Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, . Pulmonary administration of medicines is a more appealing method as it is a non-invasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave-assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial-based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385277725231120043600
2024-01-23
2024-12-29
Loading full text...

Full text loading...

References

  1. Skupin-MrugalskaP. Liposome-based drug delivery for lung cancer.Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer201912316010.1016/B978‑0‑12‑815720‑6.00006‑X
    [Google Scholar]
  2. Beck-BroichsitterM. MerkelO.M. KisselT. Controlled pulmonary drug and gene delivery using polymeric nano-carriers.J. Control. Release2012161221422410.1016/j.jconrel.2011.12.004 22192571
    [Google Scholar]
  3. MehtaP BothirajaC KadamS PawarA Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future.Artif Cells Nanomed Biotechnol201846sup3S79180610.1080/21691401.2018.1513938 30307321
    [Google Scholar]
  4. RangarajN. PaillaS.R. SampathiS. Insight into pulmonary drug delivery: Mechanism of drug deposition to device characterization and regulatory requirements.Pulm. Pharmacol. Ther.20195412110.1016/j.pupt.2018.11.004 30447295
    [Google Scholar]
  5. LiangZ. NiR. ZhouJ. MaoS. Recent advances in controlled pulmonary drug delivery.Drug Discov. Today201520338038910.1016/j.drudis.2014.09.020 25281854
    [Google Scholar]
  6. LiuQ. GuanJ. QinL. ZhangX. MaoS. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery.Drug Discov. Today202025115015910.1016/j.drudis.2019.09.023 31600580
    [Google Scholar]
  7. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: An emerging treatment modality for cancer.Nat. Rev. Drug Discov.20087977178210.1038/nrd2614 18758474
    [Google Scholar]
  8. PetrosR.A. DeSimoneJ.M. Strategies in the design of nanoparticles for therapeutic applications.Nat. Rev. Drug Discov.20109861562710.1038/nrd2591 20616808
    [Google Scholar]
  9. HuC.M.J. ZhangL. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer.Biochem. Pharmacol.20128381104111110.1016/j.bcp.2012.01.008 22285912
    [Google Scholar]
  10. RoguedaP.G.A. TrainiD. The nanoscale in pulmonary delivery. Part 2: Formulation platforms.Expert Opin. Drug Deliv.20074660762010.1517/17425247.4.6.607 17970664
    [Google Scholar]
  11. Lung specific drug delivery systems for tuberculosis treatment NIH guide199524195112
    [Google Scholar]
  12. UgwokeMI VereykenIJ LuessenH Microparticles and liposomes as pulmonary drug delivery systems.What are the recent trends? Chapter VI30877
    [Google Scholar]
  13. SaleemI SmythH Carriers in pulmonary dry powder drug delivery.A Report
    [Google Scholar]
  14. APV Focus Group Drug Delivery APV Focus Group Drug Delivery. Combining science & technology to create advanced drug delivery systems.Int Assoc Pharma Technol Newsletter20093
    [Google Scholar]
  15. JeffreyW. MichaelT. Pulmonary drug delivery system.US Patent 54515691995
  16. BianB. HeJ. DuJ. Growth mechanism and magnetic properties of monodisperse L1 0 -Co(Fe)Pt@C core–shell nanoparticles by one-step solid-phase synthesis.Nanoscale20157397598010.1039/C4NR04986A 25462862
    [Google Scholar]
  17. ChenH. ZhangL. LiM. XieG. Synthesis of core–shell micro/nanoparticles and their tribological application: A Review.Materials (Basel)202013204590459310.3390/ma13204590 33076415
    [Google Scholar]
  18. ChaudhuriT.K. TiwariD. Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal–thiourea precursor solution.Sol. Energy Mater. Sol. Cells2012101465010.1016/j.solmat.2012.02.012
    [Google Scholar]
  19. MariniM. ToselliM. BorsacchiS. MollicaG. GeppiM. PilatiF. Facile synthesis of core-shell organic–inorganic hybrid nanoparticles with amphiphilic polymer shell by one-step sol–gel reactions.J. Polym. Sci. A Polym. Chem.20084651699170910.1002/pola.22511
    [Google Scholar]
  20. SunL. ShiY. ChuL. WangY. ZhangL. LiuJ. Preparation and characterization of silica/polypyrrole core-shell colloidal particles in the presence of ethanol as the cosolvent.J. Appl. Polym. Sci.201212363270327410.1002/app.35000
    [Google Scholar]
  21. PoovarodomS. BassJ.D. HwangS.J. KatzA. Investigation of the core-shell interface in gold@silica nanoparticles: A silica imprinting approach.Langmuir20052126123481235610.1021/la052006d 16343013
    [Google Scholar]
  22. UngT. Liz-MarzánL.M. MulvaneyP. Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions.Langmuir199814143740374810.1021/la980047m
    [Google Scholar]
  23. ZhaiJ. TaoX. PuY. ZengX.F. ChenJ.F. Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property.Appl. Surf. Sci.2010257239339710.1016/j.apsusc.2010.06.091
    [Google Scholar]
  24. RogachA.L. NageshaD. OstranderJ.W. GiersigM. KotovN.A. “Raisin Bun”-type composite spheres of silica and semiconductor nanocrystals.Chem. Mater.20001292676268510.1021/cm000244i
    [Google Scholar]
  25. SunJ. ZhuangJ. GuanS. YangW. Synthesis of robust water-soluble ZnS:Mn/SiO2 core/shell nanoparticles.J. Nanopart. Res.200810465365810.1007/s11051‑007‑9296‑5
    [Google Scholar]
  26. KumarS. ZouS. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: Effects of film thickness.Langmuir200723137365737110.1021/la0637216 17521203
    [Google Scholar]
  27. ÓváriL. BerkóA. BalázsN. MajzikZ. KissJ. Formation of Rh-Au core-shell nanoparticles on TiO2(110) surface studied by STM and LEIS.Langmuir20102632167217510.1021/la902674u 19891450
    [Google Scholar]
  28. BerkóA. KlivényiG. SolymosiF. Fabrication of Ir/TiO2(110) planar catalysts with tailored particle size and distribution.J. Catal.1999182251151410.1006/jcat.1998.2345
    [Google Scholar]
  29. LangloisC. BenzoP. ArenalR. Fully crystalline faceted Fe–Au core–shell nanoparticles.Nano Lett.20151585075508010.1021/acs.nanolett.5b02273 26146846
    [Google Scholar]
  30. MeroO. SougratiM.T. JumasJ.C. MargelS. Engineered magnetic core-shell SiO2/Fe microspheres and “medusa-like” microspheres of SiO2/iron oxide/carbon nanofibers or nanotubes.Langmuir201430329850985810.1021/la502142m 25089849
    [Google Scholar]
  31. CuiP. LiF.S. YangY. JiangW. LiuH.Y. Design of typical device for powder surface modification of micron and nano-sized powder by mechano-mixed method.China Powder Sci Technol200611719
    [Google Scholar]
  32. JangH.J. JungE.Y. ParsonsT. TaeH.S. ParkC.S. A Review of plasma synthesis methods for polymer films and nanoparticles under atmospheric pressure conditions.Polymers (Basel)20211314226710.3390/polym13142267 34301024
    [Google Scholar]
  33. HegemannD. LorussoE. Butron-GarciaM.I. Suppression of hydrophobic recovery by plasma polymer films with vertical chemical gradients.Langmuir201632365165410.1021/acs.langmuir.5b03913 26716609
    [Google Scholar]
  34. RaoJ. BaoL. WangB. FanM. FeoL. Plasma surface modification and bonding enhancement for bamboo composites.Compos., Part B Eng.201813815716710.1016/j.compositesb.2017.11.025
    [Google Scholar]
  35. SeoH.J. GilY.E. HwangK.H. AnanthA. BooJ.H. Synthesis and characterization of plasma-polymer gate dielectric films for graphene field effect transistor devices.Electron. Mater. Lett.201915439640110.1007/s13391‑019‑00139‑6
    [Google Scholar]
  36. VasilevK. Nano engineered plasma polymer films for biomaterial applications.Plasma Chem. Plasma Process.201434354555810.1007/s11090‑013‑9506‑0
    [Google Scholar]
  37. VasaniR.B. SziliE.J. RajeevG. VoelckerN.H. On-demand anti-microbial treatment with antibiotic-loaded porous silicon capped with a pH-responsive dual plasma polymer barrier.Chem. Asian J.201712131605161410.1002/asia.201700427 28508517
    [Google Scholar]
  38. BruggemanP.J. KushnerM.J. LockeB.R. Plasma–liquid interactions: A review and roadmap.Plasma Sources Sci. Technol.201625505300210.1088/0963‑0252/25/5/053002
    [Google Scholar]
  39. MohammedR.S. AadimK.A. AhmedK.A. Estimation of in vivo toxicity of MgO/ZnO core/shell nanoparticles synthesized by eco-friendly non-thermal plasma technology.Appl. Nanosci.202212123783379510.1007/s13204‑022‑02608‑1 36120604
    [Google Scholar]
  40. WoodardA. XuL. BarraganA.A. NavaG. WongB.M. MangoliniL. On the non‐thermal plasma synthesis of nickel nanoparticles.Plasma Process. Polym.2018151170010410.1002/ppap.201700104
    [Google Scholar]
  41. HebbalaluD. LalleyJ. NadagoudaM.N. VarmaR.S. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves.ACS Sustain. Chem.& Eng.20131770371210.1021/sc4000362
    [Google Scholar]
  42. NadagoudaM.N. SpethT.F. VarmaR.S. Microwave-assisted green synthesis of silver nanostructures.Acc. Chem. Res.201144746947810.1021/ar1001457 21526846
    [Google Scholar]
  43. KomarneniS. PiduguR. LiQ.H. RoyR. Microwave-hydrothermal processing of metal powders.J. Mater. Res.19951071687169210.1557/JMR.1995.1687
    [Google Scholar]
  44. HarpenessR. GedankenA. Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles.Langmuir20042083431343410.1021/la035978z 15875878
    [Google Scholar]
  45. Abdel-FattahW.I. EidM.M. Abd El-MoezS.I. MohamedE. AliG.W. Synthesis of biogenic Ag@Pd Core-shell nanoparticles having anti-cancer/anti-microbial functions.Life Sci.2017183283610.1016/j.lfs.2017.06.017 28642073
    [Google Scholar]
  46. LuC.Y. PuigT. ObradorsX. RicartS. RosJ. Ultra-fast microwave-assisted reverse microemulsion synthesis of Fe 3 O 4 @SiO 2 core–shell nanoparticles as a highly recyclable silver nanoparticle catalytic platform in the reduction of 4-nitroaniline.RSC Advances2016691887628876910.1039/C6RA19435D
    [Google Scholar]
  47. Al-RadadiN.S. Microwave assisted green synthesis of Fe@Au core–shell NPs magnetic to enhance olive oil efficiency on eradication of helicobacter pylori (life preserver).Arab. J. Chem.202215510368510.1016/j.arabjc.2022.103685
    [Google Scholar]
  48. IzadiyanZ. ShameliK. TeowS.Y. Anticancer activity of 5-fluorouracil-loaded Nanoemulsions containing Fe3O4/Au core-shell nanoparticles.J. Mol. Struct.2021124513107510.1016/j.molstruc.2021.131075
    [Google Scholar]
  49. Ali GhasemzadehM. Mirhosseini-EshkevariB. Hossein Abdollahi-BasirM. Rapid and efficient one-pot synthesis of 3,4-dihydroquinoxalin-2-amine derivatives catalyzed by CO3O4@SiO2 Core-shell nanoparticles under ultrasound irradiation.Comb. Chem. High Throughput Screen.201619759260110.2174/1386207319666160524141831 27216448
    [Google Scholar]
  50. DevkarT.B. TekadeA.R. KhandelwalK.R. Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer.Colloids Surf. B Biointerfaces201412214315010.1016/j.colsurfb.2014.06.037 25033434
    [Google Scholar]
  51. MohammedS.A.J. Al-RawiB.K. Al-HaddadR.M.S. Fe 3 O 4 @SiO 2 Core–Shell Nanoparticles: Synthesis, Characterization Prepared by Green Method for Iraqi Aloe Vera Extract.Int. J. Nanosci.2023222235000910.1142/S0219581X23500096
    [Google Scholar]
  52. YuJ. LiuW. YuH. A one-pot approach to hierarchically nanoporous Titania Hollow microspheres with high photocatalytic activity.Cryst. Growth Des.20088393093410.1021/cg700794y
    [Google Scholar]
  53. LambertK. GeyterB.D. MoreelsI. HensZ. PbTe|CdTe core|shell particles by cation exchange, a HR-TEM study.Chem. Mater.200921577878010.1021/cm8029399
    [Google Scholar]
  54. SongC. YuW. ZhaoB. Efficient fabrication and photocatalytic properties of TiO2 hollow spheres.Catal. Commun.200910565065410.1016/j.catcom.2008.11.010
    [Google Scholar]
  55. QianL. ShaY. YangX. Simple and convenient preparation of Au–Pt core-shell nanoparticles on surface via a seed growth method.Thin Solid Films200651541349135310.1016/j.tsf.2006.03.036
    [Google Scholar]
  56. ChávezJ.L. WongJ.L. DuranR.S. Core-shell nanoparticles: Characterization and study of their use for the encapsulation of hydrophobic fluorescent dyes.Langmuir20082452064207110.1021/la702227d 18220429
    [Google Scholar]
  57. WangL. ChenD. A facile method for the preparation of hollow silver spheres.Mater. Lett.200761102113211610.1016/j.matlet.2006.08.022
    [Google Scholar]
  58. GuchhaitA. RathA.K. PalA.J. Hybrid core−shell nanoparticles: Photoinduced electron-transfer for charge separation and solar cell applications.Chem. Mater.200921215292529910.1021/cm902404s
    [Google Scholar]
  59. CuiX. ZhongS. YanJ. WangC. ZhangH. WangH. Synthesis and characterization of core–shell SiO2-fluorinated polyacrylate nanocomposite latex particles containing fluorine in the shell.Colloids Surf. A Physicochem. Eng. Asp.20103601-3414610.1016/j.colsurfa.2010.02.006
    [Google Scholar]
  60. KuoK.T. ChenS.Y. ChengB.M. LinC.C. Synthesis and characterization of highly luminescent CuInS2 and CuInS2/ZnS (core/shell) nanocrystals.Thin Solid Films200851731257126110.1016/j.tsf.2008.06.023
    [Google Scholar]
  61. WangL. LuoJ. FanQ. Monodispersed core-shell Fe3O4@Au nanoparticles.J. Phys. Chem. B200510946215932160110.1021/jp0543429 16853803
    [Google Scholar]
  62. JiangD. CaoL. LiuW. Synthesis and luminescence properties of core/shell ZnS:Mn/ZnO nanoparticles.Nanoscale Res. Lett.200941788310.1007/s11671‑008‑9205‑6 20596404
    [Google Scholar]
  63. SongC. WangD. GuG. Preparation and characterization of silver/TiO2 composite hollow spheres.J. Colloid Interface Sci.2004272234034410.1016/j.jcis.2003.08.062 15028496
    [Google Scholar]
  64. HellwegT. DewhurstC.D. EimerW. KratzK. PNIPAM-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization.Langmuir200420114330433510.1021/la0354786 15969135
    [Google Scholar]
  65. RileyT. HealdC.R. StolnikS. Core−shell structure of PLA-PEG nanoparticles used for drug delivery.Langmuir200319208428843510.1021/la020911h
    [Google Scholar]
  66. CrowtherH.M. SaundersB.R. MearsS.J. Poly(NIPAM) microgel particle de-swelling: A light scattering and small-angle neutron scattering study.Colloids Surf. A Physicochem. Eng. Asp.1999152332733310.1016/S0927‑7757(98)00875‑9
    [Google Scholar]
  67. KawahashiN. ShihoH. Copper and copper compounds as coatings on polystyrene particles and as hollow spheres.J. Mater. Chem.200010102294229710.1039/b000788i
    [Google Scholar]
  68. ShihoH. KawahashiN. Iron compounds as coatings on polystyrene latex and as hollow spheres.J. Colloid Interface Sci.20002261919710.1006/jcis.2000.6789 11401351
    [Google Scholar]
  69. SgrajaM. BertlingJ. KümmelR. JansensP.J. Inorganic and hybrid hollow spheres by coating of microcapsules as templates.J. Mater. Sci.200641175490549410.1007/s10853‑006‑0272‑8
    [Google Scholar]
  70. AttarilarS. YangJ. EbrahimiM. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: A brief review from the Biomedical Perspective.Front. Bioeng. Biotechnol.2020882210.3389/fbioe.2020.00822 32766232
    [Google Scholar]
  71. RayP.C. YuH. FuP.P. Toxicity and environmental risks of nanomaterials: Challenges and future needs.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.200927113510.1080/10590500802708267 19204862
    [Google Scholar]
  72. ChoN.H. CheongT.C. MinJ.H. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy.Nat. Nanotechnol.201161067568210.1038/nnano.2011.149 21909083
    [Google Scholar]
  73. XiongL. YangT. YangY. XuC. LiF. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors.Biomaterials201031277078708510.1016/j.biomaterials.2010.05.065 20619791
    [Google Scholar]
  74. MuhammedR.P.E. JuniseV. SaraswathiR. KrishnanP.N. DilipC. Development and characterization of chitosan nanoparticles loaded with isoniazid for the treatment of tuberculosis.Res. J. Pharm. Biol. Chem. Sci.201014383390
    [Google Scholar]
  75. FratoddiI. Hydrophobic and hydrophilic Au and Ag nanoparticles. Breakthroughs and perspectives.Nanomaterials2017811110.3390/nano8010011 29280980
    [Google Scholar]
  76. KumarR AadilKR RanjanS KumarVB Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering.J Drug Deliv Sci Technol202057101617a10.1016/j.jddst.2020.101617
    [Google Scholar]
  77. Ghosh ChaudhuriR. PariaS. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications.Chem. Rev.201211242373243310.1021/cr100449n 22204603
    [Google Scholar]
  78. KumarV.B. KumarR. GedankenA. ShefiO. Fluorescent metal-doped carbon dots for neuronal manipulations.Ultrason. Sonochem.201952205213b10.1016/j.ultsonch.2018.11.017 30522849
    [Google Scholar]
  79. SanvicensN. MarcoM.P. Multifunctional nanoparticles – properties and prospects for their use in human medicine.Trends Biotechnol.200826842543310.1016/j.tibtech.2008.04.005 18514941
    [Google Scholar]
  80. ArrueboM. Fernández-PachecoR. IbarraM.R. SantamaríaJ. Magnetic nanoparticles for drug delivery.Nano Today200723223210.1016/S1748‑0132(07)70084‑1
    [Google Scholar]
  81. ModyV.V. CoxA. ShahS. SinghA. BevinsW. PariharH. Magnetic nanoparticle drug delivery systems for targeting tumor.Appl. Nanosci.20144438539210.1007/s13204‑013‑0216‑y
    [Google Scholar]
  82. Abd ElrahmanA.A. MansourF.R. Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application.J. Drug Deliv. Sci. Technol.20195270271210.1016/j.jddst.2019.05.030
    [Google Scholar]
  83. HäfeliU.O. RiffleJ.S. Harris-ShekhawatL. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery.Mol. Pharm.2009651417142810.1021/mp900083m 19445482
    [Google Scholar]
  84. YuM.K. JeongY.Y. ParkJ. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo.Angew. Chem. Int. Ed.200847295362536510.1002/anie.200800857 18551493
    [Google Scholar]
  85. KayalS. RamanujanR.V. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.J. Nanosci. Nanotechnol.20101095527553910.1166/jnn.2010.2461 21133071
    [Google Scholar]
  86. LikhitkarS. BajpaiA.K. Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles.Carbohydr. Polym.201287130030810.1016/j.carbpol.2011.07.053 34662965
    [Google Scholar]
  87. TiwariA. VermaN.C. SinghA. NandiC.K. RandhawaJ.K. Carbon coated core–shell multifunctional fluorescent SPIONs.Nanoscale20181022103891039410.1039/C8NR01941J 29845158
    [Google Scholar]
  88. Samiei ForoushaniM. Karimi ShervedaniR. KefayatA. TorabiM. GhahremaniF. YaghoobiF. Folate-graphene chelate manganese nanoparticles as a theranostic system for colon cancer MR imaging and drug delivery: In-vivo examinations.J. Drug Deliv. Sci. Technol.20195410122310.1016/j.jddst.2019.101223
    [Google Scholar]
  89. BalcellsL. FornagueraC. Brugada-VilàP. SPIONs’ enhancer effect on cell transfection: An unexpected advantage for an improved gene delivery system.ACS Omega2019422728274010.1021/acsomega.8b02905
    [Google Scholar]
  90. PezziH.M. NilesD.J. SchehrJ.L. BeebeD.J. LangJ.M. Integration of magnetic bead-based cell selection into complex isolations.ACS Omega2018343908391710.1021/acsomega.7b01427 29732449
    [Google Scholar]
  91. Sameer KumarR. ShakambariG. AshokkumarB. NelsonD.J. JohnS.A. VaralakshmiP. Nitrogen-doped graphene quantum dot-combined sodium 10-amino-2-methoxyundecanoate: Studies of proinflammatory gene expression and live cell imaging.ACS Omega201839119821199210.1021/acsomega.8b02085 30320283
    [Google Scholar]
  92. RahmanM.A. MatsumuraY. YanoS. OchiaiB. PH-responsive charge-conversional and hemolytic activities of magnetic nanocomposite particles for cell-targeted hyperthermia.ACS Omega20183196197210.1021/acsomega.7b01918 30023794
    [Google Scholar]
  93. JainN. SinghR.K. SinghB.P. SrivastavaA. SinghR.A. SinghJ. Enhanced temperature-sensing behavior of Ho3+–Yb3+-codoped CaTiO3 and its hybrid formation with Fe3O4 nanoparticles for hyperthermia.ACS Omega2019447482749110.1021/acsomega.9b00184
    [Google Scholar]
  94. TiwariA. SinghA. DebnathA. Multifunctional magneto-fluorescent nanocarriers for dual mode imaging and targeted drug delivery.ACS Appl. Nano Mater.2019253060307210.1021/acsanm.9b00421
    [Google Scholar]
  95. DingH. ZhangY. LiG. Recent research progress on magnetic nanocomposites with silica shell structures: Preparation and nanotheranostic applications.Recent Pat. Nanotechnol.20148211712810.2174/187221050802140618144321 24962378
    [Google Scholar]
  96. LaurentS. SaeiA.A. BehzadiS. PanahifarA. MahmoudiM. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges.Expert Opin. Drug Deliv.20141191449147010.1517/17425247.2014.924501 24870351
    [Google Scholar]
  97. FeltonC. KarmakarA. GartiaY. RamidiP. BirisA.S. GhoshA. Magnetic nanoparticles as contrast agents in biomedical imaging: Recent advances in iron- and manganese-based magnetic nanoparticles.Drug Metab. Rev.201446214215410.3109/03602532.2013.876429 24754519
    [Google Scholar]
  98. KeyJ. LearyJ.F. Nanoparticles for multimodal in vivo imaging in nanomedicine.Int. J. Nanomedicine20149711726 24511229
    [Google Scholar]
  99. IssaB. ObaidatI. AlbissB. HaikY. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications.Int. J. Mol. Sci.20131411212662130510.3390/ijms141121266 24232575
    [Google Scholar]
  100. MarcusM. SkaatH. AlonN. MargelS. ShefiO. NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells.Nanoscale2015731058106610.1039/C4NR05193A 25473934
    [Google Scholar]
  101. MarcusM. SmithA. MaswadehA. Magnetic targeting of growth factors using iron oxide nanoparticles.Nanomaterials20188970710.3390/nano8090707 30201889
    [Google Scholar]
  102. ItohH. SugimotoT. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles.J. Colloid Interface Sci.2003265228329510.1016/S0021‑9797(03)00511‑3 12962662
    [Google Scholar]
  103. MolineuxG. Pegylation: Engineering improved pharmaceuticals for enhanced therapy.Cancer Treat. Rev.200228Suppl. A131610.1016/S0305‑7372(02)80004‑4 12173407
    [Google Scholar]
  104. DitschA. LaibinisP.E. WangD.I.C. HattonT.A. Controlled clustering and enhanced stability of polymer-coated magnetic nanoparticles.Langmuir200521136006601810.1021/la047057+ 15952854
    [Google Scholar]
  105. KumarR. SoniP. SirilP.F. Engineering the morphology and particle size of high energetic compounds using drop-by-drop and drop-to-drop solvent–antisolvent interaction methods.ACS Omega20194354245433a10.1021/acsomega.8b03214 31459707
    [Google Scholar]
  106. GiriS. TrewynB.G. StellmakerM.P. LinV.S.Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles.Angew. Chem. Int. Ed.200544325038504410.1002/anie.200501819 16038000
    [Google Scholar]
  107. YuanQ. VenkatasubramanianR. HeinS. MisraR.D.K. A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer.Acta Biomater.2008441024103710.1016/j.actbio.2008.02.002 18329348
    [Google Scholar]
  108. HuangJ. ShuQ. WangL. WuH. WangA.Y. MaoH. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine.Biomaterials201539105113a10.1016/j.biomaterials.2014.10.059 25477177
    [Google Scholar]
  109. DonolatoM. VavassoriP. GobbiM. On-chip manipulation of protein-coated magnetic beads via domain-wall conduits.Adv. Mater.201022242706271010.1002/adma.201000146 20586046
    [Google Scholar]
  110. VermaN.K. Crosbie-StauntonK. SattiA. Magnetic core-shell nanoparticles for drug delivery by nebulization.J. Nanobiotechnology2013111110.1186/1477‑3155‑11‑1 23343139
    [Google Scholar]
  111. FarmanbarN. MohseniS. DarroudiM. Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells.Polym. Bull.20227912105951061310.1007/s00289‑021‑04066‑1
    [Google Scholar]
  112. NewmanA.D. BrownD.R. SirilP. LeeA.F. WilsonK. Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts.Phys. Chem. Chem. Phys.20068242893290210.1039/b603979k 16775645
    [Google Scholar]
  113. TarnD. AshleyC.E. XueM. CarnesE.C. ZinkJ.I. BrinkerC.J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility.Acc. Chem. Res.201346379280110.1021/ar3000986 23387478
    [Google Scholar]
  114. LeeJ.E. LeeN. KimT. KimJ. HyeonT. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications.Acc. Chem. Res.2011441089390210.1021/ar2000259 21848274
    [Google Scholar]
  115. KimB. KimH. YuI.J. Assessment of nanoparticle exposure in nanosilica handling process: including characteristics of nanoparticles leaking from a vacuum cleaner.Ind. Health201452215216210.2486/indhealth.2013‑0087 24366536
    [Google Scholar]
  116. OhS. KimB. KimH. Comparison of nanoparticle exposures between fumed and sol-gel nano-silica manufacturing facilities.Ind. Health201452319019810.2486/indhealth.2013‑0117 24583511
    [Google Scholar]
  117. LeungC.C. YuI.T.S. ChenW. Silicosis.Lancet201237998302008201810.1016/S0140‑6736(12)60235‑9 22534002
    [Google Scholar]
  118. TurciF. PavanC. LeinardiR. Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: the role of crystallinity and surface disorder.Part. Fibre Toxicol.20151313210.1186/s12989‑016‑0136‑6 27286702
    [Google Scholar]
  119. FuP.P. XiaQ. HwangH-M. RayP.C. YuH. Mechanisms of nanotoxicity: Generation of reactive oxygen species.Yao Wu Shi Pin Fen Xi20142216475 24673904
    [Google Scholar]
  120. TangF. LiL. ChenD. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery.Adv. Mater.201224121504153410.1002/adma.201104763 22378538
    [Google Scholar]
  121. AhmadiE. DehghannejadN. HashemikiaS. GhasemnejadM. TabebordbarH. Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery.Drug Deliv.201421316417210.3109/10717544.2013.838715 24116869
    [Google Scholar]
  122. Vallet-RegiM. RámilaA. del RealR.P. Pérez-ParienteJ. A new property of MCM-41: Drug delivery system.Chem. Mater.200113230831110.1021/cm0011559
    [Google Scholar]
  123. ChenA.M. ZhangM. WeiD. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells.Small20095232673267710.1002/smll.200900621 19780069
    [Google Scholar]
  124. LuJ. LiongM. ZinkJ.I. TamanoiF. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs.Small2007381341134610.1002/smll.200700005 17566138
    [Google Scholar]
  125. GuJ. SuS. LiY. HeQ. ZhongJ. ShiJ. Surface modification−complexation strategy for Cisplatin loading in mesoporous nanoparticles.J. Phys. Chem. Lett.20101243446345010.1021/jz101483u
    [Google Scholar]
  126. LiZ. BarnesJ.C. BosoyA. StoddartJ.F. ZinkJ.I. Mesoporous silica nanoparticles in biomedical applications.Chem. Soc. Rev.20124172590260510.1039/c1cs15246g 22216418
    [Google Scholar]
  127. ArgyoC. WeissV. BräuchleC. BeinT. Multifunctional mesoporous silica nanoparticles as a universal platform for Drug Delivery.Chem. Mater.201426143545110.1021/cm402592t
    [Google Scholar]
  128. ZhangQ. LiuF. NguyenK.T. Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery.Adv. Funct. Mater.2012222451445156b10.1002/adfm.201201316
    [Google Scholar]
  129. WangT. LiuY. WuC. Retracted article: Effect of paclitaxel-mesoporous silica nanoparticles with a core-shell structure on the human lung cancer cell line A549.Nanoscale Res. Lett.201712110.1186/s11671‑022‑03695‑3
    [Google Scholar]
  130. Sanchez-SalcedoS. Vallet-RegíM. ShahinS.A. GlackinC.A. ZinkJ.I. Mesoporous core-shell silica nanoparticles with anti-fouling properties for ovarian cancer therapy.Chem. Eng. J.201834011412410.1016/j.cej.2017.12.116
    [Google Scholar]
  131. JuthaniR. MadajewskiB. YooB. Ultrasmall Core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model.Clin. Cancer Res.202026114715810.1158/1078‑0432.CCR‑19‑1834 31515460
    [Google Scholar]
  132. Lingeshwar ReddyK BalajiR KumarA KrishnanV. Lanthanide doped near infrared active upconversion nanophosphors: Fundamental concepts, synthesis strategies, and Technological Applications.Small201814371801304a10.1002/smll.201801304 30066489
    [Google Scholar]
  133. ReddyK.L. VenkateswaruluM. ShankarK.R. GhoshS. KrishnanV. Upconversion luminescent material-based inorganic-organic hybrid sensing system for the selective detection of hydrazine in environmental samples.ChemistrySelect2018361793180010.1002/slct.201702666
    [Google Scholar]
  134. ReddyK.L. RaiM. PrabhakarN. Controlled synthesis, bioimaging and toxicity assessments in strong red emitting Mn 2+ doped NaYF 4:Yb 3+/Ho 3+ nanophosphors.RSC Advances2016659536985370410.1039/C6RA07106F
    [Google Scholar]
  135. ReddyK.L. PrabhakarN. ArppeR. RosenholmJ.M. KrishnanV. Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging.J. Mater. Sci.201752105738575010.1007/s10853‑017‑0809‑z
    [Google Scholar]
  136. ReddyK.L. SharmaP.K. SinghA. Amine-functionalized, porous silica-coated NaYF4:Yb/Er upconversion nanophosphors for efficient delivery of doxorubicin and curcumin.Mater. Sci. Eng. C201996869510.1016/j.msec.2018.11.007 30606601
    [Google Scholar]
  137. KumarR. KumarV.B. GedankenA. Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications.Ultrason. Sonochem.202064105009c10.1016/j.ultsonch.2020.105009 32106066
    [Google Scholar]
  138. Lingeshwar ReddyK. SrinivasV. ShankarK.R. Enhancement of luminescence intensity in Red Emitting NaYF4:Yb/HO/Mn upconversion nanophosphors by variation of reaction parameters.J. Phys. Chem. C201712121117831179310.1021/acs.jpcc.7b01334
    [Google Scholar]
  139. Lingeshwar ReddyK. PrabhakarN. RosenholmJ. KrishnanV. Core-shell structures of upconversion nanocrystals coated with silica for near infrared light enabled optical imaging of cancer cells.Micromachines (Basel)201898400b10.3390/mi9080400 30424333
    [Google Scholar]
  140. BalajiR. KumarS. ReddyK.L. SharmaV. BhattacharyyaK. KrishnanV. Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties.J. Alloys Compd.201772448149110.1016/j.jallcom.2017.07.050
    [Google Scholar]
  141. KumarA. ReddyK.L. KumarS. KumarA. SharmaV. KrishnanV. Rational design and development of lanthanide-doped NaYF4@CdS–Au–RGO as quaternary plasmonic photocatalysts for harnessing visible–near-infrared broadband spectrum.ACS Appl. Mater. Interfaces20181018155651558110.1021/acsami.7b17822 29701950
    [Google Scholar]
  142. JiangW. HuangL. MoF. ZhongY. XuL. FuF. Persistent luminescent multifunctional drug delivery nano-platform based on nanomaterial ZnGa 2 O 4:Cr 3+, Sn 4+ for imaging-guided cancer chemotherapy.J. Mater. Chem. B Mater. Biol. Med.20197183019302610.1039/C9TB00109C
    [Google Scholar]
  143. CaoJ. ZhangL. DingX. LiuD. SuB. ShiJ. Dual‐targeting peptides rgd10‐ngr9‐conjugated lanthanide nanoparticle@polydopamine as upconversion nanoprobes for in vivo imaging of lung cancer.Small Methods2020412200064810.1002/smtd.202000648
    [Google Scholar]
  144. ChenS. GaoY. CaoZ. Nanocomposites of spiropyran-functionalized polymers and upconversion nanoparticles for controlled release stimulated by near-infrared light and pH.Macromolecules201649197490749610.1021/acs.macromol.6b01760
    [Google Scholar]
  145. WangX. LiuC. LiZ. Thermal and photo dual-responsive core–shell polymeric nanocarriers with encapsulation of upconversion nanoparticles for controlled anticancer drug release.J. Phys. Chem. C201912316106581066510.1021/acs.jpcc.9b00454
    [Google Scholar]
  146. RanjanR. SinghN. MisraM. GuptaR.K. Metal and metal-semiconductor core–shell nanostructures for Plasmonic Solar Cell Applications.Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications201715917710.1016/B978‑0‑323‑44922‑9.00007‑7
    [Google Scholar]
  147. MondalK. SharmaA. Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process.RSC Advances2016687835898361210.1039/C6RA18102C
    [Google Scholar]
  148. ZhangQ. LeeI. JooJ.B. ZaeraF. YinY. Core-shell nanostructured catalysts.Acc. Chem. Res.20134681816182410.1021/ar300230s 23268644
    [Google Scholar]
  149. AlOtaibiB. NguyenH.P.T. ZhaoS. KibriaM.G. FanS. MiZ. Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode.Nano Lett.20131394356436110.1021/nl402156e 23927558
    [Google Scholar]
  150. VattikutiS.V.P. PoliceA.K.R. ShimJ. ByonC. Sacrificial-template-free synthesis of core-shell C@Bi2S3 heterostructures for efficient supercapacitor and H2 production applications.Sci. Rep.201881419410.1038/s41598‑018‑22622‑0 29520107
    [Google Scholar]
  151. SuL. JingY. ZhouZ. Li ion battery materials with core–shell nanostructures.Nanoscale20113103967398310.1039/c1nr10550g 21879116
    [Google Scholar]
  152. HoK.C. LinL.Y. A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.2019783516353010.1039/C8TA11599K
    [Google Scholar]
  153. XuL. YinM.L. LiuS. Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors.Sci. Rep.201441674510.1038/srep06745 25339285
    [Google Scholar]
  154. ChatterjeeK. SarkarS. Jagajjanani RaoK. PariaS. Core/shell nanoparticles in biomedical applications.Adv. Colloid Interface Sci.201420983910.1016/j.cis.2013.12.008 24491963
    [Google Scholar]
  155. Dzudzevic CancarH. SoylemezS. AkpinarY. A novel acetylcholinesterase biosensor: Core–shell magnetic nanoparticles incorporating a conjugated polymer for the detection of Organophosphorus Pesticides.ACS Appl. Mater. Interfaces20168128058806710.1021/acsami.5b12383 26956086
    [Google Scholar]
  156. CaoY. WangB. WangY. LouD. Polymer-controlled core–shell nanoparticles: A novel strategy for sequential drug release.RSC Advances2014457304303043910.1039/C4RA03610G
    [Google Scholar]
  157. KatiyarS. MondalK. SharmaA. One-step sol–gel synthesis of hierarchically porous, flow-through carbon/silica monoliths.RSC Advances2016615122981231010.1039/C5RA26503G
    [Google Scholar]
  158. TitiriciM.M. WhiteR.J. BrunN. Sustainable carbon materials.Chem. Soc. Rev.201544125029010.1039/C4CS00232F 25301517
    [Google Scholar]
  159. MondalK. AliM.A. SinghC. SumanaG. MalhotraB.D. SharmaA. Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection.Sens. Actuators B Chem.201724620221410.1016/j.snb.2017.02.050
    [Google Scholar]
  160. MondalK. PawarG. McMurtreyM.D. SharmaA. Finetuning hierarchical energy material microstructure via high temperature material synthesis route.Mater. Today Chem.20201610026910.1016/j.mtchem.2020.100269
    [Google Scholar]
  161. FengH. TangL. ZengG. Carbon-based core–shell nanostructured materials for electrochemical energy storage.J. Mater. Chem. A Mater. Energy Sustain.20186177310733710.1039/C8TA01257A
    [Google Scholar]
  162. TaaleM. KrügerD. Ossei-WusuE. Systematically designed periodic electrophoretic deposition for decorating 3D carbon-based scaffolds with bioactive nanoparticles.ACS Biomater. Sci. Eng.20195943934404a10.1021/acsbiomaterials.9b00102 33438405
    [Google Scholar]
  163. TaaleM. SchüttF. CareyT. Biomimetic carbon fiber systems engineering: A modular design strategy to generate biofunctional composites from graphene and carbon nanofibers.ACS Appl. Mater. Interfaces201911553255335b10.1021/acsami.8b17627 30600988
    [Google Scholar]
  164. RaschF. SchüttF. SaureL.M. Wet-chemical assembly of 2D nanomaterials into lightweight, microtube-shaped, and macroscopic 3D Networks.ACS Appl. Mater. Interfaces20191147446524466310.1021/acsami.9b16565 31686498
    [Google Scholar]
  165. MuhuletA. MiculescuF. VoicuS.I. SchüttF. ThakurV.K. MishraY.K. Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications.Mater. Today Energy2018915418610.1016/j.mtener.2018.05.002
    [Google Scholar]
  166. SchüttF. SignettiS. KrügerH. Hierarchical self-entangled carbon nanotube tube networks.Nat. Commun.201781121510.1038/s41467‑017‑01324‑7 29084950
    [Google Scholar]
  167. KumarR. MondalK. PandaP.K. Core–shell nanostructures: perspectives towards drug delivery applications.J. Mater. Chem. B Mater. Biol. Med.202083989929027d10.1039/D0TB01559H 32902559
    [Google Scholar]
  168. SunX. LiY. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles.Angew. Chem. Int. Ed.200443559760110.1002/anie.200352386 14743414
    [Google Scholar]
  169. PengY. ChenS. Electrocatalysts based on metal@carbon core@shell nanocomposites: An overview.Green Energy & Environment20183433535110.1016/j.gee.2018.07.006
    [Google Scholar]
  170. WangH. MuQ. ReviaR. Iron oxide-carbon core-shell nanoparticles for dual-modal imaging-guided photothermal therapy.J. Control. Release2018289707810.1016/j.jconrel.2018.09.022 30266634
    [Google Scholar]
  171. SunG. JiaS. ZhangX. Anchoring core–shell Cu@Cu2O nanoparticles to two-dimensional carbon nanosheets for bacterial disinfection.ACS Appl. Nano Mater.2021499831984110.1021/acsanm.1c02233
    [Google Scholar]
  172. YangD. YaoX. DongJ. Design and investigation of core/shell GQDs/hMSN nanoparticles as an enhanced drug delivery platform in triple-negative breast cancer.Bioconjug. Chem.20182982776278510.1021/acs.bioconjchem.8b00399 30011184
    [Google Scholar]
  173. KumarR. Lipid-based nanoparticles for drug-delivery systems.Nanocarriers for Drug Deliv2019249284
    [Google Scholar]
  174. TiwariA. KumarR. ShefiO. RandhawaJ.K. Fluorescent mantle carbon coated core–Shell Spions for Neuroengineering Applications.ACS Appl. Bio Mater.2020374665467310.1021/acsabm.0c00582 35025465
    [Google Scholar]
  175. ChanJ.M. ZhangL. YuetK.P. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery.Biomaterials20093081627163410.1016/j.biomaterials.2008.12.013 19111339
    [Google Scholar]
  176. KumarR. DalviS.V. SirilP.F. Nanoparticle-based drugs and formulations: Current status and emerging applications.ACS Appl. Nano Mater.20203649444961b10.1021/acsanm.0c00606
    [Google Scholar]
  177. QinZ. SunH. JiangZ. JiaoX. ChenD. Synthesis of metal sulfide nanoboxes based on Kirkendall effect and Pearson hardness.CrystEngComm201315589790210.1039/C2CE26495A
    [Google Scholar]
  178. KangY. TatonT.A. Controlling shell thickness in core−shell gold nanoparticles via surface-templated adsorption of block copolymer surfactants.Macromolecules200538146115612110.1021/ma050400c
    [Google Scholar]
  179. BronsteinL.M. SidorovS.N. ValetskyP.M. HartmannJ. CölfenH. AntoniettiM. Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide) with metal compounds. Micelle characteristics and Metal Nanoparticle Formation.Langmuir199915196256626210.1021/la990146f
    [Google Scholar]
  180. ZopesD. SteinB. MathurS. GrafC. Improved stability of “naked” gold nanoparticles enabled by in situ coating with mono and multivalent thiol PEG ligands.Langmuir20132936112171122610.1021/la4012058 23906521
    [Google Scholar]
  181. NagasakiY. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles.Sci. Technol. Adv. Mater.201011505450510.1088/1468‑6996/11/5/054505 27877362
    [Google Scholar]
  182. OtsukaH. NagasakiY. KataokaK. Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications.Curr. Opin. Colloid Interface Sci.20016131010.1016/S1359‑0294(00)00082‑0
    [Google Scholar]
  183. MattesA. SeitzO. Mass-spectrometric monitoring of a PNA-based ligation reaction for the multiplex detection of DNA single-nucleotide polymorphisms.Angew. Chem. Int. Ed.200140173178318110.1002/1521‑3773(20010903)40:17<3178::AID‑ANIE3178>3.0.CO;2‑M 29712064
    [Google Scholar]
  184. CabralH. MatsumotoY. MizunoK. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size.Nat. Nanotechnol.201161281582310.1038/nnano.2011.166 22020122
    [Google Scholar]
  185. HuoQ. LiuJ. WangL.Q. JiangY. LambertT.N. FangE. A new class of silica cross-linked micellar core-shell nanoparticles.J. Am. Chem. Soc.2006128196447645310.1021/ja060367p 16683810
    [Google Scholar]
  186. ZhangL. GuF.X. ChanJ.M. WangA.Z. LangerR.S. FarokhzadO.C. Nanoparticles in medicine: Therapeutic applications and developments.Clin. Pharmacol. Ther.2008835761769a10.1038/sj.clpt.6100400 17957183
    [Google Scholar]
  187. TalapinD.V. MekisI. GötzingerS. KornowskiA. BensonO. WellerH. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals.J. Phys. Chem. B200410849188261883110.1021/jp046481g
    [Google Scholar]
  188. XieR. KolbU. LiJ. BaschéT. MewsA. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals.J. Am. Chem. Soc.2005127207480748810.1021/ja042939g 15898798
    [Google Scholar]
  189. ShanavasA. JainN.K. KaurN. Polymeric core–shell combinatorial nanomedicine for synergistic anticancer therapy.ACS Omega2019422196141962210.1021/acsomega.9b02167 31788591
    [Google Scholar]
  190. SzczęchM. SzczepanowiczK. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method.Nanomaterials202010349610.3390/nano10030496 32164194
    [Google Scholar]
  191. LianT. HoR.J.Y. Trends and developments in liposome drug delivery systems.J. Pharm. Sci.200190666768010.1002/jps.1023 11357170
    [Google Scholar]
  192. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  193. HuF.Q. JiangS.P. DuY.Z. YuanH. YeY.Q. ZengS. Preparation and characteristics of monostearin nanostructured lipid carriers.Int. J. Pharm.20063141838910.1016/j.ijpharm.2006.01.040 16563671
    [Google Scholar]
  194. GessnerA. OlbrichC. SchröderW. KayserO. MüllerR.H. The role of plasma proteins in brain targeting: Species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles.Int. J. Pharm.20012141-2879110.1016/S0378‑5173(00)00639‑6 11282243
    [Google Scholar]
  195. GregoriadisG. Engineering liposomes for drug delivery: Progress and problems.Trends Biotechnol.1995131252753710.1016/S0167‑7799(00)89017‑4 8595139
    [Google Scholar]
  196. LeeS.M. AhnR.W. ChenF. Biological evaluation of pH-responsive polymer-caged nanobins for breast cancer therapy.ACS Nano2010494971497810.1021/nn100560p 20738118
    [Google Scholar]
  197. LeeS.M. ChenH. DettmerC.M. O’HalloranT.V. NguyenS.T. Polymer-caged lipsomes: A pH-responsive delivery system with high stability.J. Am. Chem. Soc.2007129491509615097a10.1021/ja070748i 17999499
    [Google Scholar]
  198. SharmaA. Liposomes in drug delivery: Progress and limitations.Int. J. Pharm.1997154212314010.1016/S0378‑5173(97)00135‑X
    [Google Scholar]
  199. PanyamJ. LabhasetwarV. Biodegradable nanoparticles for drug and gene delivery to cells and tissue.Adv. Drug Deliv. Rev.200355332934710.1016/S0169‑409X(02)00228‑4 12628320
    [Google Scholar]
  200. Pinto ReisC. NeufeldR.J. RibeiroA.J. VeigaF. NanoencapsulationI. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles.Nanomedicine20062182110.1016/j.nano.2005.12.003 17292111
    [Google Scholar]
  201. AllemannE. GurnyR. DoelkerE. Drug-loaded nanoparticles preparation methods and drug targeting issues.Eur. J. Pharm. Biopharm.199339173191
    [Google Scholar]
  202. WongH.L. RauthA.M. BendayanR. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells.Pharm. Res.200623715741585b10.1007/s11095‑006‑0282‑x 16786442
    [Google Scholar]
  203. ZhangL. ChanJ.M. GuF.X. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.ACS Nano2008281696170210.1021/nn800275r 19206374
    [Google Scholar]
  204. WasunguL. HoekstraD. Cationic lipids, lipoplexes and intracellular delivery of genes.J. Control. Release2006116225526410.1016/j.jconrel.2006.06.024 16914222
    [Google Scholar]
  205. ThevenotJ. TroutierA.L. DavidL. DelairT. LadavièreC. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids.Biomacromolecules20078113651366010.1021/bm700753q 17958441
    [Google Scholar]
  206. ThevenotJ. TroutierA.L. PutauxJ.L. DelairT. LadavièreC. Effect of the polymer nature on the structural organization of lipid/polymer particle assemblies.J. Phys. Chem. B200811244138121382210.1021/jp805865r 18844402
    [Google Scholar]
  207. TroutierA.L. DelairT. PichotC. LadavièreC. Physicochemical and interfacial investigation of lipid/polymer particle assemblies.Langmuir20052141305131310.1021/la047659t 15697275
    [Google Scholar]
  208. TroutierA.L. VéronL. DelairT. PichotC. LadavièreC. New insights into self-organization of a model lipid mixture and quantification of its adsorption on spherical polymer particles.Langmuir200521229901991010.1021/la050796l 16229507
    [Google Scholar]
  209. RuysschaertT. SonnenA.F.P. HaefeleT. MeierW. WinterhalterM. FournierD. Hybrid nanocapsules: interactions of ABA block copolymers with liposomes.J. Am. Chem. Soc.2005127176242624710.1021/ja043600x 15853329
    [Google Scholar]
  210. SeyednejadH. GhassemiA.H. van NostrumC.F. VermondenT. HenninkW.E. Functional aliphatic polyesters for biomedical and pharmaceutical applications.J. Control. Release2011152116817610.1016/j.jconrel.2010.12.016 21223989
    [Google Scholar]
  211. GaoH.Y. SchwarzJ. WeisspapirM. Hybrid lipid–polymer nanoparticulate delivery composition.US Patent 200801021272007
  212. MandalB. BhattacharjeeH. MittalN. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform.Nanomedicine20139447449110.1016/j.nano.2012.11.010 23261500
    [Google Scholar]
  213. RansonM. ShawH. WolfJ. A phase I dose-escalation and bioavailability study of oral and intravenous formulations of erlotinib (Tarceva®, OSI-774) in patients with advanced solid tumors of epithelial origin.Cancer Chemother. Pharmacol.2010661535810.1007/s00280‑009‑1133‑3 19956953
    [Google Scholar]
  214. PalS.K. FiglinR.A. ReckampK. Targeted therapies for non-small cell lung cancer: An evolving landscape.Mol. Cancer Ther.2010971931194410.1158/1535‑7163.MCT‑10‑0239 20571071
    [Google Scholar]
  215. MendelsohnJ. BaselgaJ. The EGF receptor family as targets for cancer therapy.Oncogene200019566550656510.1038/sj.onc.1204082 11426640
    [Google Scholar]
  216. CataldoV.D. GibbonsD.L. Pérez-SolerR. Quintás-CardamaA. Treatment of non-small-cell lung cancer with erlotinib or gefitinib.N. Engl. J. Med.20113641094795510.1056/NEJMct0807960 21388312
    [Google Scholar]
  217. MandalB. MittalN.K. BalabathulaP. ThomaL.A. WoodG.C. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer.Eur. J. Pharm. Sci.20168116217110.1016/j.ejps.2015.10.021 26517962
    [Google Scholar]
  218. TsengC. WangT. DongG. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting.Biomaterials200728273996400510.1016/j.biomaterials.2007.05.006 17570484
    [Google Scholar]
  219. HuangW.T. LarssonM. WangY.J. ChiouS.H. LinH.Y. LiuD.M. Demethoxycurcumin-carrying chitosan-antibody core-shell nanoparticles with multitherapeutic efficacy toward malignant A549 lung tumor: from in vitro characterization to in vivo evaluation.Mol. Pharm.20151241242124910.1021/mp500747w 25760774
    [Google Scholar]
  220. LeeK.S. ChungH.C. ImS.A. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer.Breast Cancer Res. Treat.2008108224125010.1007/s10549‑007‑9591‑y 17476588
    [Google Scholar]
  221. KimT.Y. KimD.W. ChungJ.Y. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies.Clin. Cancer Res.200410113708371610.1158/1078‑0432.CCR‑03‑0655 15173077
    [Google Scholar]
  222. KimD.W. KimS.Y. KimH.K. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer.Ann. Oncol.200718122009201410.1093/annonc/mdm374 17785767
    [Google Scholar]
  223. GuF. ZhangL. TeplyB.A. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers.Proc. Natl. Acad. Sci.200810572586259110.1073/pnas.0711714105 18272481
    [Google Scholar]
  224. ZhangL. Radovic-MorenoA.F. AlexisF. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates.ChemMedChem20072912681271b10.1002/cmdc.200700121 17600796
    [Google Scholar]
  225. FarokhzadO.C. ChengJ. TeplyB.A. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo.Proc. Natl. Acad. Sci.2006103166315632010.1073/pnas.0601755103 16606824
    [Google Scholar]
  226. ChengJ. TeplyB. SherifiI. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery.Biomaterials200728586987610.1016/j.biomaterials.2006.09.047 17055572
    [Google Scholar]
  227. RijckenC.J.F. SogaO. HenninkW.E. NostrumC.F. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery.J. Control. Release2007120313114810.1016/j.jconrel.2007.03.023 17582642
    [Google Scholar]
  228. HatziantonioyS. DemetzosC. Lipids of membranes: Chemistry, biological role and applications as drug carriers.Studies in Natural Products Chemistry200834173202[Part N].10.1016/S1572‑5995(08)80027‑0
    [Google Scholar]
  229. HitzmanC.J. ElmquistW.F. WattenbergL.W. WiedmannT.S. Development of a respirable, sustained release microcarrier for 5-fluorouracil I: In vitro assessment of liposomes, microspheres, and lipid coated nanoparticles.J. Pharm. Sci.20069551114112610.1002/jps.20591 16570302
    [Google Scholar]
  230. HitzmanC.J. ElmquistW.F. WiedmannT.S. Development of a respirable, sustained release microcarrier for 5-fluorouracil II: In vitro and in vivo optimization of lipid coated nanoparticles.J. Pharm. Sci.20069551127114310.1002/jps.20590 16570303
    [Google Scholar]
  231. HitzmanC.J. WattenbergL.W. WiedmannT.S. Pharmacokinetics of 5-fluorouracil in the hamster following inhalation delivery of lipid-coated nanoparticles.J. Pharm. Sci.20069561196121110.1002/jps.20607 16639722
    [Google Scholar]
  232. WongH.L. BendayanR. RauthA.M. WuX.Y. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new Polymer-Lipid Hybrid Nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer.J. Control. Release2006116327528410.1016/j.jconrel.2006.09.007 17097178
    [Google Scholar]
  233. SenguptaS. EavaroneD. CapilaI. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system.Nature2005436705056857210.1038/nature03794 16049491
    [Google Scholar]
  234. BeijaM. SalvayreR. Lauth-de ViguerieN. MartyJ.D. Colloidal systems for drug delivery: From design to therapy.Trends Biotechnol.201230948549610.1016/j.tibtech.2012.04.008 22673692
    [Google Scholar]
  235. Ahlin GrabnarP. KristlJ. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers.J. Microencapsul.201128432333510.3109/02652048.2011.569763 21545323
    [Google Scholar]
  236. GuptaV.K. KararP. RameshS. MisraS. GuptaA. Nanoparticle formulation for hydrophilic & hydrophobic drugs.Int J Res Pharm Sci20101163169
    [Google Scholar]
  237. LiY. WongH.L. ShuhendlerA.J. RauthA.M. WuX.Y. Molecular interactions, internal structure and drug release kinetics of rationally developed polymer–lipid hybrid nanoparticles.J. Control. Release20081281607010.1016/j.jconrel.2008.02.014 18406489
    [Google Scholar]
  238. WangA.Z. YuetK. ZhangL. ChemoRad nanoparticles: A novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation.Nanomedicine20105336136810.2217/nnm.10.6 20394530
    [Google Scholar]
  239. ChangW.K. TaiY.J. ChiangC.H. HuC.S. HongP.D. YehM.K. The comparison of protein-entrapped liposomes and lipoparticles: preparation, characterization, and efficacy of cellular uptake.Int. J. Nanomedicine2011624032417 22072876
    [Google Scholar]
  240. HuC.M.J. KaushalS. CaoH.S.T. Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells.Mol. Pharm.20107391492010.1021/mp900316a 20394436
    [Google Scholar]
  241. LiuY. LiK. PanJ. LiuB. FengS.S. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel.Biomaterials201031233033810.1016/j.biomaterials.2009.09.036 19783040
    [Google Scholar]
  242. ZhaoP. WangH. YuM. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: In vitro and in vivo evaluation.Eur. J. Pharm. Biopharm.201281224825610.1016/j.ejpb.2012.03.004 22446630
    [Google Scholar]
  243. ZhengY. YuB. WeecharangsanW. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7α-APTADD to breast cancer cells.Int. J. Pharm.2010390223424110.1016/j.ijpharm.2010.02.008 20156537
    [Google Scholar]
  244. MesserschmidtS.K.E. MusyanovychA. AltvaterM. Targeted lipid-coated nanoparticles: Delivery of tumor necrosis factor-functionalized particles to tumor cells.J. Control. Release20091371697710.1016/j.jconrel.2009.03.010 19306900
    [Google Scholar]
  245. BershteynA. ChaparroJ. RileyE. YaoR. ZachariahR. IrvineD. Lipid-coated biodegradable particles as “synthetic pathogens” for vaccine engineering.IEEE 35th Annual Northeast Bioengineering Conference20096112
    [Google Scholar]
  246. LiB. XuH. LiZ. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies.Int. J. Nanomedicine20127187197 22275834
    [Google Scholar]
  247. HetzerM. HeinzS. GrageS. BayerlT.M. Asymmetric molecular friction in supported phospholipid bilayers revealed by NMR measurements of lipid diffusion.Langmuir199814598298410.1021/la9712810
    [Google Scholar]
  248. BathfieldM. DaviotD. D’AgostoF. Synthesis of lipid-α-end-functionalized chains by raft polymerization. Stabilization of lipid/polymer particle assemblies.Macromolecules200841228346835310.1021/ma801567c
    [Google Scholar]
  249. TroutierA.L. LadavièreC. An overview of lipid membrane supported by colloidal particles.Adv. Colloid Interface Sci.2007133112110.1016/j.cis.2007.02.003 17397791
    [Google Scholar]
  250. HeiatiH. PhillipsN.C. TawashiR. Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride.Pharm. Res.19961391406141010.1023/A:1016090420759 8893283
    [Google Scholar]
  251. TardieuA. LuzzatiV. RemanF.C. Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases.J. Mol. Biol.197375471173310.1016/0022‑2836(73)90303‑3 4738730
    [Google Scholar]
  252. CheowW.S. HadinotoK. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles.Colloids Surf. B Biointerfaces201185221422010.1016/j.colsurfb.2011.02.033 21439797
    [Google Scholar]
  253. GurnyR. PeppasN.A. HarringtonD.D. BankerG.S. Development of biodegradable and injectable latices for controlled release of potent drugs.Drug Dev. Ind. Pharm.19817112510.3109/03639048109055684
    [Google Scholar]
  254. LiuY. PanJ. FengS.S. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: Effects of surfactants on particles size, characteristics and in vitro performance.Int. J. Pharm.20103951-2243250b10.1016/j.ijpharm.2010.05.008 20472049
    [Google Scholar]
  255. ShiJ. XiaoZ. VotrubaA.R. VilosC. FarokhzadO.C. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery.Angew. Chem. Int. Ed.201150317027703110.1002/anie.201101554 21698724
    [Google Scholar]
  256. ValenciaP.M. BastoP.A. ZhangL. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing.ACS Nano2010431671167910.1021/nn901433u 20166699
    [Google Scholar]
  257. FangR.H. AryalS. HuC.M.J. ZhangL. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method.Langmuir20102622169581696210.1021/la103576a 20961057
    [Google Scholar]
  258. ZhangZ. LiuY. YaoG. ZuG. ZhangX. MaJ. Solid-state reaction synthesis of NiFe2O4 nanoparticles by optimizing the synthetic conditions.Physica E20124512212910.1016/j.physe.2012.07.019
    [Google Scholar]
  259. BonrathW. MedlockJ. MullerM-A. Schutz J 5 Gas-phase reactions Catalysis for Fine Chemicals.Berlin, BostonDe Gruyter202117018310.1515/9783110571189‑005
    [Google Scholar]
  260. BalasubramanianB. KraemerK.L. RedingN.A. SkomskiR. DucharmeS. SellmyerD.J. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.ACS Nano2010441893190010.1021/nn9016422 20359188
    [Google Scholar]
  261. KumarK.S. KumarV.B. PaikP. Recent advancement in functional core-shell nanoparticles of polymers: Synthesis, physical properties, and applications in medical biotechnology.J. Nanopart. Res.2013124
    [Google Scholar]
  262. ChiangW.H. MariottiD. SankaranR.M. EdenJ.G. OstrikovK.K. Microplasmas for advanced materials and devices.Adv. Mater.20203218190550810.1002/adma.201905508 31854023
    [Google Scholar]
  263. KaushikN. KaushikN. LinhN. Plasma and nanomaterials: Fabrication and biomedical applications.Nanomaterials2019919810.3390/nano9010098 30646530
    [Google Scholar]
  264. BagreA.P. JainK. JainN.K. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: In vitro and in vivo assessment.Int. J. Pharm.20134561314010.1016/j.ijpharm.2013.08.037 23994363
    [Google Scholar]
  265. McDanielD.K. JoA. Ringel-ScaiaV.M. TIPS pentacene loaded PEO-PDLLA core-shell nanoparticles have similar cellular uptake dynamics in M1 and M2 macrophages and in corresponding in vivo microenvironments.Nanomedicine20171331255126610.1016/j.nano.2016.12.015 28040495
    [Google Scholar]
  266. ShiJ. RenY. MaJ. Novel CD44-targeting and pH/redox-dual-stimuli-responsive core–shell nanoparticles loading triptolide combats breast cancer growth and lung metastasis.J. Nanobiotechnology202119118810.1186/s12951‑021‑00934‑0 34162396
    [Google Scholar]
  267. IyerR. RamachandramoorthyH. NguyenT. Lung cancer targeted chemoradiotherapy via dual-stimuli responsive biodegradable core-shell nanoparticles.Pharmaceutics2022148152510.3390/pharmaceutics14081525 35893781
    [Google Scholar]
  268. ScolariI.R. PáezP.L. MusriM.M. PetitiJ.P. TorresA. GraneroG.E. Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus.Drug Deliv. Transl. Res.20201051403141710.1007/s13346‑019‑00705‑3 32363536
    [Google Scholar]
  269. KhareV. SinghA. MahajanG. Long-circulatory nanoparticles for gemcitabine delivery: Development and investigation of pharmacokinetics and in-vivo anticancer efficacy.Eur. J. Pharm. Sci.20169218319310.1016/j.ejps.2016.07.007 27404580
    [Google Scholar]
  270. KimK. OhK.S. ParkD.Y. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting.J. Control. Release201622814114910.1016/j.jconrel.2016.03.009 26970205
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385277725231120043600
Loading
/content/journals/pnt/10.2174/0122117385277725231120043600
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test