Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Gene therapy is a revolutionary approach aimed at treating various diseases by manipulating the expression of specific genes. The composition and formulation of ultra-deformable vesicles play a crucial role in determining their properties and performance as siRNA delivery vectors. In the development of ultra-deformable vesicles for siRNA delivery, careful lipid selection and optimization are crucial for achieving desirable vesicle characteristics and efficient siRNA encapsulation and delivery. The stratum corneum acts as a protective barrier, limiting the penetration of molecules, including siRNA, into the deeper layers of the skin. Ultradeformable vesicles offer a promising solution to overcome this barrier and facilitate efficient siRNA delivery to target cells in the skin. The stratum corneum, the outermost layer of the skin, acts as a significant barrier to the penetration of siRNA. These engineering approaches enable the production of uniform and well-defined vesicles with enhanced deformability and improved siRNA encapsulation efficiency. Looking ahead, advancements in ultra-deformable vesicle design and optimization, along with continued exploration of combination strategies and regulatory frameworks, will further drive the field of ultra-deformable vesicle-based siRNA delivery.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385271654231215064542
2024-01-25
2024-12-29
Loading full text...

Full text loading...

References

  1. MountainA. Gene therapy: The first decade.Trends Biotechnol.200018311912810.1016/S0167‑7799(99)01416‑X10675899
    [Google Scholar]
  2. ThomasC.E. EhrhardtA. KayM.A. Progress and problems with the use of viral vectors for gene therapy.Nat. Rev. Genet.20034534635810.1038/nrg106612728277
    [Google Scholar]
  3. AghajanianH. RurikJ.G. EpsteinJ.A. CAR-based therapies: Opportunities for immuno-medicine beyond cancer.Nat. Metab.20224216316910.1038/s42255‑022‑00537‑535228742
    [Google Scholar]
  4. MendesB.B. ConniotJ. AvitalA. YaoD. JiangX. ZhouX. Sharf-PaukerN. XiaoY. AdirO. LiangH. ShiJ. SchroederA. CondeJ. Nanodelivery of nucleic acids.Nat Rev Methods Primers2022212410.1038/s43586‑022‑00104‑y35480987
    [Google Scholar]
  5. AmbesajirA. KaushikA. KaushikJ.J. PetrosS.T. RNA interference: A futuristic tool and its therapeutic applications.Saudi J. Biol. Sci.201219439540310.1016/j.sjbs.2012.08.00123961202
    [Google Scholar]
  6. GuoP. CobanO. SneadN.M. TrebleyJ. HoeprichS. GuoS. ShuY. Engineering RNA for targeted siRNA delivery and medical application.Adv. Drug Deliv. Rev.201062665066610.1016/j.addr.2010.03.00820230868
    [Google Scholar]
  7. CzechM.P. AouadiM. TeszG.J. RNAi-based therapeutic strategies for metabolic disease.Nat. Rev. Endocrinol.20117847348410.1038/nrendo.2011.5721502982
    [Google Scholar]
  8. GavrilovK. SaltzmanW.M. Therapeutic siRNA: Principles, challenges, and strategies.Yale J. Biol. Med.201285218720022737048
    [Google Scholar]
  9. ShegokarR. Al ShaalL. MishraP.R. SiRNA delivery: Challenges and role of carrier systems.Pharmazie201166531331821699063
    [Google Scholar]
  10. ShajariN. MansooriB. DavudianS. MohammadiA. BaradaranB. Overcoming the challenges of siRNA delivery: Nanoparticle strategies.Curr. Drug Deliv.2017141364610.2174/156720181366616081610540827538460
    [Google Scholar]
  11. CunD. JensenL.B. NielsenH.M. MoghimiM. FogedC. Polymeric nanocarriers for siRNA delivery: Challenges and future prospects.J. Biomed. Nanotechnol.20084325827510.1166/jbn.2008.328
    [Google Scholar]
  12. WangH. ZhangS. LvJ. ChengY. Design of polymers for siRNA delivery: Recent progress and challenges.VIEW2021232020002610.1002/VIW.20200026
    [Google Scholar]
  13. SinghA. TrivediP. JainN.K. Advances in siRNA delivery in cancer therapy.Artif. Cells Nanomed. Biotechnol.201846227428310.1080/21691401.2017.130721028423924
    [Google Scholar]
  14. TanS.J. KiatwuthinonP. RohY.H. KahnJ.S. LuoD. Engineering nanocarriers for siRNA delivery.Small20117784185610.1002/smll.20100138921374801
    [Google Scholar]
  15. GuoS. HuangL. Nanoparticles escaping RES and endosome: Challenges for siRNA delivery for cancer therapy.J. Nanomater.2011201111210.1155/2011/987530
    [Google Scholar]
  16. WhiteheadK.A. DahlmanJ.E. LangerR.S. AndersonD.G. Silencing or stimulation? siRNA delivery and the immune system.Annu. Rev. Chem. Biomol. Eng.201121779610.1146/annurev‑chembioeng‑061010‑11413322432611
    [Google Scholar]
  17. TatipartiK. SauS. KashawS. IyerA. siRNA delivery strategies: A comprehensive review of recent developments.Nanomaterials2017747710.3390/nano704007728379201
    [Google Scholar]
  18. HouK.K. PanH. SchlesingerP.H. WicklineS.A. A role for peptides in overcoming endosomal entrapment in siRNA delivery — A focus on melittin.Biotechnol. Adv.201533693194010.1016/j.biotechadv.2015.05.00526025036
    [Google Scholar]
  19. JiangY. HuoS. HardieJ. LiangX.J. RotelloV.M. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems.Expert Opin. Drug Deliv.201613454755910.1517/17425247.2016.113448626735861
    [Google Scholar]
  20. ZhengM. TaoW. ZouY. FarokhzadO.C. ShiB. Nanotechnology-based strategies for siRNA brain delivery for disease therapy.Trends Biotechnol.201836556257510.1016/j.tibtech.2018.01.00629422412
    [Google Scholar]
  21. LorenzerC. DirinM. WinklerA.M. BaumannV. WinklerJ. Going beyond the liver: Progress and challenges of targeted delivery of siRNA therapeutics.J. Control. Release201520311510.1016/j.jconrel.2015.02.00325660205
    [Google Scholar]
  22. KievitF.M. ZhangM. Surface engineering of iron oxide nanoparticles for targeted cancer therapy.Acc. Chem. Res.2011441085386210.1021/ar200027721528865
    [Google Scholar]
  23. Di FrancescoM. PrimaveraR. FioritoS. CristianoM.C. TaddeoV.A. EpifanoF. Di MarzioL. GenoveseS. CeliaC. Acronychiabaueri analogue derivative-loaded ultradeformable vesicles: physicochemical characterization and potential applications.Planta Med.201783548249127542175
    [Google Scholar]
  24. JainA.K. KumarF. Transfersomes: Ultradeformable vesicles for transdermal drug delivery.Asian J Biomater Res.2017313
    [Google Scholar]
  25. RomeroEL MorillaMJ Ultradeformable phospholipid vesicles as a drug delivery system: A review.Res. Rep. Transdermal Drug Deliv.20154556910.2147/RRTD.S50370
    [Google Scholar]
  26. CevcG. SchätzleinA.G. RichardsenH. VierlU. Overcoming semipermeable barriers, such as the skin, with ultradeformable mixed lipid vesicles, transfersomes, liposomes, or mixed lipid micelles.Langmuir20031926107531076310.1021/la026585n
    [Google Scholar]
  27. JainS. TripathiS. TripathiP.K. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules.J. Drug Deliv. Sci. Technol.20216110216610.1016/j.jddst.2020.102166
    [Google Scholar]
  28. ApolinárioA.C. HauschkeL. NunesJ.R. LopesL.B. Lipid nanovesicles for biomedical applications: ‘What is in a name’?Prog. Lipid Res.20218210109610.1016/j.plipres.2021.10109633831455
    [Google Scholar]
  29. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.11385134224787
    [Google Scholar]
  30. ChackoI.A. GhateV.M. DsouzaL. LewisS.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications.Colloids Surf. B Biointerfaces202019511126210.1016/j.colsurfb.2020.11126232736123
    [Google Scholar]
  31. SudhakarK. FuloriaS. SubramaniyanV. SathasivamK.V. AzadA.K. SwainS.S. SekarM. KarupiahS. PorwalO. SahooA. MeenakshiD.U. SharmaV.K. JainS. CharyuluR.N. FuloriaN.K. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system.Nanomaterials20211110255710.3390/nano1110255734685005
    [Google Scholar]
  32. El ZaafaranyG.M. AwadG.A.S. HolayelS.M. MortadaN.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery.Int. J. Pharm.20103971-216417210.1016/j.ijpharm.2010.06.03420599487
    [Google Scholar]
  33. BensonH.A.E. Transfersomes for transdermal drug delivery.Expert Opin. Drug Deliv.20063672773710.1517/17425247.3.6.72717076595
    [Google Scholar]
  34. AbdulbaqiI.M. DarwisY. KhanN.A.K. AssiR.A. KhanA.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials.Int. J. Nanomedicine2016112279230410.2147/IJN.S10501627307730
    [Google Scholar]
  35. SinicoC. FaddaA.M. Vesicular carriers for dermal drug delivery.Expert Opin. Drug Deliv.20096881382510.1517/1742524090307102919569979
    [Google Scholar]
  36. O’MahonyA.M. OgierJ. DarcyR. CryanJ.F. O’DriscollC.M. Cationic and PEGylated amphiphilic cyclodextrins: Co-formulation opportunities for neuronal siRNA delivery.PLoS One201386e6641310.1371/journal.pone.006641323805220
    [Google Scholar]
  37. JubeliE. RajuL. KhaliqueN.A. BkN. ZegelC. ChenA. LouH.H. ØpstadC.L. ZeeshanM. SliwkaH.R. PartaliV. LeopoldP.L. PungenteM.D. Polyene-based cationic lipids as visually traceable siRNA transfer reagents.Eur. J. Pharm. Biopharm.20158928028910.1016/j.ejpb.2014.12.01125536113
    [Google Scholar]
  38. SrivastavaV. SinghV. KumarK.D. KumarM.N. Recent trends and updates on ultradeformable and elastic vesicles in ocular drug delivery.Drug Discov. Today202328810364710.1016/j.drudis.2023.10364737263389
    [Google Scholar]
  39. Fernández-GarcíaR. LalatsaA. StattsL. Bolás-FernándezF. BallesterosM.P. SerranoD.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale.Int. J. Pharm.202057311881710.1016/j.ijpharm.2019.11881731678520
    [Google Scholar]
  40. KandregulaB. NarisepalliS. ChitkaraD. MittalA. Exploration of lipid-based nanocarriers as drug delivery systems in diabetic foot ulcer.Mol. Pharm.20221971977199810.1021/acs.molpharmaceut.1c0097035481377
    [Google Scholar]
  41. Harshita BarkatM.A. DasS.S. PottooF.H. BegS. RahmanZ. Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications.Curr. Pharm. Des.202026111167118010.2174/138161282666620020609452932026769
    [Google Scholar]
  42. Honeywell-NguyenP.L. BouwstraJ.A. Vesicles as a tool for transdermal and dermal delivery.Drug Discov. Today. Technol.200521677410.1016/j.ddtec.2005.05.00324981757
    [Google Scholar]
  43. SoutoE.B. MacedoA.S. Dias-FerreiraJ. CanoA. ZielińskaA. MatosC.M. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs).Int. J. Mol. Sci.20212218974310.3390/ijms2218974334575907
    [Google Scholar]
  44. SallamM.A. PrakashS. KumbhojkarN. ShieldsC.W.IV MitragotriS. Formulation‐based approaches for dermal delivery of vaccines and therapeutic nucleic acids: Recent advances and future perspectives.Bioeng. Transl. Med.202163e1021510.1002/btm2.1021534589595
    [Google Scholar]
  45. JoseA. LabalaS. VenugantiV.V.K. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer.J. Drug Target.201725433034110.1080/1061186X.2016.125856727819148
    [Google Scholar]
  46. GeusensB. LambertJ. De SmedtS.C. BuyensK. SandersN.N. Van GeleM. Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes.J. Control. Release2009133321422010.1016/j.jconrel.2008.10.00318973779
    [Google Scholar]
  47. Dos SantosN. CoxK.A. McKenzieC.A. van BaardaF. GallagherR.C. KarlssonG. EdwardsK. MayerL.D. AllenC. BallyM.B. pH gradient loading of anthracyclines into cholesterol-free liposomes: Enhancing drug loading rates through use of ethanol.Biochim. Biophys. Acta Biomembr.200416611476010.1016/j.bbamem.2003.11.01614967474
    [Google Scholar]
  48. AbrahamS.A. EdwardsK. KarlssonG. MacIntoshS. MayerL.D. McKenzieC. BallyM.B. Formation of transition metal–doxorubicin complexes inside liposomes.Biochim. Biophys. Acta Biomembr.200215651415410.1016/S0005‑2736(02)00507‑212225851
    [Google Scholar]
  49. JeyaramA. LamichhaneT.N. WangS. ZouL. DahalE. KronstadtS.M. LevyD. ParajuliB. KnudsenD.R. ChaoW. JayS.M. Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles.Mol. Ther.202028397598510.1016/j.ymthe.2019.12.00731911034
    [Google Scholar]
  50. DrummondD.C. NobleC.O. HayesM.E. ParkJ.W. KirpotinD.B. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development.J. Pharm. Sci.200897114696474010.1002/jps.2135818351638
    [Google Scholar]
  51. MiatmokoA. AyuninQ. SoeratriW. Ultradeformable vesicles: Concepts and applications relating to the delivery of skin cosmetics.Ther. Deliv.2021121073975610.4155/tde‑2021‑004434519219
    [Google Scholar]
  52. WangY. ShimM.S. LevinsonN.S. SungH.W. XiaY. Stimuli‐responsive materials for controlled release of theranostic agents.Adv. Funct. Mater.201424274206422010.1002/adfm.20140027925477774
    [Google Scholar]
  53. LuY. SunW. GuZ. Stimuli-responsive nanomaterials for therapeutic protein delivery.J. Control. Release201419411910.1016/j.jconrel.2014.08.01525151983
    [Google Scholar]
  54. MuraS. NicolasJ. CouvreurP. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.20131211991100310.1038/nmat377624150417
    [Google Scholar]
  55. CevcG. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery.Crit Rev Ther Drug Carrier Syst.1996133-425738810.1615/CritRevTherDrugCarrierSyst.v13.i3‑4.30
    [Google Scholar]
  56. BnyanR. KhanI. EhtezaziT. SaleemI. GordonS. O’NeillF. RobertsM. Surfactant effects on lipid-based vesicles properties.J. Pharm. Sci.201810751237124610.1016/j.xphs.2018.01.00529336980
    [Google Scholar]
  57. HussainA. SinghS. SharmaD. WebsterT. ShafaatK. FarukA. Elastic liposomes as novel carriers: Recent advances in drug delivery.Int. J. Nanomedicine2017125087510810.2147/IJN.S13826728761343
    [Google Scholar]
  58. GallasA. AlexanderC. DaviesM.C. PuriS. AllenS. Chemistry and formulations for siRNA therapeutics.Chem. Soc. Rev.201342207983799710.1039/c3cs35520a23857524
    [Google Scholar]
  59. DarG.H. GopalV. RaoN.M. Systemic delivery of stable siRNA-encapsulating lipid vesicles: optimization, biodistribution, and tumor suppression.Mol. Pharm.201512261062010.1021/mp500677x25545110
    [Google Scholar]
  60. GoodingM. BrowneL.P. QuinteiroF.M. SelwoodD.L. siRNA delivery: From lipids to cell-penetrating peptides and their mimics.Chem. Biol. Drug Des.201280678780910.1111/cbdd.1205222974319
    [Google Scholar]
  61. LinP.J.C. TamY.Y.C. HafezI. SandhuA. ChenS. CiufoliniM.A. NabiI.R. CullisP.R. Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA.Nanomedicine20139223324610.1016/j.nano.2012.05.01922698807
    [Google Scholar]
  62. EversM.J.W. KulkarniJ.A. van der MeelR. CullisP.R. VaderP. SchiffelersR.M. State‐of‐the‐art design and rapid‐mixing production techniques of lipid nanoparticles for nucleic acid delivery.Small Methods201829170037510.1002/smtd.201700375
    [Google Scholar]
  63. LeungA.K.K. TamY.Y.C. ChenS. HafezI.M. CullisP.R. Microfluidic mixing: A general method for encapsulating macromolecules in lipid nanoparticle systems.J. Phys. Chem. B2015119288698870610.1021/acs.jpcb.5b0289126087393
    [Google Scholar]
  64. DuangjitS. ObataY. SanoH. KikuchiS. OnukiY. OpanasopitP. NgawhirunpatT. MaitaniY. TakayamaK. Menthosomes, novel ultradeformable vesicles for transdermal drug delivery: optimization and characterization.Biol. Pharm. Bull.201235101720172810.1248/bpb.b12‑0034323037161
    [Google Scholar]
  65. YangK. DelaneyJ.T. SchubertU.S. FahrA. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method.J. Liposome Res.2012221314110.3109/08982104.2011.58431921682653
    [Google Scholar]
  66. WongA. Quantitative modeling of the high-throughput production and in vivo kinetics of (drug-encapsulating) liposomes.PLoS One201054e1028010.1371/journal.pone.001028020428243
    [Google Scholar]
  67. ChauhanS. GulatiN. NagaichU. Fabrication and evaluation of ultra deformable vesicles for atopic dermatitis as topical delivery.Int. J. Polym. Mater.201968526627710.1080/00914037.2018.1443932
    [Google Scholar]
  68. NayakD. TawaleR.M. AranjaniJ.M. TippavajhalaV.K. Formulation, optimization and evaluation of novel ultra-deformable vesicular drug delivery system for an anti-fungal drug.AAPS PharmSciTech202021514010.1208/s12249‑020‑01681‑532419032
    [Google Scholar]
  69. TiwariG. TiwariR. SinghR. RaiA.K. Ultra-deformable liposomes as flexible nanovesicular carrier to penetrate versatile drugs transdermally.Nanosci. Nanotechnol. Asia2020101122010.2174/2210681208666180820145327
    [Google Scholar]
  70. ChenG. LiD. JinY. ZhangW. TengL. BuntC. WenJ. Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin.Drug Dev. Ind. Pharm.201440226026510.3109/03639045.2012.75651223356860
    [Google Scholar]
  71. WangF.C. HudsonP.L. BurkK. MarangoniA.G. Encapsulation of cycloastragenol in phospholipid vesicles enhances transport and delivery across the skin barrier.J. Colloid Interface Sci.2022608Pt 21222122810.1016/j.jcis.2021.10.14334735856
    [Google Scholar]
  72. JainS. PatelN. ShahM.K. KhatriP. VoraN. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application.J. Pharm. Sci.2017106242344510.1016/j.xphs.2016.10.00127865609
    [Google Scholar]
  73. PaolinoD. CoscoD. CilurzoF. TrapassoE. MorittuV.M. CeliaC. FrestaM. Improved in vitro and in vivo collagen biosynthesis by asiaticoside-loaded ultradeformable vesicles.J. Control. Release2012162114315110.1016/j.jconrel.2012.05.05022698941
    [Google Scholar]
  74. NieX. ShiC. ChenX. YuC. JiangZ. XuG. LinY. TangM. LuanY. A single-shot prophylactic tumor vaccine enabled by an injectable biomembrane hydrogel.Acta Biomater.202316930631610.1016/j.actbio.2023.08.01037574158
    [Google Scholar]
  75. PriyankaK. SinghS. A review on skin targeted delivery of bioactives as ultradeformable vesicles: overcoming the penetration problem.Curr. Drug Targets201415218419810.2174/138945011566614011310033824410447
    [Google Scholar]
  76. LiQ. SongQ. ZhaoZ. LinY. ChengY. KarinN. LuanY. Genetically engineered artificial exosome-constructed hydrogel for ovarian cancer therapy.ACS Nano20231711103761039210.1021/acsnano.3c0080437194951
    [Google Scholar]
  77. ChenR. LiR. LiuQ. BaiC. QinB. MaY. HanJ. Ultradeformable liposomes: A novel vesicular carrier for enhanced transdermal delivery of procyanidins: Effect of surfactants on the formation, stability, and transdermal delivery.AAPS PharmSciTech20171851823183210.1208/s12249‑016‑0661‑527834056
    [Google Scholar]
  78. CampaniV. SalzanoG. LusaS. De RosaG. Lipid nanovectors to deliver RNA oligonucleotides in cancer.Nanomaterials20166713110.3390/nano607013128335259
    [Google Scholar]
  79. MehannaM. MotawaaA. SamahaM. Pharmaceutical particulate carriers: Lipid-based carriers.Natl. J. Physiol. Pharm. Pharmacol.20122110
    [Google Scholar]
  80. LiW. SzokaF.C.Jr Lipid-based nanoparticles for nucleic acid delivery.Pharm. Res.200724343844910.1007/s11095‑006‑9180‑517252188
    [Google Scholar]
  81. XiangB CaoD-Y Preparation of drug liposomes by thin-film hydration and homogenization. In: Liposome-Based Drug Delivery SystemsSpringer2021253510.1007/978‑3‑662‑49320‑5_2
    [Google Scholar]
  82. RosaJ. SuzukiI. KraviczM. CaronA. PupoA.V. PraçaF.G. BentleyM.V.L.B. Current non-viral siRNA delivery systems as a promising treatment of skin diseases.Curr. Pharm. Des.201824232644266310.2174/138161282466618080712001730084329
    [Google Scholar]
  83. JayasingheM.K. TanM. PengB. YangY. SethiG. PirisinuM. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies.Semin Cancer Biol202174627810.1016/j.semcancer.2021.02.010
    [Google Scholar]
  84. RomanoE. NettiP.A. TorinoE. A high throughput approach based on dynamic high pressure for the encapsulation of active compounds in exosomes for precision medicine.Int. J. Mol. Sci.20212218989610.3390/ijms2218989634576059
    [Google Scholar]
  85. HeyesJ. HallK. TailorV. LenzR. MacLachlanI. Synthesis and characterization of novel poly(ethylene glycol)-lipid conjugates suitable for use in drug delivery.J. Control. Release2006112228029010.1016/j.jconrel.2006.02.01216603272
    [Google Scholar]
  86. DengY. ChenJ. ZhaoY. YanX. ZhangL. ChoyK. HuJ. SantH.J. GaleB.K. TangT. Transdermal delivery of siRNA through microneedle array.Sci. Rep.2016612142210.1038/srep2142226888011
    [Google Scholar]
  87. AmjadiM. MostaghaciB. SittiM. Recent advances in skin penetration enhancers for transdermal gene and drug delivery.Curr. Gene Ther.201717213914628494734
    [Google Scholar]
  88. PegoraroC. MacNeilS. BattagliaG. Transdermal drug delivery: From micro to nano.Nanoscale2012461881189410.1039/c2nr11606e22334401
    [Google Scholar]
  89. GuptaR. KumarA. Transfersomes: The ultra-deformable carrier system for non-invasive delivery of drug.Curr. Drug Deliv.202118440842010.2174/156720181766620080410541632753015
    [Google Scholar]
  90. El MaghrabyG.M.M. WilliamsA.C. BarryB.W. Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes.J. Pharm. Pharmacol.201053101311132210.1211/002235701177780011697538
    [Google Scholar]
  91. Marjukka SuhonenT. BouwstraJ.A. UrttiA. Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations.J. Control. Release199959214916110.1016/S0168‑3659(98)00187‑410332050
    [Google Scholar]
  92. PriyaS. DesaiV.M. SinghviG. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery.ACS Omega202381748610.1021/acsomega.2c0597636643539
    [Google Scholar]
  93. SalaM. DiabR. ElaissariA. FessiH. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications.Int. J. Pharm.20185351-211710.1016/j.ijpharm.2017.10.04629111097
    [Google Scholar]
  94. EstanqueiroM. AmaralM.H. ConceiçãoJ. Sousa LoboJ.M. Nanotechnological carriers for cancer chemotherapy: The state of the art.Colloids Surf. B Biointerfaces201512663164810.1016/j.colsurfb.2014.12.04125591851
    [Google Scholar]
  95. NagarsenkerMS JainAS ShahSM Functionalized lipid particulates in targeted drug delivery. In: Targeted Drug Delivery : Concepts and DesignSpringer201541143110.1007/978‑3‑319‑11355‑5_13
    [Google Scholar]
  96. IbarakiH. KanazawaT. OogiC. TakashimaY. SetaY. Effects of surface charge and flexibility of liposomes on dermal drug delivery.J. Drug Deliv. Sci. Technol.20195015516210.1016/j.jddst.2019.01.028
    [Google Scholar]
  97. ChangM. ZhangF. WeiT. ZuoT. GuanY. LinG. ShaoW. Smart linkers in polymer–drug conjugates for tumor-targeted delivery.J. Drug Target.201624647549110.3109/1061186X.2015.110832426560242
    [Google Scholar]
  98. ChiperM. NiederreitherK. ZuberG. Transduction methods for cytosolic delivery of proteins and bioconjugates into living cells.Adv. Healthc. Mater.201876170104010.1002/adhm.20170104029205903
    [Google Scholar]
  99. PatilM.L. ZhangM. MinkoT. Multifunctional triblock Nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing.ACS Nano2011531877188710.1021/nn102711d21322531
    [Google Scholar]
  100. ShimM.S. KwonY.J. Acid-responsive linear polyethylenimine for efficient, specific, and biocompatible siRNA delivery.Bioconjug. Chem.200920348849910.1021/bc800436v19199781
    [Google Scholar]
  101. NatshehH. TouitouE. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: The effect of surfactants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties.Molecules20202513295910.3390/molecules2513295932605117
    [Google Scholar]
  102. GujratiM. MalamasA. ShinT. JinE. SunY. LuZ.R. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release.Mol. Pharm.20141182734274410.1021/mp400787s25020033
    [Google Scholar]
  103. ZhangS. ZhaoB. JiangH. WangB. MaB. Cationic lipids and polymers mediated vectors for delivery of siRNA.J. Control. Release2007123111010.1016/j.jconrel.2007.07.01617716771
    [Google Scholar]
  104. WangJ. LuZ. WientjesM.G. AuJ.L.S. Delivery of siRNA therapeutics: Barriers and carriers.AAPS J.201012449250310.1208/s12248‑010‑9210‑420544328
    [Google Scholar]
  105. ChenthamaraD. SubramaniamS. RamakrishnanS.G. KrishnaswamyS. EssaM.M. LinF.H. QoronflehM.W. Therapeutic efficacy of nanoparticles and routes of administration.Biomater. Res.20192312010.1186/s40824‑019‑0166‑x31832232
    [Google Scholar]
  106. WalkerS. BusattoS. PhamA. TianM. SuhA. CarsonK. QuinteroA. LafrenceM. MalikH. SantanaM.X. WolframJ. Extracellular vesicle-based drug delivery systems for cancer treatment.Theranostics20199268001801710.7150/thno.3709731754377
    [Google Scholar]
  107. SharmaS. MasudM.K. KanetiY.V. RewatkarP. KoradiaA. HossainM.S.A. YamauchiY. PopatA. SalomonC. Extracellular vesicle nanoarchitectonics for novel drug delivery applications.Small20211742210222010.1002/smll.20210222034216426
    [Google Scholar]
  108. KooijmansS.A.A. FliervoetL.A.L. van der MeelR. FensM.H.A.M. HeijnenH.F.G. van Bergen enH.P.M.P. VaderP. SchiffelersR.M. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time.J. Control. Release2016224778510.1016/j.jconrel.2016.01.00926773767
    [Google Scholar]
  109. SharmaG. ModgilA. SunC. SinghJ. Grafting of cell-penetrating peptide to receptor-targeted liposomes improves their transfection efficiency and transport across blood-brain barrier model.J. Pharm. Sci.201210172468247810.1002/jps.2315222517732
    [Google Scholar]
  110. BaruaS. MitragotriS. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects.Nano Today20149222324310.1016/j.nantod.2014.04.00825132862
    [Google Scholar]
  111. AscensoA. SalgadoA. EuletérioC. PraçaF.G. BentleyM.V.L.B. MarquesH.C. OliveiraH. SantosC. SimõesS. In vitro and in vivo topical delivery studies of tretinoin-loaded ultradeformable vesicles.Eur. J. Pharm. Biopharm.2014881485510.1016/j.ejpb.2014.05.00224854884
    [Google Scholar]
  112. KrishnanV. MitragotriS. Nanoparticles for topical drug delivery: Potential for skin cancer treatment.Adv. Drug Deliv. Rev.20201538710810.1016/j.addr.2020.05.01132497707
    [Google Scholar]
  113. CruzM.E.M. CorvoM.L. MartinsM.B. SimõesS. GasparM.M. Liposomes as tools to improve therapeutic enzyme performance.Pharmaceutics202214353110.3390/pharmaceutics1403053135335906
    [Google Scholar]
  114. SheffeyV.V. SiewE.B. TannerE.E.L. Eniola-AdefesoO. PLGA’s plight and the role of stealth surface modification strategies in its use for intravenous particulate drug delivery.Adv. Healthc. Mater.2022118210153610.1002/adhm.20210153635032406
    [Google Scholar]
  115. ImmordinoM.L. DosioF. CattelL. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential.Int. J. Nanomedicine20061329731517717971
    [Google Scholar]
  116. NagO. AwasthiV. Surface engineering of liposomes for stealth behavior.Pharmaceutics20135454256910.3390/pharmaceutics504054224300562
    [Google Scholar]
  117. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh DavaraniF. JavanmardR. DokhaniA. KhorasaniS. MozafariM. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  118. CevcG BlumeG New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes.Biochim Biophys Acta Biomembr.200115142191205
    [Google Scholar]
  119. GeusensB. StrobbeT. BrackeS. DynoodtP. SandersN. GeleM.V. LambertJ. Lipid-mediated gene delivery to the skin.Eur. J. Pharm. Sci.201143419921110.1016/j.ejps.2011.04.00321515366
    [Google Scholar]
  120. AntimisiarisS.G. MaraziotiA. KannavouM. NatsaridisE. GkartziouF. KogkosG. MourtasS. Overcoming barriers by local drug delivery with liposomes.Adv. Drug Deliv. Rev.2021174538610.1016/j.addr.2021.01.01933539852
    [Google Scholar]
  121. HattoriY DateM AraiS KawanoK YonemochiE MaitaniY Transdermal delivery of small interfering RNA with elastic cationic liposomes in mice.J. Pharm.2013201310.1155/2013/149695
    [Google Scholar]
  122. DesmetE. BrackeS. ForierK. TaevernierL. StuartM.C.A. De SpiegeleerB. RaemdonckK. Van GeleM. LambertJ. An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: Proof-of-concept in the treatment of psoriasis.Int. J. Pharm.20165001-226827410.1016/j.ijpharm.2016.01.04226806466
    [Google Scholar]
  123. GeusensB. Van GeleM. BraatS. De SmedtS.C. StuartM.C.A. ProwT.W. SanchezW. RobertsM.S. SandersN.N. LambertJ. Flexible nanosomes (SECosomes) enable efficient siRNA delivery in cultured primary skin cells and in the viable epidermis of ex vivo human skin.Adv. Funct. Mater.201020234077409010.1002/adfm.201000484
    [Google Scholar]
  124. ChenM. ZakrewskyM. GuptaV. AnselmoA.C. SleeD.H. MuraskiJ.A. MitragotriS. Topical delivery of siRNA into skin using SPACE-peptide carriers.J. Control. Release2014179334110.1016/j.jconrel.2014.01.00624434423
    [Google Scholar]
  125. JamshaidH. DinF. NousheenK. KhanS.U. FatimaA. KhanS. ChoiH.G. KhanG.M. Mannosylated imiquimod-terbinafine co-loaded transethosomes for cutaneous leishmaniasis; assessment of its anti-leishmanial potential, in vivo safety and immune response modulation.Biomaterials Advances202314521326610.1016/j.bioadv.2022.21326636577194
    [Google Scholar]
  126. TyagiR.K. GargN.K. JadonR. SahuT. KatareO.P. DalaiS.K. AwasthiA. MarepallyS.K. Elastic liposome-mediated transdermal immunization enhanced the immunogenicity of P. falciparum surface antigen, MSP-119.Vaccine201533364630463810.1016/j.vaccine.2015.06.05426141014
    [Google Scholar]
  127. PaulA. CevcG. BachhawatB.K. Transdermal immunisation with an integral membrane component, gap junction protein, by means of ultradeformable drug carriers, transfersomes.Vaccine1998162-318819510.1016/S0264‑410X(97)00185‑09607029
    [Google Scholar]
  128. SivannarayanaP. RaniA.P. SaikishoreV. Transfersomes: Ultra deformable vesicular carrier systems in transdermal drug delivery system.Res. J. Pharm. Dos. Forms Technol.201245243255
    [Google Scholar]
  129. LiuQ. DasM. LiuY. HuangL. Targeted drug delivery to melanoma.Adv. Drug Deliv. Rev.201812720822110.1016/j.addr.2017.09.01628939379
    [Google Scholar]
  130. WangN. ChenM. WangT. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization.J. Control. Release201930313015010.1016/j.jconrel.2019.04.02531022431
    [Google Scholar]
  131. MazyedE.A. BadriaF.A. ElNaggarM.H. El-MasryS.M. HelmyS.A. Development of cyclodextrin-functionalized transethoniosomes of 6-gingerol: Statistical optimization, in vitro characterization and assessment of cytotoxic and anti-inflammatory effects.Pharmaceutics2022146117010.3390/pharmaceutics1406117035745746
    [Google Scholar]
  132. FerhanA.R. ParkS. ParkH. TaeH. JackmanJ.A. ChoN.J. Lipid nanoparticle technologies for nucleic acid delivery: A nanoarchitectonics perspective.Adv. Funct. Mater.20223237220366910.1002/adfm.202203669
    [Google Scholar]
  133. DonkuruM. BadeaI. WettigS. VerrallR. ElsabahyM. FoldvariM. Advancing nonviral gene delivery: Lipid- and surfactant-based nanoparticle design strategies.Nanomedicine2010571103112710.2217/nnm.10.8020874024
    [Google Scholar]
  134. Bordanaba-FloritG. RoyoF. KruglikS.G. Falcón-PérezJ.M. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles.Nat. Protoc.20211673163318510.1038/s41596‑021‑00551‑z34135505
    [Google Scholar]
  135. KuntscheJ. HorstJ.C. BunjesH. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems.Int. J. Pharm.20114171-212013710.1016/j.ijpharm.2011.02.00121310225
    [Google Scholar]
  136. PuleriD.F. BaloghP. RandlesA. Computational models of cancer cell transport through the microcirculation.Biomech. Model. Mechanobiol.20212041209123010.1007/s10237‑021‑01452‑633765196
    [Google Scholar]
  137. NiH. PapoianG.A. Membrane-MEDYAN: Simulating deformable vesicles containing complex cytoskeletal networks.J. Phys. Chem. B202112538107101071910.1021/acs.jpcb.1c0233634461720
    [Google Scholar]
  138. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics1102005530700021
    [Google Scholar]
  139. Zununi VahedS. SalehiR. DavaranS. SharifiS. Liposome-based drug co-delivery systems in cancer cells.Mater. Sci. Eng. C2017711327134110.1016/j.msec.2016.11.07327987688
    [Google Scholar]
  140. HeC. TangZ. TianH. ChenX. Co-delivery of chemotherapeutics and proteins for synergistic therapy.Adv. Drug Deliv. Rev.201698647610.1016/j.addr.2015.10.02126546464
    [Google Scholar]
  141. NayakA.K. HasnainM.S. AminabhaviT.M. TorchilinV.P. Applications of Nanovesicular Drug Delivery.Academic Press2022
    [Google Scholar]
  142. ExnerA.A. KoliosM.C. Bursting microbubbles: How nanobubble contrast agents can enable the future of medical ultrasound molecular imaging and image-guided therapy.Curr. Opin. Colloid Interface Sci.20215410146310.1016/j.cocis.2021.10146334393610
    [Google Scholar]
  143. DragicevicN. MaibachH. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement.Adv. Drug Deliv. Rev.2018127588410.1016/j.addr.2018.02.00329425769
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385271654231215064542
Loading
/content/journals/pnt/10.2174/0122117385271654231215064542
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test