Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

Clove () essential oil (CO) has been studied extensively for its antioxidant properties but faces several limitations, including high volatility, low aqueous solubility, and irritation.

Objective

We aimed to develop a Nanostructured Lipid Carrier (NLC) to enhance the benefits of CO.

Methods

Using the emulsification sonication method, a liquid lipid component, surfactant concentration, and a co-surfactant were optimized to create CO-loaded NLC (CO-NLC). The developed CO-NLC was rigorously assessed for its stability during storage. Free radical scavenging activity and fibroblast oxidative stress protection were also measured to assess the antioxidant activity.

Results

The CO-NLC displayed a spherical shape with a hydrodynamic diameter of 125.77 ± 29.68 nm, homogenous particle distribution with polydispersity index of 0.26 ± 0.09, and a surface charge of -27.30 ± 4.56 mV with an encapsulation efficiency of 97% and a good stability profile. Furthermore, free CO and CO-NLC displayed very strong free radical scavenging activity with the IC value of 22.74 ± 0.57 µg/mL and 18.28 ± 2.63 µg/mL, respectively. However, only CO-NLC managed to protect fibroblast cells from the harmful effects of oxidative stress.

Conclusion

The NLC formulations improved free radical scavenging activity and effectively protected fibroblasts from oxidative stress compared to free CO.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385304491240320040711
2024-04-24
2025-05-24
Loading full text...

Full text loading...

References

  1. KamatouG.P. VermaakI. ViljoenA.M. Eugenol--from the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule.Molecules20121766953698110.3390/molecules1706695322728369
    [Google Scholar]
  2. Haro-GonzálezJ.N. Castillo-HerreraG.A. Martínez-VelázquezM. Espinosa-AndrewsH. Clove essential oil (Syzygium aromaticum l. myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health.Molecules20212621638710.3390/molecules2621638734770801
    [Google Scholar]
  3. ShanB. CaiY.Z. SunM. CorkeH. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents.J. Agric. Food Chem.200553207749775910.1021/jf051513y16190627
    [Google Scholar]
  4. NirmalaM.J. DuraiL. GopakumarV. NagarajanR. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system.Int. J. Nanomedicine2019146439645010.2147/IJN.S21104731496696
    [Google Scholar]
  5. AlfikriF.N. PujiartiR. WibisonoM.G. HardiyantoE.B. Yield, quality, and antioxidant activity of clove ( Syzygium aromaticum L.) bud oil at the different phenological stages in young and mature trees.Scientifica202020201810.1155/2020/970170132566363
    [Google Scholar]
  6. RayP.D. HuangB.W. TsujiY. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell. Signal.201224598199010.1016/j.cellsig.2012.01.00822286106
    [Google Scholar]
  7. LüJ.M. LinP.H. YaoQ. ChenC. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems.J. Cell. Mol. Med.201014484086010.1111/j.1582‑4934.2009.00897.x19754673
    [Google Scholar]
  8. BuranasudjaV. RaniD. MallaA. KobtrakulK. VimolmangkangS. Insights into antioxidant activities and anti-skin-aging potential of callus extract from Centella asiatica (L.).Sci. Rep.20211111345910.1038/s41598‑021‑92958‑734188145
    [Google Scholar]
  9. RahmiD. YunilawatiR. JatiB.N. SetiawatiI. RiyantoA. BatubaraI. AstutiR.I. Antiaging and skin irritation potential of four main indonesian essential oils.Cosmetics2021849410.3390/cosmetics8040094
    [Google Scholar]
  10. SarkicA. StappenI. Essential oils and their single compounds in cosmetics-a critical review.Cosmetics2018511110.3390/cosmetics5010011
    [Google Scholar]
  11. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.02132373485
    [Google Scholar]
  12. GokceE. KorkmazE. DelleraE. SandriG. BonferoniM.C. OzerO. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications.Int. J. Nanomedicine201271841185010.2147/IJN.S2971022605933
    [Google Scholar]
  13. HuF.Q. JiangS.P. DuY.Z. YuanH. YeY.Q. ZengS. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system.Colloids Surf. B Biointerfaces2005453-416717310.1016/j.colsurfb.2005.08.00516198092
    [Google Scholar]
  14. SantiagoR.R. Gyselle de Holanda e SilvaK. Dantas dos SantosN. GenreJ. Freitas de Oliveira LioneV. SilvaA.L. MarcelinoH.R. GondimA.D. Tabosa do EgitoE.S. Nanostructured lipid carriers containing Amphotericin B: Development, in vitro release assay, and storage stability.J. Drug Deliv. Sci. Technol.20184837238210.1016/j.jddst.2018.10.003
    [Google Scholar]
  15. LiB. GeZ.Q. Nanostructured lipid carriers improve skin permeation and chemical stability of idebenone.AAPS PharmSciTech201213127628310.1208/s12249‑011‑9746‑322234598
    [Google Scholar]
  16. YueY. ZhouH. LiuG. LiY. YanZ. DuanM. The advantages of a novel CoQ10 delivery system in skin photo-protection.Int. J. Pharm.20103921-2576310.1016/j.ijpharm.2010.03.03220302925
    [Google Scholar]
  17. SoleimanianY. GoliS.A.H. VarshosazJ. SahafiS.M. Formulation and characterization of novel nanostructured lipid carriers made from beeswax, propolis wax and pomegranate seed oil.Food Chem.2018244839210.1016/j.foodchem.2017.10.01029120809
    [Google Scholar]
  18. GomaaE. FathiH.A. EissaN.G. ElsabahyM. Methods for preparation of nanostructured lipid carriers.Methods20221993810.1016/j.ymeth.2021.05.00333992771
    [Google Scholar]
  19. GokceE.H. KorkmazE. Tuncay-TanriverdıS. DelleraE. SandriG. BonferoniM.C. OzerO. A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers.Int. J. Nanomedicine201275109511710.2147/IJN.S3492123055723
    [Google Scholar]
  20. SharmaA. BhardwajG. SohalH.S. GohainA. Eugenol.Nutraceuticals and Health CareChapter 9 KourG.A.B.T-N. NayikH.C. Academic Press2022177198
    [Google Scholar]
  21. AbdullahM.L. HafezM.M. Al-HoshaniA. Al-ShabanahO. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells.BMC Complement. Altern. Med.201818132110.1186/s12906‑018‑2392‑530518369
    [Google Scholar]
  22. SharmaU.K. SharmaA.K. PandeyA.K. Medicinal attributes of major phenylpropanoids present in cinnamon.BMC Complement. Altern. Med.201616115610.1186/s12906‑016‑1147‑427245453
    [Google Scholar]
  23. DahhamS. TabanaY. IqbalM. AhamedM. EzzatM. MajidA. MajidA. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna.Molecules2015207118081182910.3390/molecules20071180826132906
    [Google Scholar]
  24. GunawanI.W.G. Bawa PutraA.A. WidihatiI.A.G. The response to oxidative stress α-humulene compounds Hibiscus manihot L leaf on the activity of 8-hydroxy-2-deoksiquanosin levels pancreatic β-cells in diabetic rats.Biomed. Pharmacol. J.20169243344110.13005/bpj/956
    [Google Scholar]
  25. SongS.H. LeeK.M. KangJ.B. LeeS.G. KangM.J. ChoiY.W. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation.Chem. Pharm. Bull.201462879379810.1248/cpb.c14‑0020225087631
    [Google Scholar]
  26. LiH. ChenM. SuZ. SunM. PingQ. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery.Int. J. Pharm.2016511152453710.1016/j.ijpharm.2016.07.04927452421
    [Google Scholar]
  27. VarmaS.R. SivaprakasamT.O. ArumugamI. DilipN. RaghuramanM. PavanK.B. RafiqM. ParameshR. In vitro anti-inflammatory and skin protective properties of Virgin coconut oil.J. Tradit. Complement. Med.20199151410.1016/j.jtcme.2017.06.01230671361
    [Google Scholar]
  28. AhmadZ. The uses and properties of almond oil.Complement. Ther. Clin. Pract.2010161101210.1016/j.ctcp.2009.06.01520129403
    [Google Scholar]
  29. ShawahnaR. Effects of a grapeseed oil ( Vitis vinifera L.) loaded dermocosmetic nanoemulgel on biophysical parameters of facial skin: A split‐face, blinded, placebo‐controlled study.J. Cosmet. Dermatol.202221115730573810.1111/jocd.1516135713012
    [Google Scholar]
  30. PopleP.V. SinghK.K. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus.Eur. J. Pharm. Biopharm.2011791829410.1016/j.ejpb.2011.02.01621447390
    [Google Scholar]
  31. KaurP. GargT. RathG. MurthyR.S.R. GoyalA.K. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design.Drug Deliv.20162361912192510.3109/10717544.2014.99348625544602
    [Google Scholar]
  32. StetefeldJ. McKennaS.A. PatelT.R. Dynamic light scattering: A practical guide and applications in biomedical sciences.Biophys. Rev.20168440942710.1007/s12551‑016‑0218‑628510011
    [Google Scholar]
  33. XueY. ZhouS. FanC. DuQ. JinP. Enhanced antifungal activities of eugenol-entrapped casein nanoparticles against anthracnose in postharvest fruits.Nanomaterials2019912177710.3390/nano912177731847287
    [Google Scholar]
  34. KhalilA.A. RahmanU. KhanM.R. SaharA. MehmoodT. KhanM. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives.RSC Advances2017752326693268110.1039/C7RA04803C
    [Google Scholar]
  35. MunteanuI.G. ApetreiC. Analytical methods used in determining antioxidant activity: A review.Int. J. Mol. Sci.2021227338010.3390/ijms2207338033806141
    [Google Scholar]
  36. CocL.M.C. LacatusuI. BadeaN. PenesO. CobelschiC.P. PopA. MegheaA. Curcumin co-loaded with a lipid mediator in the same nanostructured lipid delivery system.Farmacia20227093294310.31925/farmacia.2022.5.20
    [Google Scholar]
  37. RahimiA.M. CaiM. Hoyer-FenderS. Heterogeneity of the NIH3T3 fibroblast cell line.Cells20221117267710.3390/cells1117267736078083
    [Google Scholar]
  38. LaporteA. LortzS. SchaalC. LenzenS. ElsnerM. Hydrogen peroxide permeability of cellular membranes in insulin-producing cells.Biochim. Biophys. Acta Biomembr2020186218309610.1016/j.bbamem.2019.183096
    [Google Scholar]
  39. JuminaJ. SiswantaD. ZulkarnainA.K. TrionoS. PriatmokoP. YuanitaE. FatmasariN. NursalimI. Development of c-arylcalix[4]resorcinarenes and C-Arylcalix[4]pyrogallolarenes as antioxidant and UV-B protector.Indo. J. Chem.201919227328410.22146/ijc.26868
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385304491240320040711
Loading
/content/journals/pnt/10.2174/0122117385304491240320040711
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test