Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385271651231228073850
2024-01-25
2025-01-01
Loading full text...

Full text loading...

References

  1. CastellanaE.T. CremerP.S. Solid supported lipid bilayers: From biophysical studies to sensor design.Surf. Sci. Rep.2006611042944410.1016/j.surfrep.2006.06.00132287559
    [Google Scholar]
  2. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles— from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c0499634181394
    [Google Scholar]
  3. IllesB. WuttkeS. EngelkeH. Liposome-coated iron fumarate metal-organic framework nanoparticles for combination therapy.Nanomaterials201771135110.3390/nano711035129072630
    [Google Scholar]
  4. HuX. ZhaiS. LiuG. XingD. LiangH. LiuS. Concurrent drug unplugging and permeabilization of polyprodrug‐gated crosslinked vesicles for cancer combination chemotherapy.Adv. Mater.20183021170630710.1002/adma.20170630729635863
    [Google Scholar]
  5. AndresenT.L. JensenS.S. JørgensenK. Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release.Prog. Lipid Res.2005441689710.1016/j.plipres.2004.12.00115748655
    [Google Scholar]
  6. PattniB.S. ChupinV.V. TorchilinV.P. New developments in liposomal drug delivery.Chem. Rev.201511519109381096610.1021/acs.chemrev.5b0004626010257
    [Google Scholar]
  7. NapierM.E. DeSimoneJ.M. Nanoparticle drug delivery platform.J. Macromol. Sci. Part C Polym. Rev.2007473321327
    [Google Scholar]
  8. SopyanI GozaliD. A A review: A novel of efforts to enhance liposome stability as drug delivery approach.Sys Rev Pharm.2020116
    [Google Scholar]
  9. SawantR.R. TorchilinV.P. Challenges in development of targeted liposomal therapeutics.AAPS J.201214230331510.1208/s12248‑012‑9330‑022415612
    [Google Scholar]
  10. DichevaB.M. KoningG.A. Targeted thermosensitive liposomes: An attractive novel approach for increased drug delivery to solid tumors.Expert Opin. Drug Deliv.20141118310010.1517/17425247.2014.86665024320104
    [Google Scholar]
  11. YuanZ. GottsackerC. HeX. WaterkotteT. ParkY.C. Repetitive drug delivery using Light-Activated liposomes for potential antimicrobial therapies.Adv. Drug Deliv. Rev.202218711439510.1016/j.addr.2022.11439535709884
    [Google Scholar]
  12. KauscherU. HolmeM.N. BjörnmalmM. StevensM.M. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes.Adv. Drug Deliv. Rev.201913825927510.1016/j.addr.2018.10.01230947810
    [Google Scholar]
  13. Alvarez-LorenzoC. BrombergL. ConcheiroA. Light-sensitive intelligent drug delivery systems.Photochem. Photobiol.200985484886010.1111/j.1751‑1097.2008.00530.x19222790
    [Google Scholar]
  14. NaikS.S. AnushaG. LeelaK.V. RaviS. Promising Approaches in Drug Delivery Against Resistant Bacteria.Advances in Novel Formulations for Drug Delivery202321922910.1002/9781394167708.ch12
    [Google Scholar]
  15. YavlovichA. SmithB. GuptaK. BlumenthalR. PuriA. Light-sensitive lipid-based nanoparticles for drug delivery: Design principles and future considerations for biological applications.Mol. Membr. Biol.201027736438110.3109/09687688.2010.50778820939770
    [Google Scholar]
  16. RazaA. HayatU. RasheedT. BilalM. IqbalH.M.N. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: A review.J. Mater. Res. Technol.2019811497150910.1016/j.jmrt.2018.03.007
    [Google Scholar]
  17. LeungS.J. RomanowskiM. Light-activated content release from liposomes.Theranostics20122101020103610.7150/thno.484723139729
    [Google Scholar]
  18. MirandaD. LovellJ.F. Mechanisms of light‐induced liposome permeabilization.Bioeng. Transl. Med.20161326727610.1002/btm2.1003228367505
    [Google Scholar]
  19. ZhuJ. GuoT. WangZ. ZhaoY. Triggered azobenzene-based prodrugs and drug delivery systems.J. Control. Release202234547549310.1016/j.jconrel.2022.03.04135339578
    [Google Scholar]
  20. AliA.A. KharbashR. KimY. Chemo- and biosensing applications of spiropyran and its derivatives - A review.Anal. Chim. Acta2020111019922310.1016/j.aca.2020.01.05732278396
    [Google Scholar]
  21. IrieM. FukaminatoT. MatsudaK. KobatakeS. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators.Chem. Rev.201411424121741227710.1021/cr500249p25514509
    [Google Scholar]
  22. Abri AghdamM. BagheriR. MosaferJ. BaradaranB. HashemzaeiM. BaghbanzadehA. de la GuardiaM. MokhtarzadehA. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release.J. Control. Release201931512210.1016/j.jconrel.2019.09.01831647978
    [Google Scholar]
  23. EloyJ.O. Claro de SouzaM. PetrilliR. BarcellosJ.P.A. LeeR.J. MarchettiJ.M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery.Colloids Surf. B Biointerfaces201412334536310.1016/j.colsurfb.2014.09.02925280609
    [Google Scholar]
  24. KatzJ.S. BurdickJ.A. Light-responsive biomaterials: Development and applications.Macromol. Biosci.201010433934810.1002/mabi.20090029720014197
    [Google Scholar]
  25. ErcoleF. DavisT.P. EvansR.A. Photo-responsive systems and biomaterials: Photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond.Polym. Chem.201011375410.1039/B9PY00300B
    [Google Scholar]
  26. ChenW. GoldysE.M. DengW. Light-induced liposomes for cancer therapeutics.Prog. Lipid Res.20207910105210.1016/j.plipres.2020.10105232679153
    [Google Scholar]
  27. MathiyazhakanM. YangY. LiuY. ZhuC. LiuQ. OhlC.D. TamK.C. GaoY. XuC. Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation.Colloids Surf. B Biointerfaces201512656957410.1016/j.colsurfb.2014.11.01925481686
    [Google Scholar]
  28. SivasubramanianK. MathiyazhakanM. WirajaC. UpputuriP.K. XuC. PramanikM. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications.J. Biomed. Opt.201622404100710.1117/1.JBO.22.4.04100727918790
    [Google Scholar]
  29. RefaatA. del RosalB. PalasubramaniamJ. PieterszG. WangX. MoultonS.E. PeterK. Near-infrared light-responsive liposomes for protein delivery: Towards bleeding-free photothermally-assisted thrombolysis.J. Control. Release202133721222310.1016/j.jconrel.2021.07.02434284049
    [Google Scholar]
  30. ShimG. JeongS. OhJ.L. KangY. Lipid-based nanoparticles for photosensitive drug delivery systems.J. Pharm. Investig.202252215116010.1007/s40005‑021‑00553‑935013696
    [Google Scholar]
  31. AdityaN.P. PatankarS. MadhusudhanB. MurthyR.S.R. SoutoE.B. Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: Pharmacokinetics, toxicological and in vivo anti-malarial activity.Eur. J. Pharm. Sci.201040544845510.1016/j.ejps.2010.05.00720493255
    [Google Scholar]
  32. SeigneuretM. RigaudJ.L. Analysis of passive and light-driven ion movements in large bacteriorhodopsin liposomes reconstituted by reverse-phase evaporation. 2. Influence of passive permeability and back-pressure effects upon light-induced proton uptake.Biochemistry198625216723673010.1021/bi00369a060
    [Google Scholar]
  33. SeigneuretM. RigaudJ.L. Analysis of passive and light-driven ion movements in large bacteriorhodopsin liposomes reconstituted by reverse-phase evaporation. 1. Factors governing the passive proton permeability of the membrane.Biochemistry198625216716672210.1021/bi00369a059
    [Google Scholar]
  34. LiuC. LiuY.Y. ChangQ. ShuQ. ShenN. WangH. XieY. DengX. Pressure-controlled encapsulation of graphene quantum dots into liposomes by the reverse-phase evaporation method.Langmuir20213748140961410410.1021/acs.langmuir.1c0233834808057
    [Google Scholar]
  35. WangL. PileniM.P. Encapsulation of zwitterionic Au nanocrystals into liposomes by reverse phase evaporation method: Influence of the surface charge.Langmuir20163247123701237710.1021/acs.langmuir.6b0113227243268
    [Google Scholar]
  36. ChengQ. LiuY. Multifunctional platinum‐based nanoparticles for biomedical applications.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201792e141010.1002/wnan.141027094725
    [Google Scholar]
  37. StanoP. BufaliS. PisanoC. BucciF. BarbarinoM. SantanielloM. CarminatiP. LuisiP.L. Novel camptothecin analogue (gimatecan)-containing liposomes prepared by the ethanol injection method.J. Liposome Res.2004141-28710910.1081/LPR‑12003979415461935
    [Google Scholar]
  38. YouJ. ZhangP. HuF. DuY. YuanH. ZhuJ. WangZ. ZhouJ. LiC. Near-infrared light-sensitive liposomes for the enhanced photothermal tumor treatment by the combination with chemotherapy.Pharm. Res.201431355456510.1007/s11095‑013‑1180‑724022681
    [Google Scholar]
  39. LvS. JingR. LiuX. ShiH. ShiY. WangX. ZhaoX. CaoK. LvZ. One-step microfluidic fabrication of multi-responsive liposomes for targeted delivery of doxorubicin synergism with photothermal effect.Int. J. Nanomedicine2021167759777210.2147/IJN.S32962134848958
    [Google Scholar]
  40. RiahiR. TamayolA. ShaeghS.A.M. GhaemmaghamiA.M. DokmeciM.R. KhademhosseiniA. Microfluidics for advanced drug delivery systems.Curr. Opin. Chem. Eng.2015710111210.1016/j.coche.2014.12.00131692947
    [Google Scholar]
  41. GerasimovO.V. BoomerJ.A. QuallsM.M. ThompsonD.H. Cytosolic drug delivery using pH- and light-sensitive liposomes.Adv. Drug Deliv. Rev.199938331733810.1016/S0169‑409X(99)00035‑610837763
    [Google Scholar]
  42. FritzeA. HensF. KimpflerA. SchubertR. Peschka-SüssR. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient.Biochim. Biophys. Acta Biomembr.20061758101633164010.1016/j.bbamem.2006.05.02816887094
    [Google Scholar]
  43. WangM. KimJ.C. Light- and temperature-responsive liposomes incorporating cinnamoyl Pluronic F127.Int. J. Pharm.20144681-224324910.1016/j.ijpharm.2014.04.01424709213
    [Google Scholar]
  44. QiangM. PangX. MaD. MaC. LiuF. Effect of membrane surface modification using chitosan hydrochloride and lactoferrin on the properties of astaxanthin-loaded liposomes.Molecules202025361010.3390/molecules2503061032019205
    [Google Scholar]
  45. HayashiH. KonoK. TakagishiT. Temperature-dependent associating property of liposomes modified with a thermosensitive polymer.Bioconjug. Chem.19989338238910.1021/bc97014549576813
    [Google Scholar]
  46. YubaE. KojimaC. HaradaA. Tana WataraiS. KonoK. pH-Sensitive fusogenic polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular immunity.Biomaterials201031594395110.1016/j.biomaterials.2009.10.00619850335
    [Google Scholar]
  47. SamadA. SultanaY. AqilM. Liposomal drug delivery systems: An update review.Curr. Drug Deliv.20074429730510.2174/15672010778215126917979650
    [Google Scholar]
  48. TimkoB.P. DvirT. KohaneD.S. Remotely triggerable drug delivery systems.Adv. Mater.201022444925494310.1002/adma.20100207220818618
    [Google Scholar]
  49. BisbyR.H. MeadC. MitchellA.C. MorganC.G. Fast laser-induced solute release from liposomes sensitized with photochromic lipid: effects of temperature, lipid host, and sensitizer concentration.Biochem. Biophys. Res. Commun.1999262240641010.1006/bbrc.1999.120610462488
    [Google Scholar]
  50. PuriA. Phototriggerable liposomes: Current research and future perspectives.Pharmaceutics20136112510.3390/pharmaceutics601000124662363
    [Google Scholar]
  51. MathiyazhakanM. WirajaC. XuC. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery.Nano-Micro Lett.20181011010.1007/s40820‑017‑0166‑030393659
    [Google Scholar]
  52. PaasonenL. SipiläT. SubriziA. LaurinmäkiP. ButcherS.J. RappoltM. YaghmurA. UrttiA. YliperttulaM. Gold-embedded photosensitive liposomes for drug delivery: Triggering mechanism and intracellular release.J. Control. Release2010147113614310.1016/j.jconrel.2010.07.09520624434
    [Google Scholar]
  53. LiuY. HeM. NiuM. ZhaoY. ZhuY. LiZ. FengN. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: A light-responsive nanocarrier with enhanced antitumor efficiency.Int. J. Nanomedicine2015103081309525960649
    [Google Scholar]
  54. ReeßingF. StuartM.C.A. SamploniusD.F. DierckxR.A.J.O. FeringaB.L. HelfrichW. SzymanskiW. A light-responsive liposomal agent for MRI contrast enhancement and monitoring of cargo delivery.Chem. Commun.20195572107841078710.1039/C9CC05516A31432802
    [Google Scholar]
  55. EnzianP. SchellC. LinkA. MalichC. PriesR. WollenbergB. RahmanzadehR. Optically controlled drug release from light-sensitive liposomes with the new photosensitizer 5, 10-DiOH.Mol. Pharm.20201782779278810.1021/acs.molpharmaceut.9b0117332543848
    [Google Scholar]
  56. HoebekeM. The importance of liposomes as models and tools in the understanding of photosensitization mechanisms.J. Photochem. Photobiol. B199528318919610.1016/1011‑1344(95)07132‑L7623183
    [Google Scholar]
  57. TaoY. ChanH.F. ShiB. LiM. LeongK.W. Light: A magical tool for controlled drug delivery.Adv. Funct. Mater.20203049200502910.1002/adfm.20200502934483808
    [Google Scholar]
  58. JiaS. FongW.K. GrahamB. BoydB.J. Photoswitchable molecules in long-wavelength light-responsive drug delivery: From molecular design to applications.Chem. Mater.20183092873288710.1021/acs.chemmater.8b00357
    [Google Scholar]
  59. HanJ. YanD. ShiW. MaJ. YanH. WeiM. EvansD.G. DuanX. Layer-by-layer ultrathin films of azobenzene-containing polymer/layered double hydroxides with reversible photoresponsive behavior.J. Phys. Chem. B2010114175678568510.1021/jp911401820387869
    [Google Scholar]
  60. TylkowskiB. TrojanowskaA. MarturanoV. NowakM. MarciniakL. GiamberiniM. AmbrogiV. CerrutiP. Power of light – Functional complexes based on azobenzene molecules.Coord. Chem. Rev.201735120521710.1016/j.ccr.2017.05.009
    [Google Scholar]
  61. BoruahJ.S. ChowdhuryD. Liposome-azobenzene nanocomposite as photo-responsive drug delivery vehicle.Appl. Nanosci.202212124005401710.1007/s13204‑022‑02666‑5
    [Google Scholar]
  62. LiuD. WangS. XuS. LiuH. Photocontrollable intermittent release of doxorubicin hydrochloride from liposomes embedded by azobenzene-contained glycolipid.Langmuir20173341004101210.1021/acs.langmuir.6b0305127668306
    [Google Scholar]
  63. RenH. QiuX.P. ShiY. YangP. WinnikF.M. Light, temperature, and pH control of aqueous azopyridine-terminated poly( N -isopropylacrylamide) solutions.Polym. Chem.201910375080508610.1039/C9PY01086F
    [Google Scholar]
  64. JiangH.Y. KelchS. LendleinA. Polymers move in response to light.Adv. Mater.200618111471147510.1002/adma.200502266
    [Google Scholar]
  65. SahooP.R. Light Responsive Materials: Properties, Design, and Applications. Stimuli-Responsive Materials for Biomedical Applications.ACS Publications202310112710.1021/bk‑2023‑1436.ch005
    [Google Scholar]
  66. ChoH.J. ChungM. ShimM.S. Engineered photo-responsive materials for near-infrared-triggered drug delivery.J. Ind. Eng. Chem.201531152510.1016/j.jiec.2015.07.016
    [Google Scholar]
  67. WohlC.J. KuciauskasD. Isomerization dynamics of photochromic spiropyran molecular switches in phospholipid bilayers.J. Phys. Chem. B200510946218932189910.1021/jp053882316853844
    [Google Scholar]
  68. FaganA. BartkowskiM. GiordaniS. Spiropyran-based drug delivery systems.Front Chem.2021972008710.3389/fchem.2021.72008734395385
    [Google Scholar]
  69. ZhangD. ShahP.K. CulverH.R. DavidS.N. StansburyJ.W. YinX. BowmanC.N. Photo-responsive liposomes composed of spiropyran-containing triazole-phosphatidylcholine: Investigation of merocyanine-stacking effects on liposome–fiber assembly-transition.Soft Matter201915183740375010.1039/C8SM02181C31042253
    [Google Scholar]
  70. NicolettaF.P. CupelliD. FormosoP. De FilpoG. ColellaV. GugliuzzaA. Light responsive polymer membranes: A review.Membranes20122113419710.3390/membranes201013424957966
    [Google Scholar]
  71. ChengH. MaP. WangY. HuG. FangS. FangY. LinY. Photoswitchable and water‐soluble fluorescent nano‐aggregates based on a diarylethene–dansyl dyad and liposome.Chem. Asian J.201712224825310.1002/asia.20160150127897383
    [Google Scholar]
  72. OlejniczakJ. CarlingC.J. AlmutairiA. Photocontrolled release using one-photon absorption of visible or NIR light.J. Control. Release2015219183010.1016/j.jconrel.2015.09.03026394063
    [Google Scholar]
  73. de AberasturiD.J. Serrano-MontesA.B. Liz-MarzánL.M. Modern applications of plasmonic nanoparticles: From energy to health.Adv. Opt. Mater.20153560261710.1002/adom.201500053
    [Google Scholar]
  74. JainM.K. WuN.M. Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: III. Phase transition in lipid bilayer.J. Membr. Biol.197734115720110.1007/BF01870299
    [Google Scholar]
  75. ParkS.M. KimM.S. ParkS.J. ParkE.S. ChoiK.S. KimY. KimH.R. Novel temperature-triggered liposome with high stability: Formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU).J. Control. Release2013170337337910.1016/j.jconrel.2013.06.00323770213
    [Google Scholar]
  76. ShenS. HuangD. CaoJ. ChenY. ZhangX. GuoS. MaW. QiX. GeY. WuL. Magnetic liposomes for light-sensitive drug delivery and combined photothermal–chemotherapy of tumors.J. Mater. Chem. B Mater. Biol. Med.2019771096110610.1039/C8TB02684J32254777
    [Google Scholar]
  77. TranT.H. NguyenH.T. LeN.V. TranT.T.P. LeeJ.S. KuS.K. ChoiH.G. YongC.S. KimJ.O. Engineering of multifunctional temperature-sensitive liposomes for synergistic photothermal, photodynamic, and chemotherapeutic effects.Int. J. Pharm.20175281-269270410.1016/j.ijpharm.2017.06.06928642202
    [Google Scholar]
  78. BisbyR.H. MeadC. MorganC.G. Wavelength-programmed solute release from photosensitive liposomes.Biochem. Biophys. Res. Commun.2000276116917310.1006/bbrc.2000.345611006101
    [Google Scholar]
  79. ChristieJ. KompellaU. Ophthalmic light sensitive nanocarrier systems.Drug Discov. Today2008133-412413410.1016/j.drudis.2007.12.00518275910
    [Google Scholar]
  80. ZhangL. WangY. WangJ. WangY. ChenA. WangC. MoW. LiY. YuanQ. ZhangY. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection.ACS Appl. Mater. Interfaces201911130031010.1021/acsami.8b1814630520301
    [Google Scholar]
  81. VijethS HeggannavarGB KariduraganavarMY Encapsulating wall materials for micro-/nanocapsulesIntechOpen London2019
    [Google Scholar]
  82. LajunenT. KontturiL.S. ViitalaL. MannaM. CramariucO. RógT. BunkerA. LaaksonenT. ViitalaT. MurtomäkiL. UrttiA. Indocyanine green-loaded liposomes for light-triggered drug release.Mol. Pharm.20161362095210710.1021/acs.molpharmaceut.6b0020727097108
    [Google Scholar]
  83. GürselM. HasirciV. Influence of membrane components on the stability and drug release properties of reverse phase evaporation vesicles (REVs): Light sensitive all-trans retinal, negatively charged phospholipid dicetylphosphate and cholesterol.J. Microencapsul.199512666166910.3109/026520495090067968558388
    [Google Scholar]
  84. OuY.C. WebbJ.A. FaleyS. ShaeD. TalbertE.M. LinS. CutrightC.C. WilsonJ.T. BellanL.M. BardhanR. Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer.ACS Omega20161223424310.1021/acsomega.6b0007927656689
    [Google Scholar]
  85. GuerreroA.R. HassanN. EscobarC.A. AlbericioF. KoganM.J. ArayaE. Gold nanoparticles for photothermally controlled drug release.Nanomedicine20149132023203910.2217/nnm.14.12625343351
    [Google Scholar]
  86. LeeY. ThompsonD.H. Stimuli‐responsive liposomes for drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201795e145010.1002/wnan.145028198148
    [Google Scholar]
  87. AshrafizadehM. DelfiM. ZarrabiA. BighamA. SharifiE. RabieeN. Paiva-SantosA.C. KumarA.P. TanS.C. HushmandiK. RenJ. ZareE.N. MakvandiP. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches.J. Control. Release2022351508010.1016/j.jconrel.2022.08.00135934254
    [Google Scholar]
  88. GantaS. DevalapallyH. ShahiwalaA. AmijiM. A review of stimuli-responsive nanocarriers for drug and gene delivery.J. Control. Release2008126318720410.1016/j.jconrel.2007.12.01718261822
    [Google Scholar]
  89. RouxE. FrancisM. WinnikF.M. LerouxJ.C. Polymer based pH-sensitive carriers as a means to improve the cytoplasmic delivery of drugs.Int. J. Pharm.20022421-2253610.1016/S0378‑5173(02)00183‑712176222
    [Google Scholar]
  90. JhaveriA. DeshpandeP. TorchilinV. Stimuli-sensitive nanopreparations for combination cancer therapy.J. Control. Release201419035237010.1016/j.jconrel.2014.05.00224818767
    [Google Scholar]
  91. EscuderoA. Carrillo-CarriónC. CastillejosM.C. Romero-BenE. Rosales-BarriosC. KhiarN. Photodynamic therapy: Photosensitizers and nanostructures.Mater. Chem. Front.20215103788381210.1039/D0QM00922A
    [Google Scholar]
  92. JinC.S. ZhengG. Liposomal nanostructures for photosensitizer delivery.Lasers Surg. Med.201143773474810.1002/lsm.2110122057501
    [Google Scholar]
  93. FominaN. SankaranarayananJ. AlmutairiA. Photochemical mechanisms of light-triggered release from nanocarriers.Adv. Drug Deliv. Rev.201264111005102010.1016/j.addr.2012.02.00622386560
    [Google Scholar]
  94. HejmadyS. PradhanR. AlexanderA. AgrawalM. SinghviG. GorainB. TiwariS. KesharwaniP. DubeyS.K. Recent advances in targeted nanomedicine as promising antitumor therapeutics.Drug Discov. Today202025122227224410.1016/j.drudis.2020.09.03133011342
    [Google Scholar]
  95. KarimiM. Sahandi ZangabadP. Baghaee-RavariS. GhazadehM. MirshekariH. HamblinM.R. Smart nanostructures for cargo delivery: Uncaging and activating by light.J. Am. Chem. Soc.2017139134584461010.1021/jacs.6b0831328192672
    [Google Scholar]
  96. PanP. SvirskisD. ReesS.W.P. BarkerD. WaterhouseG.I.N. WuZ. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications.J. Control. Release202133844646110.1016/j.jconrel.2021.08.05334481021
    [Google Scholar]
  97. WangH. LiuZ. WangS. DongC. GongX. ZhaoP. ChangJ. MC540 and upconverting nanocrystal coloaded polymeric liposome for near-infrared light-triggered photodynamic therapy and cell fluorescent imaging.ACS Appl. Mater. Interfaces2014653219322510.1021/am500097f24511877
    [Google Scholar]
  98. CarterK.A. ShaoS. HoopesM.I. LuoD. AhsanB. GrigoryantsV.M. SongW. HuangH. ZhangG. PandeyR.K. GengJ. PfeiferB.A. ScholesC.P. OrtegaJ. KarttunenM. LovellJ.F. Porphyrin–phospholipid liposomes permeabilized by near-infrared light.Nat. Commun.201451354610.1038/ncomms454624699423
    [Google Scholar]
  99. DeshpandeP.P. BiswasS. TorchilinV.P. Current trends in the use of liposomes for tumor targeting.Nanomedicine2013891509152810.2217/nnm.13.11823914966
    [Google Scholar]
  100. RiazM. RiazM. ZhangX. LinC. WongK. ChenX. ZhangG. LuA. YangZ. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review.Int. J. Mol. Sci.201819119510.3390/ijms1901019529315231
    [Google Scholar]
  101. RaiP. MallidiS. ZhengX. RahmanzadehR. MirY. ElringtonS. KhurshidA. HasanT. Development and applications of photo-triggered theranostic agents.Adv. Drug Deliv. Rev.201062111094112410.1016/j.addr.2010.09.00220858520
    [Google Scholar]
  102. LeeD.E. KooH. SunI.C. RyuJ.H. KimK. KwonI.C. Multifunctional nanoparticles for multimodal imaging and theragnosis.Chem. Soc. Rev.20124172656267210.1039/C2CS15261D22189429
    [Google Scholar]
  103. MartelliC. DicoA.L. DiceglieC. LucignaniG. OttobriniL. Optical imaging probes in oncology.Oncotarget2016730487534878710.18632/oncotarget.906627145373
    [Google Scholar]
  104. WongK.H. LuA. ChenX. YangZ. Natural ingredient-based polymeric nanoparticles for cancer treatment.Molecules20202516362010.3390/molecules2516362032784890
    [Google Scholar]
  105. ZhouJ. RossiJ.J. Cell-type-specific, aptamer-functionalized agents for targeted disease therapy.Mol. Ther. Nucleic Acids201436e16910.1038/mtna.2014.2124936916
    [Google Scholar]
  106. XiangD. ShigdarS. QiaoG. WangT. KouzaniA.Z. ZhouS.F. KongL. LiY. PuC. DuanW. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine.Theranostics201551234210.7150/thno.1020225553096
    [Google Scholar]
  107. CaballeroD. AbreuC.M. LimaA.C. NevesN.M. ReisR.L. KunduS.C. Precision biomaterials in cancer theranostics and modelling.Biomaterials202228012129910.1016/j.biomaterials.2021.12129934871880
    [Google Scholar]
  108. BlauR. KrivitskyA. EpshteinY. Satchi-FainaroR. Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine?Drug Resist. Updat.201627395810.1016/j.drup.2016.06.00327449597
    [Google Scholar]
  109. AlwattarJ.K. MneimnehA.T. AblaK.K. MehannaM.M. AllamA.N. Smart stimuli-responsive liposomal nanohybrid systems: A critical review of theranostic behavior in cancer.Pharmaceutics202113335510.3390/pharmaceutics1303035533800292
    [Google Scholar]
  110. MeerovichI. NicholsM.G. DashA.K. Low-intensity light-induced drug release from a dual delivery system comprising of a drug loaded liposome and a photosensitive conjugate.J. Drug Target.202028665566710.1080/1061186X.2019.171083831886709
    [Google Scholar]
  111. BisbyR.H. MeadC. MorganC.G. Photosensitive liposomes as ‘cages’ for laser‐triggered solute delivery: The effect of bilayer cholesterol on kinetics of solute release.FEBS Lett.19994631-216516810.1016/S0014‑5793(99)01612‑910601660
    [Google Scholar]
  112. AndersonV.C. ThompsonD.H. Triggered release of hydrophilic agents from plasmologen liposomes using visible light or acid.Biochim. Biophys. Acta Biomembr.199211091334210.1016/0005‑2736(92)90183‑M1504078
    [Google Scholar]
  113. YavlovichA. SinghA. BlumenthalR. PuriA. A novel class of photo-triggerable liposomes containing DPPC:DC8,9PC as vehicles for delivery of doxorubcin to cells.Biochim. Biophys. Acta Biomembr.20111808111712610.1016/j.bbamem.2010.07.03020691151
    [Google Scholar]
  114. GangwarM. SinghR. GoelR.K. NathG. Recent advances in various emerging vescicular systems: An overview.Asian Pac. J. Trop. Biomed.201222S1176S118810.1016/S2221‑1691(12)60381‑5
    [Google Scholar]
  115. NikolovaM.P. KumarE.M. ChavaliM.S. Updates on responsive drug delivery based on liposome vehicles for cancer treatment.Pharmaceutics20221410219510.3390/pharmaceutics1410219536297630
    [Google Scholar]
  116. SilvaJ.M. SilvaE. ReisR.L. Light-triggered release of photocaged therapeutics - Where are we now?J. Control. Release201929815417610.1016/j.jconrel.2019.02.00630742854
    [Google Scholar]
  117. ZamadarM. GhoshG. MahendranA. MinnisM. KruftB.I. GhogareA. AebisherD. GreerA. Photosensitizer drug delivery via an optical fiber.J. Am. Chem. Soc.2011133207882789110.1021/ja200840p21539365
    [Google Scholar]
  118. DahiyaS. DahiyaR. Smart drug delivery systems and their clinical potential. Smart Polymeric Nano-Constructs in Drug Delivery.Elsevier202340143610.1016/B978‑0‑323‑91248‑8.00007‑6
    [Google Scholar]
  119. JunnuthulaV. KolimiP. NyavanandiD. SampathiS. VoraL.K. DyawanapellyS. Polymeric micelles for breast cancer therapy: Recent updates, clinical translation and regulatory considerations.Pharmaceutics2022149186010.3390/pharmaceutics1409186036145608
    [Google Scholar]
  120. ZhangZ. HanQ. LauJ.W. XingB. Lanthanide-doped upconversion nanoparticles meet the needs for cutting-edge bioapplications: Recent progress and perspectives.ACS Materials Letters20202111516153110.1021/acsmaterialslett.0c0037733644762
    [Google Scholar]
  121. HaM. KimJ.H. YouM. LiQ. FanC. NamJ.M. Multicomponent plasmonic nanoparticles: From heterostructured nanoparticles to colloidal composite nanostructures.Chem. Rev.201911924122081227810.1021/acs.chemrev.9b0023431794202
    [Google Scholar]
  122. LavradorP. EstevesM.R. GasparV.M. ManoJ.F. Stimuli‐responsive nanocomposite hydrogels for biomedical applications.Adv. Funct. Mater.2021318200594110.1002/adfm.202005941
    [Google Scholar]
  123. ZhangJ. LinY. LinZ. WeiQ. QianJ. RuanR. JiangX. HouL. SongJ. DingJ. YangH. Stimuli‐responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy.Adv. Sci.202295210344410.1002/advs.20210344434927373
    [Google Scholar]
  124. MuraS. NicolasJ. CouvreurP. Stimuli-responsive nanocarriers for drug delivery.Nat. Mater.20131211991100310.1038/nmat377624150417
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385271651231228073850
Loading
/content/journals/pnt/10.2174/0122117385271651231228073850
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test