Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

Gold nanoparticles (GNP) have been used extensively in cancer biologics and as drug carrier systems for improved pharmacokinetics and effective therapeutic action. GNPs also ensure reliable diagnosis with sensitive imaging.

Objectives

This study aimed to synthesize tizanidine hydrochloride (TZN)-biodegradable gold (Au) nanoparticles by the reduction of chloroauric acid (HAuCl4) with trisodium citrate using a microwave synthesizer and quality by design approach.

Methods

The formulation method used was optimized using a 32 (two-factor, three-level design) factorial experiment. Temperature (X1) and concentration of gold salt (X2) were the two independent factors, and particle size (Y1), Percent drug entrapment efficiency (Y2), and polydispersity index (Y3) were the responses recorded for the study.

Results

The results of the study revealed that the optimized nanoparticles (TGN8) had a particle size (Y1) of 195 ± 1.2 nm, a polydispersity index of 0.2, and entrapment efficiency of 99.0 ± 2.9% at an optimized concentration of 14 mM gold salt (X1) and 100°C temperature (X2). Atomic Force Microscopy showed the spherical shape particles. drug release was found to be 62.1 ± 0.5% release of TZN in simulated gastric buffer (pH 1.2) and 45.5 ± 2.8% in physiological buffer (pH 7.4).

Conclusion

Overall, the study identified the optimal formulation conditions for TZN GNPs by considering the effects of independent variables on desired responses.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385279456240329041704
2024-04-27
2025-05-28
Loading full text...

Full text loading...

References

  1. FaradayM. Experimental relations of gold (and other metals) to light.Philos. Trans. R. Soc. Lond.185714145181
    [Google Scholar]
  2. AlkilanyA.M. LohseS.E. MurphyC.J. The gold standard: Gold nanoparticle libraries to understand the nano-bio interface.Acc. Chem. Res.201346365066110.1021/ar300015b22732239
    [Google Scholar]
  3. TuvalT. GedankenA. A microwave assisted polyol method for the deposition of silver nanoparticles on silica spheres.Nanotechnology2007182525560125560810.1088/0957‑4484/18/25/255601
    [Google Scholar]
  4. ZhangJ. MouL. JiangX. Surface chemistry of gold nanoparticles for health-related applications.Chem. Sci.202011492393610.1039/C9SC06497D34084347
    [Google Scholar]
  5. MirkinC.A. LetsingerR.L. MucicR.C. StorhoffJ.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature1996382659260760910.1038/382607a08757129
    [Google Scholar]
  6. LaurentiM. AmendolaA. MeneghettiS. Oncotheranostic gold nanoparticles: A review for cancer nanomedicine.J. Mater. Chem. B Mater. Biol. Med.2019734603481
    [Google Scholar]
  7. XuL. XieL. FangC. LouW. JiangT. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation.Nano Select20223101382139410.1002/nano.202200064
    [Google Scholar]
  8. VinodhiniS. VithiyaB.S.M. PrasadT.A.A. Green synthesis of silver nanoparticles by employing the Allium fistulosum, Tabernaemontana divaricate and Basella alba leaf extracts for antimicrobial applications.J. King Saud Univ. Sci.202234410193910.1016/j.jksus.2022.101939
    [Google Scholar]
  9. TyagiP.K. GuptaS. TyagiS. KumarM. PandiselvamR. DaştanS.D. Sharifi-RadJ. GolaD. AryaA. Green synthesis of iron nanoparticles from spinach leaf and banana peel aqueous extracts and evaluation of antibacterial potential.J. Nanomater.2021202111110.1155/2021/4871453
    [Google Scholar]
  10. IqbalJ. AbbasiB.A. YaseenT. ZahraS.A. ShahbazA. ShahS.A. UddinS. MaX. RaoufB. KanwalS. AminW. MahmoodT. El-SerehyH.A. AhmadP. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications.Sci. Rep.20211112098810.1038/s41598‑021‑99839‑z34697404
    [Google Scholar]
  11. QiaoJ. QiL. Recent progress in plant-gold nanoparticles fabrication methods and bio-applications.Talanta2021223Pt 212139610.1016/j.talanta.2020.12139633298252
    [Google Scholar]
  12. MikhailovaE.O. Gold nanoparticles: Biosynthesis and potential of biomedical application.J. Funct. Biomater.20211247010.3390/jfb1204007034940549
    [Google Scholar]
  13. KumarD. SainiN. JainN. SareenR. PanditV. Gold nanoparticles: An era in bionanotechnology.Expert Opin. Drug Deliv.201310339740910.1517/17425247.2013.74985423289421
    [Google Scholar]
  14. YangY. ZhengX. ChenL. GongX. YangH. DuanX. ZhuY. Multifunctional gold nanoparticles in cancer diagnosis and treatment.Int. J. Nanomedicine2022172041206710.2147/IJN.S35514235571258
    [Google Scholar]
  15. KodihaM. MahboubiH. MaysingerD. StochajU. Gold nanoparticles impinge on nucleoli and the stress response in mcf7 breast cancer cells.Nanobiomedicine20163310.5772/6233729942378
    [Google Scholar]
  16. DreadenE.C. AustinL.A. MackeyM.A. El-SayedM.A. Size matters: gold nanoparticles in targeted cancer drug delivery.Ther. Deliv.20123445747810.4155/tde.12.2122834077
    [Google Scholar]
  17. MbaI.E. NwezeE.I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects.World J. Microbiol. Biotechnol.202137610810.1007/s11274‑021‑03070‑x34046779
    [Google Scholar]
  18. HuqM.A. AshrafudoullaM. ParvezM.A.K. BalusamyS.R. RahmanM.M. KimJ.H. AkterS. Chitosan-coated polymeric silver and gold nanoparticles: biosynthesis, characterization and potential antibacterial applications: A Review.Polymers20221423530210.3390/polym1423530236501695
    [Google Scholar]
  19. SahaK. AgastiS.S. KimC. LiX. RotelloV.M. Gold nanoparticles in chemical and biological sensing.Chem. Rev.201211252739277910.1021/cr200117822295941
    [Google Scholar]
  20. DykmanL.A. KhlebtsovN.G. Immunological properties of gold nanoparticles.Adv. Colloid Interface Sci.2019256256274
    [Google Scholar]
  21. AdewaleO.B. DavidsH. CairncrossL. RouxS. Toxicological behavior of gold nanoparticles on various models: influence of physicochemical properties and other factors.Int. J. Toxicol.201938535738410.1177/109158181986313031462100
    [Google Scholar]
  22. MilanJ. NiemczykK. Kus-LiśkiewiczM. Treasure on the earth gold nanoparticles and their biomedical applications.Materials2022159335510.3390/ma1509335535591689
    [Google Scholar]
  23. KoW.C. WangS.J. HsiaoC.Y. HungC.T. HsuY.J. ChangD.C. HungC.F. Pharmacological role of functionalized gold nanoparticles in disease applications.Molecules2022275155110.3390/molecules2705155135268651
    [Google Scholar]
  24. SaniA. CaoC. CuiD. Toxicity of gold nanoparticles (AuNPs): A review.Biochem. Biophys. Rep.20212610099110.1016/j.bbrep.2021.10099133912692
    [Google Scholar]
  25. RawatP. SyedS. GuptaS. Formulation of cabotegravir loaded gold nanoparticles: optimization, characterization to in-vitro cytotoxicity study.J Clust Sci202134289390510.1007/s10876‑022‑02261‑2
    [Google Scholar]
  26. JainA. JainS.K. Formulation and optimization of temozolomide nanoparticles by 3 factor 2 level factorial design.Biomatter201332e2510210.4161/biom.2510223719178
    [Google Scholar]
  27. DongJ CarpinonePL PyrgiotakisG DemokritouP MoudgilBM Synthesis of precision gold nanoparticles using turkevich method.Kona20203722423210.14356/kona.2020011
    [Google Scholar]
  28. BedfordE.E. SpadavecchiaJ. PradierC-M. GuF.X. Label-free detection of biomolecules using surface plasmon resonance sensors.Macromolecular Bioscience, Early View Publication201210.1002/mabi.201100435
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385279456240329041704
Loading
/content/journals/pnt/10.2174/0122117385279456240329041704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test