055458
Loading
/content/journals/pnt/10.2174/0122117385280541231130055458
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test