Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

Nanostructured lipid carriers (NLCs) are explored as vehicles for ophthalmic drug delivery owing to their better drug loading, good permeation, and satisfactory safety profile.

Objectives

The purpose of the study was to fabricate and characterize an ocular gel of loratadine as a model drug based on NLCs to enhance the drug residence time.

Methods

NLCs were fabricated using the microemulsion method in which solid lipid as Compritol 888 ATO, lipid as oleic acid, surfactant as Tween 80, and isopropyl alcohol as co-surfactant as alcohol were used. Based on the evaluation of formulation batches of NLCs, the optimized batch was selected and further utilized for the formulation of gel containing Carbopol 934 and HPMC K15M as gelling agents, and characterized.

Results

The optimized NLCs of loratadine exhibited entrapment efficiency of 83.13 ± 0.13% and an average particle size of 18.98 ± 1.22 nm. Drug content and drug release were found to be 98.67 and 92.48%, respectively. Excellent rheology and mucoadhesion were demonstrated by the loratadine NLC-loaded gel to enhance its attachment to the mucosa. NLC-based ocular gel showed the desired results for topical administration. The prepared gel was observed to be non-irritating to the eye.

Conclusion

The optimized NLC-based gel formulation presented better corneal retention and it was found to be stable, offering sustained release of the drug. Thus, the joined system of sol-gel was found promising for ophthalmic drug delivery.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385266639231029192409
2024-01-11
2025-01-08
Loading full text...

Full text loading...

References

  1. PatelA. CholkarK. AgrahariV. MitraA.K. Ocular drug delivery systems: An overview.World J. Pharmacol.201322476410.5497/wjp.v2.i2.4725590022
    [Google Scholar]
  2. YuY. XuS. YuS. LiJ. TanG. LiS. PanW. A hybrid genipin-cross-linked hydrogel/nanostructured lipid carrier for ocular drug delivery: cellular, ex vivo, and in vivo evaluation.ACS Biomater. Sci. Eng.2020631543155210.1021/acsbiomaterials.9b0180033455373
    [Google Scholar]
  3. BalguriS.P. AdelliG.R. MajumdarS. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues.Eur. J. Pharm. Biopharm.201610922423510.1016/j.ejpb.2016.10.01527793755
    [Google Scholar]
  4. Sánchez-LópezE. EspinaM. DoktorovovaS. SoutoE.B. GarcíaM.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery.Eur. J. Pharm. Biopharm.2017110707510.1016/j.ejpb.2016.10.00927789358
    [Google Scholar]
  5. SawantK. DodiyaS. Recent advances and patents on solid lipid nanoparticles.Recent Pat. Drug Deliv. Formul.20082212013510.2174/18722110878453408119075903
    [Google Scholar]
  6. HippalgaonkarK. AdelliG.R. HippalgaonkarK. RepkaM.A. MajumdarS. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation.J. Ocul. Pharmacol. Ther.201329221622810.1089/jop.2012.006923421502
    [Google Scholar]
  7. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.00426410277
    [Google Scholar]
  8. BhagurkarA.M. RepkaM.A. MurthyS.N. A novel approach for the development of a nanostructured lipid carrier formulation by hot-melt extrusion technology.J. Pharm. Sci.201710641085109110.1016/j.xphs.2016.12.01528040458
    [Google Scholar]
  9. DasS. ChaudhuryA. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery.AAPS PharmSciTech2011121627610.1208/s12249‑010‑9563‑021174180
    [Google Scholar]
  10. DoktorovováS. KovačevićA.B. GarciaM.L. SoutoE.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation.Eur. J. Pharm. Biopharm.201610823525210.1016/j.ejpb.2016.08.00127519829
    [Google Scholar]
  11. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  12. DhimanS. MishraN. SharmaS. Development of PEGylated solid lipid nanoparticles of pentoxifylline for their beneficial pharmacological potential in pathological cardiac hypertrophy.Artif. Cells Nanomed. Biotechnol.20164481901190810.3109/21691401.2015.111123426631531
    [Google Scholar]
  13. CooperR.C. YangH. Hydrogel-based ocular drug delivery systems: Emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations.J. Control. Release2019306293910.1016/j.jconrel.2019.05.03431128143
    [Google Scholar]
  14. Üstündağ OkurN YozgatlıV OkurE YoltaşA SiafakaPI Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers.J Drug Deliv Sci Technol20194932333310.1016/j.jddst.2018.12.005
    [Google Scholar]
  15. TatkeA. DudhipalaN. JangaK. BalguriS. AvulaB. JablonskiM. MajumdarS. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies.Nanomaterials (Basel)2018913310.3390/nano901003330591688
    [Google Scholar]
  16. HosnyK.M. Ciprofloxacin as ocular liposomal hydrogel.AAPS PharmSciTech201011124124610.1208/s12249‑009‑9373‑420151337
    [Google Scholar]
  17. PatilA. LakhaniP. TaskarP. AvulaB. MajumdarS. Carboxyvinyl Polymer and Guar-Borate Gelling System Containing Natamycin Loaded PEGylated Nanolipid Carriers Exhibit Improved Ocular Pharmacokinetic Parameters.J. Ocul. Pharmacol. Ther.202036641042010.1089/jop.2019.014032315560
    [Google Scholar]
  18. JangaK.Y. TatkeA. BalguriS.P. LamichanneS.P. IbrahimM.M. MariaD.N. JablonskiM.M. MajumdarS. Ion-sensitive in situ hydrogels of natamycin bilosomes for enhanced and prolonged ocular pharmacotherapy: in vitro permeability, cytotoxicity and in vivo evaluation.Artif. Cells Nanomed. Biotechnol.201846sup11039105010.1080/21691401.2018.144311729475386
    [Google Scholar]
  19. JangaK.Y. TatkeA. DudhipalaN. BalguriS.P. IbrahimM.M. MariaD.N. JablonskiM.M. MajumdarS. Gellan gum based Sol-to-Gel transforming system of natamycin transfersomes improves topical ocular delivery.J. Pharmacol. Exp. Ther.2019370381482210.1124/jpet.119.25644630872389
    [Google Scholar]
  20. WuY. LiuY. LiX. KebebeD. ZhangB. RenJ. LuJ. LiJ. DuS. LiuZ. Research progress of in-situ gelling ophthalmic drug delivery system.Asian Journal of Pharmaceutical Sciences201914111510.1016/j.ajps.2018.04.00832104434
    [Google Scholar]
  21. SimonsF.E.R. SimonsK.J. H1 Antihistamines.World Allergy Organ. J.20081914515510.1097/WOX.0b013e318186fb3a23282578
    [Google Scholar]
  22. El-HammadiM. AwadN. Investigating the use of liquisolid compacts technique to minimize the influence of pH variations on loratadine release.AAPS PharmSciTech2012131535810.1208/s12249‑011‑9719‑622101967
    [Google Scholar]
  23. DoktorovováS. AraújoJ. GarciaM.L. RakovskýE. SoutoE.B. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC).Colloids Surf. B Biointerfaces201075253854210.1016/j.colsurfb.2009.09.03319879736
    [Google Scholar]
  24. PatelK. PadhyeS. NagarsenkerM. Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design.AAPS PharmSciTech201213112513310.1208/s12249‑011‑9727‑622167415
    [Google Scholar]
  25. KasongoW.A. PardeikeJ. MüllerR.H. WalkerR.B. Selection and characterization of suitable lipid excipients for use in the manufacture of didanosine-loaded solid lipid nanoparticles and nanostructured lipid carriers.J. Pharm. Sci.2011100125185519610.1002/jps.2271122020815
    [Google Scholar]
  26. Sharif Makhmal ZadehB. NiroH. RahimF. EsfahaniG. Ocular delivery system for propranolol hydrochloride based on nanostructured lipid carrier.Sci. Pharm.20188621610.3390/scipharm8602001629677103
    [Google Scholar]
  27. RasalA MahajanHS ShaikhHT SuranaSJ PatelRC Fabrication and characterization of nanoformulation for solubility and bioavailability enhancement view project brain tumor targeting View project Hitendra S Mahajan.Indian J. Nov. Drug Deliv.2
    [Google Scholar]
  28. MahajanH.S. GattaniS.G. Nasal administration of ondansetron using a novel microspheres delivery system.Pharm. Dev. Technol.200914222623210.1080/1083745080258528619519195
    [Google Scholar]
  29. MakwanaS.B. PatelV.A. ParmarS.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride.Results Pharma Sci.201661610.1016/j.rinphs.2015.06.00126949596
    [Google Scholar]
  30. Üstündağ-OkurN. GökçeE.H. BozbıyıkD.İ. EğrilmezS. ÖzerÖ. ErtanG. Preparation and in vitroin vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis.Eur. J. Pharm. Sci.20146320421510.1016/j.ejps.2014.07.01325111119
    [Google Scholar]
  31. ShamsM. SolimanO. Nabih MariaD. El-Gawad Abd El-GawadA.H. SolimanO.A. E ShamsME Formulation and In-vitro Evaluation of Loratadine Ocuserts.RGUHS J Pharm Scin.d.410.13140/RG.2.1.2297.4887
    [Google Scholar]
  32. TanG. YuS. LiJ. PanW. Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone.Int. J. Biol. Macromol.201710394194710.1016/j.ijbiomac.2017.05.13228545971
    [Google Scholar]
  33. KaurH. LoyeeS. GargR. All rights reserved.International Journal of Pharma Research and Health Sciences201641365137010.21276/ijprhs.2016.05.05
    [Google Scholar]
  34. MandalS. PrabhushankarG.L. ThimmasettyM.K.M.J. GeethaM.S. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride.Int. J. Pharm. Investig.201222788210.4103/2230‑973X.10004223119236
    [Google Scholar]
  35. JainP. JaiswalC.P. MirzaM.A. AnwerM.K. IqbalZ. Preparation of levofloxacin loaded in situ gel for sustained ocular delivery: in vitro and ex vivo evaluations.Drug Dev. Ind. Pharm.2020461505610.1080/03639045.2019.169859831818154
    [Google Scholar]
  36. DaveV. PaliwalS. A novel approach to formulation factor of aceclofenac eye drops efficiency evaluation based on physicochemical characteristics of in vitro and in vivo permeation.Saudi Pharm. J.201422324024510.1016/j.jsps.2013.03.00125061410
    [Google Scholar]
  37. KhareA. SinghI. PawarP. GroverK. Design and Evaluation of Voriconazole Loaded Solid Lipid Nanoparticles for Ophthalmic Application.J. Drug Deliv.2016201611110.1155/2016/659036127293896
    [Google Scholar]
  38. PrasanthV.V. ParambiD.G.T. RanjanS. RanjanS. Formulation and evaluation of in situ ocular gel of levofloxacin.J. Drug Deliv. Ther.201775687310.22270/jddt.v7i5.1489
    [Google Scholar]
  39. SrividyaB. CardozaR.M. AminP.D. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system.J. Control. Release2001732-320521110.1016/S0168‑3659(01)00279‑611516498
    [Google Scholar]
  40. Gonzalez-MiraE. EgeaM.A. GarciaM.L. SoutoE.B. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC.Colloids Surf. B Biointerfaces201081241242110.1016/j.colsurfb.2010.07.02920719479
    [Google Scholar]
  41. KelidariH.R. MoazeniM. BabaeiR. SaeediM. AkbariJ. ParkoohiP.I. NabiliM. GoharA.A. Morteza-SemnaniK. NokhodchiA. Improved yeast delivery of fluconazole with a nanostructured lipid carrier system.Biomed. Pharmacother.201789838810.1016/j.biopha.2017.02.00828222399
    [Google Scholar]
  42. VelmuruganR. SelvamuthukumarS. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology.Appl. Nanosci.20166215917310.1007/s13204‑015‑0434‑6
    [Google Scholar]
  43. SchäferkortingM. MehnertW. KortingH. Lipid nanoparticles for improved topical application of drugs for skin diseases.Adv. Drug Deliv. Rev.200759642744310.1016/j.addr.2007.04.00617544165
    [Google Scholar]
  44. RosenblattK.M. BunjesH. Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the alpha-modification.Mol. Pharm.20096110512010.1021/mp800075919049318
    [Google Scholar]
  45. zur MühlenA. SchwarzC. MehnertW. Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism.Eur. J. Pharm. Biopharm.199845214915510.1016/S0939‑6411(97)00150‑19704911
    [Google Scholar]
  46. PooniaN. KharbR. LatherV. PanditaD. Nanostructured lipid carriers: versatile oral delivery vehicle.Future Sci. OA201623FSO13510.4155/fsoa‑2016‑003028031979
    [Google Scholar]
  47. SharmaA. SoodA. MehtaV. MalairamanU. Formulation and physicochemical evaluation of nanostructured lipid carrier for codelivery of clotrimazole and ciprofloxacin.Asian J. Pharm. Clin. Res.20169356360
    [Google Scholar]
  48. ChenC.C. TsaiT.H. HuangZ.R. FangJ.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics.Eur. J. Pharm. Biopharm.201074347448210.1016/j.ejpb.2009.12.00820060469
    [Google Scholar]
  49. GanL. WangJ. JiangM. BartlettH. OuyangD. EperjesiF. LiuJ. GanY. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers.Drug Discov. Today2013185-629029710.1016/j.drudis.2012.10.00523092895
    [Google Scholar]
  50. SeyfoddinA. Al-KassasR. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir.Drug Dev. Ind. Pharm.201339450851910.3109/03639045.2012.66546022424312
    [Google Scholar]
  51. AlanyR.G. RadesT. NicollJ. TuckerI.G. DaviesN.M. W/O microemulsions for ocular delivery: Evaluation of ocular irritation and precorneal retention.J. Control. Release20061111-214515210.1016/j.jconrel.2005.11.02016426694
    [Google Scholar]
  52. MorrisE.R. NishinariK. RinaudoM. Gelation of gellan – A review.Food Hydrocoll.201228237341110.1016/j.foodhyd.2012.01.004
    [Google Scholar]
  53. LallemandF. DaullP. BenitaS. BuggageR. GarrigueJ.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb.J. Drug Deliv.2012201211610.1155/2012/60420422506123
    [Google Scholar]
  54. LallemandF SchmittM BourgesJ-L GurnyR BenitaS GarrigueJ-S Cyclosporine A delivery to the eye: A comprehensive review of academic and industrial effortsEur. J. Pharm. Biopharm.2017117142810.1016/j.ejpb.2017.03.006
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385266639231029192409
Loading
/content/journals/pnt/10.2174/0122117385266639231029192409
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): drug delivery; gel; loratadine; microemulsion; NLC; Ophthalmic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test