Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

This study investigated the potential of Plant-Derived Exosome-Like Nanoparticles (PDENs) as cosmeceutical nanocarriers for treating skin problems, such as scar removal, face rejuvenation, anti-aging, and anti-pigmentation.

Objectives

Researchers isolated PDENs from Yam Bean () using PEG-based precipitation, gradual filtration, and various centrifugations at low temperatures. Followed by and studies using HDF cells and Zebrafish.

Methods

The morphology of the YB-PDENs was determined using TEM analysis, they had a spherical shape with diameters of 236,83 ± 9,27 nm according to PSA. The study found that YB-PDENs were stable in aquabidest at 4°C for one month of storage and had ~-26,5 mV of Zeta Potential. The concentration of YB-PDENs was measured using the BCA Assay, and internalization of YB-PDENs to HDF cells was observed using a Confocal Laser Scanning Microscope labelled with PKH67.

Results

As for cytotoxicity, after 24 and 72 hours of incubation with YB-PDENs, the viability of HDF cells remained more than 80%. The study also examined cell migration using the Scratch Assay and found that at 2,5 μg/mL, YB-PDENs had better migration results than other concentrations. Immunocytochemistry showed that collagen expression was higher after 14 days of incubation with YB-PDENs, and melanocytes in zebrafish decreased at each concentration compared with controls.

Conclusion

In conclusion, this study is the first to extract and describe PDENs from Yam Bean (), with YB-PDENs having a promising anti-melanogenic effect in skin treatment. This study highlights the potential of YB-PDENs as a promising alternative to depigmentation and skin whitening treatments.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385279809231221050226
2024-01-15
2025-06-20
Loading full text...

Full text loading...

References

  1. SugiuraK. SugiuraM. Are women with fairskin (whitened skin) beautiful? Perspectives in Asia.Int J Clin Dermatol Res2021090327527610.19070/2332‑2977‑210006e
    [Google Scholar]
  2. NordinF.N.M. AzizA. ZakariaZ. Wan Mohamed RadziC.W.J. A systematic review on the skin whitening products and their ingredients for safety, health risk, and the halal status.J. Cosmet. Dermatol.20212041050106010.1111/jocd.1369132854162
    [Google Scholar]
  3. MubarokF. BPOM Temukan Lebih dari Seribu Kosmetik Ilegal, Kanker Kulit Menginta.Available From: https://health.detik.com/berita-detikhealth/d-6801475/bpom-temukan-lebih-dari-seribu-kosmetik-ilegal-kanker-kulit-mengintai 2023
  4. SendeIF PramuditaAW SalaffudinMG YuniantoEP Peredaran kosmetik pemutih ilegal di indonesia dan upaya penanggulangannya.Indonesia J. Food and Drug Safety20201110.54384/eruditio.v1i1.30
    [Google Scholar]
  5. ChengA.D. De La GarzaH. MaymoneM.B.C. JohansenV.M. VashiN.A. Skin-lightening products: Consumer Preferences and Costs.Cureus2021138e1724510.7759/cureus.1724534540471
    [Google Scholar]
  6. BhattarP. ZawarV. GodseK. PatilS. NadkarniN. GautamM. Exogenous ochronosis.Indian J. Dermatol.201560653754310.4103/0019‑5154.16912226677264
    [Google Scholar]
  7. GillbroJ.M. OlssonM.J. The melanogenesis and mechanisms of skin‐lightening agents – existing and new approaches.Int. J. Cosmet. Sci.201133321022110.1111/j.1468‑2494.2010.00616.x21265866
    [Google Scholar]
  8. SarkarR. AroraP. GargK.V. Cosmeceuticals for hyperpigmentation: What is available?J. Cutan. Aesthet. Surg.20136141110.4103/0974‑2077.11008923723597
    [Google Scholar]
  9. JulianoC.C.A. Spreading of dangerous skin-lightening products as a result of colourism: A review.Appl. Sci. (Basel)2022126317710.3390/app12063177
    [Google Scholar]
  10. ChanT.Y.K. Inorganic mercury poisoning associated with skin-lightening cosmetic products.Clin. Toxicol. (Phila.)2011491088689110.3109/15563650.2011.62642522070559
    [Google Scholar]
  11. ChenJ. YeY. RanM. LiQ. RuanZ. JinN. Inhibition of tyrosinase by mercury chloride: Spectroscopic and docking studies.Front. Pharmacol.2020118110.3389/fphar.2020.0008132210794
    [Google Scholar]
  12. DadzieO.E. PetitA. Skin bleaching: Highlighting the misuse of cutaneous depigmenting agents.J. Eur. Acad. Dermatol. Venereol.200923774175010.1111/j.1468‑3083.2009.03150.x19470077
    [Google Scholar]
  13. ArungE.T. KusumaI.W. ChristyE.O. ShimizuK. KondoR. Evaluation of medicinal plants from Central Kalimantan for antimelanogenesis.J. Nat. Med.200963447348010.1007/s11418‑009‑0351‑719618251
    [Google Scholar]
  14. PranceG.T. The Cultural History of Plants.RoutledgeEngland, UK2005
    [Google Scholar]
  15. FadillahH. Pupur dingin sebagai perawatan wajah khas masyarakat banjar.OsfPreprints2021
    [Google Scholar]
  16. LukitaningsihE. BahiM. HolzgrabeU. Tyrosinase inhibition type of isolated compounds obtained from pachyrhizus erosus.Aceh Int. J. Sci. Technol. (Banda Aceh)2013239810210.13170/AIJST.0203.05
    [Google Scholar]
  17. LukitaningsihE. HolzgrabeU. Bioactive compounds in bengkoang (Pachyrhizus erosus) as antioxidant and tyrosinase inhibiting agents.Indones. J. Pharm.2014252687510.14499/indonesianjpharm25iss2pp68
    [Google Scholar]
  18. PutraN.R. YustisiaY. HeryantoR.B. AsmaliyahA. MiswartiM. RizkiyahD.N. YunusM.A.C. IriantoI. QomariyahL. RohmanG.A.N. Advancements and challenges in green extraction techniques for Indonesian natural products: A review.S. Afr. J. Chem. Eng.202346889810.1016/j.sajce.2023.08.002
    [Google Scholar]
  19. AlotaibiG. AlharthiS. BasuB. AshD. DuttaS. SinghS. PrajapatiB.G. BhattacharyaS. ChidrawarV.R. ChitmeH. Nano-gels: Recent advancement in fabrication methods for mitigation of skin cancer.Gels20239433110.3390/gels904033137102943
    [Google Scholar]
  20. PrajapatiB. “Nanoemulgel” innovative approach for topical gel based formulation.Research and reviews on healthcare: Open Access Journal20181210.32474/RRHOAJ.2018.01.000107
    [Google Scholar]
  21. ZhangZ. YuY. ZhuG. ZengL. XuS. ChengH. OuyangZ. ChenJ. PathakJ.L. WuL. YuL. The emerging role of plant-derived exosomes-like nanoparticles in immune regulation and periodontitis treatment.Front. Immunol.20221389674510.3389/fimmu.2022.89674535757759
    [Google Scholar]
  22. ChoJ.H. HongY.D. KimD. ParkS.J. KimJ.S. KimH-M. YoonE.J. ChoJ-S. Confirmation of plant-derived exosomes as bioactive substances for skin application through comparative analysis of keratinocyte transcriptome.J Appl Biol Chem2022651810.1186/s13765‑022‑00676‑z
    [Google Scholar]
  23. UrzìO. CaforaM. GanjiN.R. TinnirelloV. GasparroR. RaccostaS. MannoM. CorsaleA.M. ConigliaroA. PistocchiA. RaimondoS. AlessandroR. Lemon-derived nanovesicles achieve antioxidant and anti-inflammatory effects activating the AhR/Nrf2 signaling pathway.iScience202326710704110.1016/j.isci.2023.10704137426343
    [Google Scholar]
  24. Syamsul HadiR KusumahI SandraY Pengaruh platelet-rich plasma (PRP) terhadap proliferasi dan viabilitas human dermal fibroblast (HDF) dalam Konsentrasi Glukosa Tinggi.J Biol Indonesia2019152213217
    [Google Scholar]
  25. MoravejH. Establishment of a primary cell culture of human fibroblast in Iran.Available From: www.SID.ir 2009
  26. KalarikkalS.P. PrasadD. KasiappanR. ChaudhariS.R. SundaramG.M. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes.Sci. Rep.2020101445610.1038/s41598‑020‑61358‑832157137
    [Google Scholar]
  27. MuJ. ZhuangX. WangQ. JiangH. DengZ.B. WangB. ZhangL. KakarS. JunY. MillerD. ZhangH.G. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome‐like nanoparticles.Mol. Nutr. Food Res.20145871561157310.1002/mnfr.20130072924842810
    [Google Scholar]
  28. RiderM.A. HurwitzS.N. MeckesD.G.Jr ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles.Sci. Rep.2016612397810.1038/srep2397827068479
    [Google Scholar]
  29. StanlyC. FiumeI. CapassoG. PocsfalviG. Isolation of exosome-like vesicles from plants by ultracentrifugation on sucrose/deuterium oxide (D2O) density cushions.Methods in Molecular Biology.Humana Press Inc.2016145925926910.1007/978‑1‑4939‑3804‑9_18
    [Google Scholar]
  30. CaoM. DiaoN. CaiX. ChenX. XiaoY. GuoC. ChenD. ZhangX. Plant exosome nanovesicles (PENs): Green delivery platforms.Mater. Horiz.202310103879389410.1039/D3MH01030A37671650
    [Google Scholar]
  31. HallettF.R. Particle size analysis by dynamic light scattering.Food Res. Int.1994272195198
    [Google Scholar]
  32. RavalN. MaheshwariR. KalyaneD. Youngren-OrtizS.R. ChouguleM.B. TekadeR.K. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development.Basic Fundamentals of Drug Delivery.Elsevier201836940010.1016/B978‑0‑12‑817909‑3.00010‑8
    [Google Scholar]
  33. LeeR. KoH.J. KimK. SohnY. MinS.Y. KimJ.A. NaD. YeonJ.H. Anti‐melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin.J. Extracell. Vesicles202091170348010.1080/20013078.2019.170348032002169
    [Google Scholar]
  34. WuJ. MaX. LuY. ZhangT. DuZ. XuJ. YouJ. ChenN. DengX. WuJ. Edible Pueraria lobata-derived exosomes promote M2 macrophage polarization.Molecules20222723818410.3390/molecules2723818436500277
    [Google Scholar]
  35. KimM.K. ChoiY.C. ChoS.H. ChoiJ.S. ChoY.W. The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing.Tissue Eng. Regen. Med.202118456157110.1007/s13770‑021‑00367‑834313971
    [Google Scholar]
  36. LyuS.Y. ParkW.B. Photoprotective potential of anthocyanins isolated from acanthopanax divaricatus var. albeofructus fruits against uv irradiation in human dermal fibroblast cells.Biomol. Ther. (Seoul)201220220120610.4062/biomolther.2012.20.2.20124116296
    [Google Scholar]
  37. Abdul LatifM. IbrahimF.W. ArshadS.A. ChuaK.H. JufriN.F. HamidA. Cytotoxicity, proliferation and migration rate assessments of human dermal fibroblast adult cells using zingiber zerumbet extract.Sains Malays.201948112112710.17576/jsm‑2019‑4801‑14
    [Google Scholar]
  38. Rodriguez-MenocalL. SalgadoM. FordD. Van BadiavasE. Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients.Stem Cells Transl. Med.20121322122910.5966/sctm.2011‑002923197781
    [Google Scholar]
  39. LeiR. AkinsE.A. WongK.C.Y. RepinaN.A. WolfK.J. DempseyG.E. SchafferD.V. StahlA. KumarS. Multiwell combinatorial hydrogel array for high-throughput analysis of cell–ECM interactions.ACS Biomater. Sci. Eng.2021762453246510.1021/acsbiomaterials.1c0006534028263
    [Google Scholar]
  40. NethercottH.E. BrickD.J. SchwartzP.H. Immunocytochemical analysis of human pluripotent stem cells. Methods in molecular biology.Humana Press Inc.2011Vol. 76720122010.1007/978‑1‑61779‑201‑4_15
    [Google Scholar]
  41. PiñaR. Santos-DíazA.I. Orta-SalazarE. Aguilar-VazquezA.R. MantelleroC.A. Acosta-GaleanaI. Estrada-MondragonA. Prior-GonzalezM. Martinez-CruzJ.I. Rosas-ArellanoA. Ten approaches that improve immunostaining: A review of the latest advances for the optimization of immunofluorescence.Int. J. Mol. Sci.2022233142610.3390/ijms2303142635163349
    [Google Scholar]
  42. WangH.M. ChenC.Y. WenZ.H. Identifying melanogenesis inhibitors from Cinnamomum subavenium with iin vitro and in vivo screening systems by targeting the human tyrosinase.Exp. Dermatol.201120324224810.1111/j.1600‑0625.2010.01161.x21054558
    [Google Scholar]
  43. ChoiT.Y. KimJ.H. KoD.H. KimC.H. HwangJ.S. AhnS. KimS.Y. KimC.D. LeeJ.H. YoonT.J. Zebrafish as a new model for phenotype‐based screening of melanogenic regulatory compounds.Pigment Cell Res.200720212012710.1111/j.1600‑0749.2007.00365.x17371438
    [Google Scholar]
  44. ChenX.K. KwanJ.S.K. ChangR.C.C. MaA.C.H. 1-phenyl 2-thiourea (PTU) activates autophagy in zebrafish embryos.Autophagy20211751222123110.1080/15548627.2020.175511932286915
    [Google Scholar]
  45. TuY. QuanT. Oxidative stress and human skin connective tissue aging.Cosmetics2016332810.3390/cosmetics3030028
    [Google Scholar]
  46. RezaieF. Momeni-MoghaddamM. Naderi-MeshkinH. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment.Int. J. Low. Extrem. Wounds201918324726110.1177/153473461985921431257948
    [Google Scholar]
  47. NematiM. SinghB. MirR.A. NematiM. BabaeiA. AhmadiM. RasmiY. GolezaniA.G. RezaieJ. Plant-derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges.Cell Commun. Signal.20222016910.1186/s12964‑022‑00889‑135606749
    [Google Scholar]
  48. KeeL.T. NgC.Y. Al-MasawaM.E. FooJ.B. HowC.W. NgM.H. LawJ.X. Extracellular vesicles in facial aesthetics: A review.Int. J. Mol. Sci.20222312674210.3390/ijms2312674235743181
    [Google Scholar]
  49. AnJ. ZhuY. Isolation and in vitro stability studies of edible plant-seed derived (Raphani Semen) nanoparticles.Separations202310321810.3390/separations10030218
    [Google Scholar]
  50. ZhaoW.F. BianY.P. WangQ.H. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress.Acta Pharmacol Sin.202243364565810.1038/s41401‑021‑00681‑w
    [Google Scholar]
  51. SavcıY. KırbaşO.K. BozkurtB.T. AbdikE.A. TaşlıP.N. ŞahinF. AbdikH. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing.Food Funct.202112115144515610.1039/D0FO02953J33977960
    [Google Scholar]
  52. Özkanİ. KoçakP. YıldırımM. ÜnsalN. YılmazH. TelciD. ŞahinF. Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis.Sci. Rep.20211111477310.1038/s41598‑021‑93876‑434285262
    [Google Scholar]
  53. YouJ.Y. KangS.J. RheeW.J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells.Bioact. Mater.20216124321433210.1016/j.bioactmat.2021.04.02333997509
    [Google Scholar]
  54. García-RomeroN. MadurgaR. RackovG. Palacín-AlianaI. Núñez-TorresR. Asensi-PuigA. Carrión-NavarroJ. Esteban-RubioS. PeinadoH. González-NeiraA. González-RumayorV. Belda-IniestaC. Ayuso-SacidoA. Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation.J. Transl. Med.20191717510.1186/s12967‑019‑1825‑330871557
    [Google Scholar]
  55. YangC. ZhangM. MerlinD. Advances in plant-derived edible nanoparticle-based lipid nano-drug delivery systems as therapeutic nanomedicines.J. Mater. Chem. B Mater. Biol. Med.2018691312132110.1039/C7TB03207B30034807
    [Google Scholar]
  56. SubhaD. HarshniiK. MadhikirubaK.G. NandhiniM. TamilselviK.S. Plant derived exosome- like Nanovesicles: An updated overview.Plant Nano Biology2023310002210.1016/j.plana.2022.100022
    [Google Scholar]
  57. Di GioiaS. HossainM.N. ConeseM. Biological properties and therapeutic effects of plant-derived nanovesicles.Open Med. (Wars.)20201511096112210.1515/med‑2020‑016033336066
    [Google Scholar]
  58. JuS. MuJ. DoklandT. ZhuangX. WangQ. JiangH. XiangX. DengZ.B. WangB. ZhangL. RothM. WeltiR. MobleyJ. JunY. MillerD. ZhangH.G. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis.Mol. Ther.20132171345135710.1038/mt.2013.6423752315
    [Google Scholar]
  59. CaoM. YanH. HanX. WengL. WeiQ. SunX. LuW. WeiQ. YeJ. CaiX. HuC. YinX. CaoP. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth.J. Immunother. Cancer20197132610.1186/s40425‑019‑0817‑431775862
    [Google Scholar]
  60. DengZ. RongY. TengY. MuJ. ZhuangX. TsengM. SamykuttyA. ZhangL. YanJ. MillerD. SuttlesJ. ZhangH.G. Broccoli-derived nanoparticle inhibits mouse colitis by activating Dendritic Cell AMP-Activated Protein Kinase.Mol. Ther.20172571641165410.1016/j.ymthe.2017.01.02528274798
    [Google Scholar]
  61. ShiH. WangM. SunY. YangD. XuW. QianH. Exosomes: emerging cell-free based therapeutics in dermatologic diseases.Front. Cell Dev. Biol.2021973602210.3389/fcell.2021.73602234722517
    [Google Scholar]
  62. ShkrylY. TsydeneshievaZ. DegtyarenkoA. YugayY. BalabanovaL. RusapetovaT. BulgakovV. Plant exosomal vesicles: perspective information nanocarriers in biomedicine.Appl. Sci. (Basel)20221216826210.3390/app12168262
    [Google Scholar]
  63. KimK. ParkJ. SohnY. OhC.E. ParkJ.H. YukJ.M. YeonJ.H. Stability of plant leaf-derived extracellular vesicles according to preservative and storage temperature.Pharmaceutics202214245710.3390/pharmaceutics1402045735214189
    [Google Scholar]
  64. NemidkanamV ChaichanawongsarojN. Characterizing Kaempferia parviflora extracellular vesicles, a nanomedicine candidate.PLoS One2022171e02628810.1371/journal.pone.0262884
    [Google Scholar]
  65. KimJ. LeeY.H. WangJ. KimY.K. KwonI.K. Isolation and characterization of ginseng-derived exosome-like nanoparticles with sucrose cushioning followed by ultracentrifugation.SN Applied Sciences2022426310.1007/s42452‑022‑04943‑y
    [Google Scholar]
  66. FranquesaM. HoogduijnM.J. RipollE. LukF. SalihM. BetjesM.G. TorrasJ. BaanC.C. GrinyóJ.M. MerinoA.M. Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells.Front. Immunol.20145OCT52510.3389/fimmu.2014.0052525374572
    [Google Scholar]
  67. De RobertisM. SarraA. D’OriaV. MuraF. BordiF. PostorinoP. FratantonioD. Blueberry-derived exosome-like nanoparticles counters the response to TNF-α-induced change on gene expression in ea.Hy926 cells.Biomolecules202010574210.3390/biom1005074232397678
    [Google Scholar]
  68. SaindaneD. BhattacharyaS. ShahR. PrajapatiB.G. The recent development of topical nanoparticles for annihilating skin cancer.All Life202215184386910.1080/26895293.2022.2103592
    [Google Scholar]
  69. Yepes-MolinaL. Martínez-BallestaM.C. CarvajalM. Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers.J. Adv. Res.20202310111110.1016/j.jare.2020.02.00432089878
    [Google Scholar]
  70. AbrahamA.M. WiemannS. AmbreenG. ZhouJ. EngelhardtK. BrüßlerJ. BakowskyU. LiS.M. MandicR. PocsfalviG. KeckC.M. Cucumber-derived exosome-like vesicles and PlantCrystals for improved dermal drug delivery.Pharmaceutics202214347610.3390/pharmaceutics1403047635335851
    [Google Scholar]
  71. Shabestani MonfaredG. ErtlP. RothbauerM. An on-chip wound healing assay fabricated by xurography for evaluation of dermal fibroblast cell migration and wound closure.Sci. Rep.20201011619210.1038/s41598‑020‑73055‑733004819
    [Google Scholar]
  72. SzwedowiczU. ŁapińskaZ. Gajewska-NarynieckaA. ChoromańskaA. Exosomes and other extracellular vesicles with high therapeutic potential: Their applications in oncology, neurology, and dermatology.Molecules2022274130310.3390/molecules2704130335209095
    [Google Scholar]
  73. ThakurA. ShahD. RaiD. ParraD.C. PathikondaS. KurilovaS. CiliA. Therapeutic values of exosomes in cosmetics, skin care, tissue regeneration, and dermatological diseases.Cosmetics20231026510.3390/cosmetics10020065
    [Google Scholar]
  74. NarauskaitėD. VydmantaitėG. RusteikaitėJ. SampathR. RudaitytėA. StašytėG. Aparicio CalventeM.I. JekabsoneA. Extracellular vesicles in skin wound healing.Pharmaceuticals (Basel)202114881110.3390/ph1408081134451909
    [Google Scholar]
  75. JoshiS. YuD. Immunofluorescence.In: Basic science methods for clinical researchersElsevierAmsterdam2017
    [Google Scholar]
  76. ChenL.Y. KaoT.W. ChenC.C. NiazN. LeeH.L. ChenY.H. KuoC.C. ShenY.A. Frontier review of the molecular mechanisms and current approaches of stem cell-derived exosomes.Cells2023127101810.3390/cells1207101837048091
    [Google Scholar]
  77. LajisAFB A zebrafish embryo as an animal model for the treatment of hyperpigmentation in cosmetic dermatology Medicine.Medicina (Kaunas)20185433510.3390/medicina54030035
    [Google Scholar]
  78. LuoY. WangJ. LiS. WuY. WangZ. ChenS. ChenH. Discovery and identification of potential anti-melanogenic active constituents of Bletilla striata by zebrafish model and molecular docking.BMC Complement Med Ther2022221910.1186/s12906‑021‑03492‑y34996448
    [Google Scholar]
  79. AgalouA. ThrapsianiotisM. AngelisA. PapakyriakouA. SkaltsounisA.L. AligiannisN. BeisD. Identification of novel melanin synthesis inhibitors from Crataegus pycnoloba using an in vivo zebrafish phenotypic assay.Front. Pharmacol.20189MAR26510.3389/fphar.2018.0026529632489
    [Google Scholar]
  80. KalueffA.V. StewartA.M. GerlaiR. Zebrafish as an emerging model for studying complex brain disorders.Trends Pharmacol. Sci.2014352637510.1016/j.tips.2013.12.00224412421
    [Google Scholar]
  81. TeameT. ZhangZ. RanC. ZhangH. YangY. DingQ. XieM. GaoC. YeY. DuanM. ZhouZ. The use of zebrafish (Danio rerio) as biomedical models.Anim. Front.201993687710.1093/af/vfz02032002264
    [Google Scholar]
  82. ThawabtehA.M. JibreenA. KaramanD. ThawabtehA. KaramanR. Skin pigmentation types, causes and treatment—A review.Molecules20232812483910.3390/molecules2812483937375394
    [Google Scholar]
  83. HarrisJ.E. Chemical-induced vitiligo.Dermatol. Clin.201735215116110.1016/j.det.2016.11.00628317525
    [Google Scholar]
  84. Jin WonY. LeeE. Young MinS. Seung ChoB. Biological function of exosome-like particles isolated from rose 1 (Rosa Damascena) stem cell culture supernatant.bioRxiv202310.1101/2023.10.17.562840
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385279809231221050226
Loading
/content/journals/pnt/10.2174/0122117385279809231221050226
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test