Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

In order to overcome some of the drawbacks of traditional formulations, increasing emphasis has recently been paid to lipid-based drug delivery systems. Solid lipid nanoparticles (SLNs) are promising delivery methods, and they hold promise because of their simplicity in production, capacity to scale up, biocompatibility, and biodegradability of formulation components. Other benefits could be connected to a particular route of administration or the makeup of the ingredients being placed into these delivery systems. This article aims to review the significance of solid lipid nanocarriers, their benefits and drawbacks, as well as their types, compositions, methods of preparation, mechanisms of drug release, characterization, routes of administration, and applications in a variety of delivery systems with a focus on their efficacy.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385271393231117063750
2024-01-23
2025-01-04
Loading full text...

Full text loading...

References

  1. González-GarcíaL.E. MacGregorM.N. VisalakshanR.M. LazarianA. CavallaroA.A. MorsbachS. Mierczynska-VasilevA. MailänderV. LandfesterK. VasilevK. Nanoparticles surface chemistry influence on protein corona composition and inflammatory responses.Nanomaterials202212468210.3390/nano1204068235215013
    [Google Scholar]
  2. García-PinelB. Porras-AlcaláC. Ortega-RodríguezA. SarabiaF. PradosJ. MelguizoC. López-RomeroJ.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment.Nanomaterials20199463810.3390/nano904063831010180
    [Google Scholar]
  3. ChenC.C. TsaiT.H. HuangZ.R. FangJ.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics.Eur. J. Pharm. Biopharm.201074347448210.1016/j.ejpb.2009.12.00820060469
    [Google Scholar]
  4. LiuD. LiuC. ZouW. ZhangN. Enhanced gastrointestinal absorption of N3-O-toluyl-fluorouracil by cationic solid lipid nanoparticles.J. Nanopart. Res.201012397598410.1007/s11051‑009‑9648‑4
    [Google Scholar]
  5. WackerM. Nanocarriers for intravenous injection—The long hard road to the market.Int. J. Pharm.20134571506210.1016/j.ijpharm.2013.08.07924036012
    [Google Scholar]
  6. JanninV. MusakhanianJ. MarchaudD. Approaches for the development of solid and semi-solid lipid-based formulations.Adv. Drug Deliv. Rev.200860673474610.1016/j.addr.2007.09.00618045728
    [Google Scholar]
  7. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.20207October58799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  8. LuoW.C. LuX. Solid lipid nanoparticles for drug delivery.Methods Mol. Biol.2023262213914610.1007/978‑1‑0716‑2954‑3_1236781757
    [Google Scholar]
  9. MehannaM. MotawaaA. SamahaM. Pharmaceutical particulate carriers: Lipid - Based carriers.Natl. J. Physiol. Pharm. Pharmacol.2012211022
    [Google Scholar]
  10. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.00426410277
    [Google Scholar]
  11. KesharwaniR. SachanA. SinghS. PatelD. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib.J. Appl. Pharm. Sci.201661012413110.7324/JAPS.2016.601017
    [Google Scholar]
  12. NakmodeD. BhavanaV. ThakorP. MadanJ. SinghP.K. SinghS.B. RosenholmJ.M. BansalK.K. MehraN.K. Fundamental aspects of lipid-based excipients in lipid-based product development.Pharmaceutics202214483110.3390/pharmaceutics1404083135456665
    [Google Scholar]
  13. CortésH. Hernández-ParraH. Bernal-ChávezS.A. Prado-AudeloM.L.D. Caballero-FloránI.H. Borbolla-JiménezF.V. González-TorresM. MagañaJ.J. Leyva-GómezG. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses.Materials20211412319710.3390/ma1412319734200640
    [Google Scholar]
  14. SablaniS.S. Polymer nanocomposites for food packaging application. SablaniS.S. 2015205212
    [Google Scholar]
  15. MishraV. BansalK. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics1004019130340327
    [Google Scholar]
  16. Mardhiah AdibZ. GhanbarzadehS. KouhsoltaniM. Yari KhosroshahiA. HamishehkarH. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: A histological study.Adv. Pharm. Bull.201661313610.15171/apb.2016.0627123415
    [Google Scholar]
  17. LuoY. ChenD. RenL. ZhaoX. QinJ. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability.J. Control. Release20061141535910.1016/j.jconrel.2006.05.01016828192
    [Google Scholar]
  18. TenchovR BirdR CurtzeAE ZhouQ Lipid nanoparticles─from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement.ACS Nano202115111698217015
    [Google Scholar]
  19. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  20. PolchiA MaginiA MazurykJ TanciniB PatkowskiA GiovagnoliS Rapamycin loaded solid lipid nanoparticles as a new tool to deliver mTOR Inhibitors.Formulation and in vitro Characterization2016120
    [Google Scholar]
  21. ShahR.M. MataJ.P. BryantG. de CampoL. IfeA. KarpeA.V. JadhavS.R. EldridgeD.S. PalomboE.A. HardingI.H. Structure analysis of solid lipid nanoparticles for drug delivery: A combined USANS/SANS Study.Part. Part. Syst. Charact.2019361180035910.1002/ppsc.201800359
    [Google Scholar]
  22. LuH. ZhangS. WangJ. ChenQ. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems.Front. Nutr.20218December78383110.3389/fnut.2021.78383134926557
    [Google Scholar]
  23. ÜnerM. Importance of solid lipid nanoparticles ( SLN ) in various administration routes and future perspectives.200723289300
    [Google Scholar]
  24. Ezzati Nazhad DolatabadiJ. ValizadehH. HamishehkarH. Solid lipid nanoparticles as efficient drug and gene delivery systems: Recent breakthroughs.Adv. Pharm. Bull.20155215115910.15171/apb.2015.02226236652
    [Google Scholar]
  25. WongH. BendayanR. RauthA. LiY. WuX. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles.Adv. Drug Deliv. Rev.200759649150410.1016/j.addr.2007.04.00817532091
    [Google Scholar]
  26. RawatM.K. JainA. MishraA. MuthuM.S. SinghS. Effect of lipid matrix on repaglinide-loaded solid lipid nanoparticles for oral delivery.Ther. Deliv.201011637310.4155/tde.10.722816120
    [Google Scholar]
  27. PriyadarshaniA. Advantages and disadvantages of solid lipid nanoparticles.J nanomedicine Biother Discov.20221251000173
    [Google Scholar]
  28. WissingS.A. KayserO. MüllerR.H. Solid lipid nanoparticles for parenteral drug delivery.Adv. Drug Deliv. Rev.20045691257127210.1016/j.addr.2003.12.00215109768
    [Google Scholar]
  29. KhatakS. DurejaH. Structural composition of solid lipid nanoparticles for invasive and non- invasive.Drug Deliv.2017129153
    [Google Scholar]
  30. AbdulENP DevruswlrqERG PhwderolvpG HolplqdwlrqDQG LqD LqfoxghvW Formulation and evaluation of solid / ipid nanoparticles of ramipril.33216220
    [Google Scholar]
  31. KimB NaK ChoiH Preparation and characterization of solid lipid nanoparticles.made of cacao butter and curdlan200524199205
    [Google Scholar]
  32. DongX. MumperR.J. Metabolism of fatty alcohols in lipid nanoparticles by alcohol dehydrogenase.2006859973980
    [Google Scholar]
  33. FezzaF. De SimoneC. AmadioD. MaccarroneM. Fatty acid amide hydrolase: A gate-keeper of the endocannabinoid system.Subcell. Biochem.20084910113210.1007/978‑1‑4020‑8831‑5_418751909
    [Google Scholar]
  34. XieS. ZhuL. DongZ. WangX. WangY. LiX. ZhouW. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: Influences of fatty acids.Colloids Surf. B Biointerfaces201183238238710.1016/j.colsurfb.2010.12.01421215599
    [Google Scholar]
  35. SharifB. SalimiA.A.N. Overview on solid lipid nanoparticles as a novel drug european of biomedical and pharmaceutical sciences an overview on solid lipid nanoparticles as a novel.Drug Deliv.2020
    [Google Scholar]
  36. FrankelE.N. Lipid Oxidation200510.1533/9780857097927
    [Google Scholar]
  37. DonatoP. DugoP. MondelloL. Separation of lipids. Applications201320324810.1016/B978‑0‑12‑415806‑1.00009‑7
    [Google Scholar]
  38. YáñezJ.A. WangS.W.J. KnemeyerI.W. WirthM.A. AltonK.B. Intestinal lymphatic transport for drug delivery.Adv. Drug Deliv. Rev.20116310-1192394210.1016/j.addr.2011.05.01921689702
    [Google Scholar]
  39. KumarR. YasirM. SarafS.A. GaurP.K. KumarY. SinghA.P. Glyceryl monostearate based nanoparticles of mefenamic acid: Fabrication and in vitro characterization.Drug Invention Today20135324625010.1016/j.dit.2013.06.011
    [Google Scholar]
  40. GardouhA. Design and characterization of glyceryl monostearate solid lipid nanoparticles prepared by high shear homogenization.Br. J. Pharm. Res.20133332634610.9734/BJPR/2013/2770
    [Google Scholar]
  41. EkambaramP. Abdul Hasan SathaliA. Formulation and evaluation of solid lipid nanoparticles of ramipril.J. Young Pharm.20113321622010.4103/0975‑1483.8376521897661
    [Google Scholar]
  42. GagliardiA. CoscoD. UdongoB.P. DiniL. VigliettoG. PaolinoD. Design and characterization of glyceryl monooleate-nanostructures containing doxorubicin hydrochloride.Pharmaceutics20201211101710.3390/pharmaceutics1211101733114287
    [Google Scholar]
  43. KumarV.V. ChandrasekarD. RamakrishnaS. KishanV. RaoY.M. DiwanP.V. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics.Int. J. Pharm.20073351-216717510.1016/j.ijpharm.2006.11.00417161566
    [Google Scholar]
  44. PhamD.D. FattalE. TsapisN. Pulmonary drug delivery systems for tuberculosis treatment.Int J Pharm.2015478251752910.1016/j.ijpharm.2014.12.009
    [Google Scholar]
  45. PadhyeS.G. NagarsenkerM.S. Simvastatin solid lipid nanoparticles for oral delivery: Formulation development and in vivo evaluation.Indian J. Pharm. Sci.201375559159824403661
    [Google Scholar]
  46. MuthuramanA. KaurJ. Antimicrobial nanostructures for neurodegenerative infections: Present and future perspectives. nanostructures for antimicrobial therapy. In: Nanostructures in Therapeutic Medicine Series.Elsevier Inc.2017139167
    [Google Scholar]
  47. LiuQ. ZhangQ. Nanoparticle systems for nose-to-brain delivery. In: Brain Targeted Drug Delivery Systems: A Focus on Nanotechnology and Nanoparticulates.Elsevier Ltd.2018219239
    [Google Scholar]
  48. ChenJ. WangJ. YanF. ZhangQ. LiQ. Tribology international effect of applied potential on the tribocorrosion behaviors of monel K500 alloy in arti fi cial seawater.Tribiology Int.2015811810.1016/j.triboint.2014.07.014
    [Google Scholar]
  49. NaguibY.W. RodriguezB.L. LiX. HurstingS.D. WilliamsR.O.III CuiZ. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: In vitro and in vivo evaluation.Mol. Pharm.20141141239124910.1021/mp400696824621456
    [Google Scholar]
  50. KheradmandniaS. Vasheghani-FarahaniE. NosratiM. AtyabiF. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax.Nanomedicine20106675375910.1016/j.nano.2010.06.00320599527
    [Google Scholar]
  51. StanisicD. CostaA.F. CruzG. DuránN. TasicL. Applications of flavonoids, with an emphasis on hesperidin, as anticancer prodrugs: Phytotherapy as an alternative to chemotherapy. In: Studies in Natural Products Chemistry.2018161212
    [Google Scholar]
  52. DahlmanP. High pressure Jet Assistance in steel turning.Doktorsavhandlingar vid Chalmers Tek Hogsk2005502314163
    [Google Scholar]
  53. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.5728220502539
    [Google Scholar]
  54. MaP. DongX. SwadleyC.L. GupteA. LeggasM. LedeburH.C. MumperR.J. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia.J. Biomed. Nanotechnol.20095215116110.1166/jbn.2009.102120055093
    [Google Scholar]
  55. PinkD.L. LoruthaiO. ZiolekR.M. WasutrasawatP. TerryA.E. LawrenceM.J. LorenzC.D. On the structure of solid lipid nanoparticles.Small20191545190315610.1002/smll.20190315631532892
    [Google Scholar]
  56. AnilK. Solid lipid nanoparticles: Influence of composition, fabrication methods and problems, in vitro drug release and intranasal administration provide to access olfactory bulb pathway for SLNs.GSC Biological and Pharmaceutical Sciences202114212614210.30574/gscbps.2021.14.2.0049
    [Google Scholar]
  57. McClementsD.J. RaoJ. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity.Crit. Rev. Food Sci. Nutr.201151428533010.1080/10408398.2011.55955821432697
    [Google Scholar]
  58. KovačevićA.B. MüllerR.H. SavićS.D. VuletaG.M. KeckC.M. Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: Preparation, characterization and physical stability investigation.Colloids Surf. A Physicochem. Eng. Asp.2014444152510.1016/j.colsurfa.2013.12.023
    [Google Scholar]
  59. YasirM. Vir Singh SaraU. SomI. GaurP. SinghM. Ameeduzzafar Nose to brain drug delivery: A novel approach through solid lipid nanoparticles.Curr. Nanomed.20166210513210.2174/2468187306666160603120318
    [Google Scholar]
  60. SaupeA. RadesT. Solid lipid nanoparticles.20064150
    [Google Scholar]
  61. YuanH. WangL.L. DuY.Z. YouJ. HuF.Q. ZengS. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification.Colloids Surf. B Biointerfaces200760217417910.1016/j.colsurfb.2007.06.01117656075
    [Google Scholar]
  62. ShuklaT. UpmanyuN. PandeyS.P. GoshD. Lipid nanocarriers. lipid nanocarriers for drug targeting. In: Elsevier Inc.2018118
    [Google Scholar]
  63. GhasemiyehP Mohammadi-samaniS Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages.201813August288303
    [Google Scholar]
  64. BagulS.U. PisalV.V. SolankiV.N. KarnavatA. Current status of solid lipid nanoparticles: A review.Mod Appl Bioequivalence Bioavailab.20183419
    [Google Scholar]
  65. SharmaV.K. DiwanA. SardanaS. DhallV. Solid lipid nanoparticles system: An overview.Int J Res Pharm Sci.201123450461
    [Google Scholar]
  66. PoojaD. TunkiL. KulhariH. ReddyB.B. SistlaR. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method.Data Brief20166151910.1016/j.dib.2015.11.03826759823
    [Google Scholar]
  67. Van-An DuongThi-Thao-Linh Nguyen and H-JM. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method.Molecules202025
    [Google Scholar]
  68. Nabi-MeibodiM. NavidiB. NavidiN. VatanaraA. Reza RouiniM. RamezaniV. Optimized double emulsion-solvent evaporation process for production of solid lipid nanoparticles containing baclofene as a lipid insoluble drug.J. Drug Deliv. Sci. Technol.201323322523010.1016/S1773‑2247(13)50034‑7
    [Google Scholar]
  69. TrottaM. DebernardiF. CaputoO. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique.Int. J. Pharm.20032571-215316010.1016/S0378‑5173(03)00135‑212711170
    [Google Scholar]
  70. HuF.Q. YuanH. ZhangH.H. FangM. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization.Int. J. Pharm.20022391-212112810.1016/S0378‑5173(02)00081‑912052697
    [Google Scholar]
  71. PatravaleV.B. MiraniA.G. Preparation and characterization of solid lipid nanoparticles-based gel for topical delivery.Methods Mol. Biol.2019200029330210.1007/978‑1‑4939‑9516‑5_2031148023
    [Google Scholar]
  72. GascoMR Method for producing solid lipid microspheres having a narrow size distribution.Us5250236.199319
  73. ChirioD. PeiraE. DianzaniC. MuntoniE. GigliottiC. FerraraB. SapinoS. ChindamoG. GallarateM. Development of solid lipid nanoparticles by cold dilution of microemulsions: Curcumin loading, preliminary in vitro studies, and biodistribution.Nanomaterials20199223010.3390/nano902023030744025
    [Google Scholar]
  74. KanwarR RatheeJ Tanaji PatilM Kumar MehtaS. Microemulsions as nanotemplates: A soft and versatile approach.Microemulsion - a Chem Nanoreactor2018117
    [Google Scholar]
  75. VenkateswarluV. Solid Lipid Nanoparticle techniques.002
    [Google Scholar]
  76. DuanY. DharA. PatelC. KhimaniM. NeogiS. SharmaP. Siva KumarN. VekariyaR.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems.RSC Advances20201045267772679110.1039/D0RA03491F35515778
    [Google Scholar]
  77. FreitasC. MüllerR.H. Spray-drying of solid lipid nanoparticles (SLNTM).Eur. J. Pharm. Biopharm.199846214515110.1016/S0939‑6411(97)00172‑09795036
    [Google Scholar]
  78. MalamatariM CharisiA MalamatarisS KachrimanisK. Spray drying for the preparation of nanoparticle-based drug formulations as dry powders for inhalation.20208778810.3390/pr8070788
    [Google Scholar]
  79. SastriKT RadhaGV PidikitiS VajjhalaP Solid lipid nanoparticles : Preparation techniques , their characterization , and an update on recent studies.20201006126141
    [Google Scholar]
  80. JawaharN MeyyanathanSN ReddyG SoodS Solid lipid nanoparticles for oral delivery of poorly soluble drugs.20124718481855
    [Google Scholar]
  81. HeH. WangP. CaiC. YangR. TangX. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption.Int. J. Pharm.20154931-245145910.1016/j.ijpharm.2015.08.00426253378
    [Google Scholar]
  82. SurenderV. DeepikaM. Solid lipid nanoparticles: A comprehensive review.J Chem Pharm Res. 201688102114
    [Google Scholar]
  83. SchubertM. Müller-GoymannC.C. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters.Eur. J. Pharm. Biopharm.200355112513110.1016/S0939‑6411(02)00130‑312551713
    [Google Scholar]
  84. CharcossetC. El-HaratiA. FessiH. Preparation of solid lipid nanoparticles using a membrane contactor.J. Control. Release2005108111212010.1016/j.jconrel.2005.07.02316169111
    [Google Scholar]
  85. CastelliF. PugliaC. SarpietroM.G. RizzaL. BoninaF. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry.Int. J. Pharm.20053041-223123810.1016/j.ijpharm.2005.08.01116188405
    [Google Scholar]
  86. VogelaarA. MarcotteS. ChengJ. OluochB. ZaroJ. Use of microfluidics to prepare lipid-based nanocarriers.Pharmaceutics2023154105310.3390/pharmaceutics1504105337111539
    [Google Scholar]
  87. AnderluzziG. PerrieY. Microfluidic manufacture of solid lipid nanoparticles: A case study on tristearin-based systems.Drug Deliv. Lett.202010319720810.2174/2210303109666190807104437
    [Google Scholar]
  88. YadavN. KhatakS. Singh SaraU.V. Solid lipid nanoparticles- A review.Int J Appl Pharm.201352818
    [Google Scholar]
  89. GaurPK MishraS PurohitS Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery.Biomed Res Int.2013201310.1155/2013/750690
    [Google Scholar]
  90. BasuB. GaralaK. BhalodiaR. JoshiB. MehtaK. Solid lipid nanoparticles: A promising tool for drug delivery system.J. Pharm. Res.2010318492
    [Google Scholar]
  91. HuFQ HongY YuanH Preparation and characterization of solid lipid nanoparticles containing peptide.2004273293510.1016/j.ijpharm.2003.12.016
    [Google Scholar]
  92. StellaB PeiraE DianzaniC GallarateM BattagliaL GigliottiCL Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative.Nanomaterials20188211010.3390/nano8020110
    [Google Scholar]
  93. ShahR.M. MalherbeF. EldridgeD. PalomboE.A. HardingI.H. Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique.J. Colloid Interface Sci.201442828629410.1016/j.jcis.2014.04.057
    [Google Scholar]
  94. BhalekarM. UpadhayaP. MadgulkarA. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir.Appl. Nanosci.201771-2475710.1007/s13204‑017‑0547‑1
    [Google Scholar]
  95. ShidhayeSS VaidyaR SutarS PatwardhanA KadamVJ Solid lipid nanoparticles and nanostructured lipid carriers – innovative genera- tions of solid lipid carriers.2008324331
    [Google Scholar]
  96. ButaniD. YewaleC. MisraA. Topical Amphotericin B solid lipid nanoparticles: Design and development.Colloids Surf. B Biointerfaces2016139172410.1016/j.colsurfb.2015.07.03226700229
    [Google Scholar]
  97. DesmetE. Van GeleM. LambertJ. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders.Expert Opin. Drug Deliv.201714110912210.1080/17425247.2016.120607327348356
    [Google Scholar]
  98. DudhipalaN. VeerabrahmaK. Improved anti-hyperlipidemic activity of Rosuvastatin Calcium via lipid nanoparticles: Pharmacokinetic and pharmacodynamic evaluation.Eur. J. Pharm. Biopharm.2017110475710.1016/j.ejpb.2016.10.02227810472
    [Google Scholar]
  99. Plaza-OliverM. Santander-OrtegaM.J. LozanoM.V. Current approaches in lipid-based nanocarriers for oral drug delivery.Drug Deliv. Transl. Res.202111247149710.1007/s13346‑021‑00908‑733528830
    [Google Scholar]
  100. CervantesB AranaL Murillo-cuestaS BrunoM. Solid lipid nanoparticles loaded with glucocorticoids protect auditory cells from cisplatin-induced ototoxicity.201911710.3390/jcm8091464
    [Google Scholar]
  101. SeyfoddinA. ShawJ. Al-KassasR. Solid lipid nanoparticles for ocular drug delivery.Drug Deliv.201017746748910.3109/10717544.2010.48325720491540
    [Google Scholar]
  102. JoshiM.D. MüllerR.H. Lipid nanoparticles for parenteral delivery of actives.Eur. J. Pharm. Biopharm.200971216117210.1016/j.ejpb.2008.09.00318824097
    [Google Scholar]
  103. ClinicaF. Non-stealth and stealth solid lipid nanoparticles ( sln ) carrying doxorubicin : Pharmacokinetics and tissue distribution after i . VAdministration to rats.2000424
    [Google Scholar]
  104. EkambaramP. SathaliA.A.H. PriyankaK. Solid lipid nanoparticles.RE:view20122180102
    [Google Scholar]
  105. DinF. MustaphaO. KimD.W. RashidR. ParkJ.H. ChoiJ.Y. KuS.K. YongC.S. KimJ.O. ChoiH.G. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect.Eur. J. Pharm. Biopharm.201594647210.1016/j.ejpb.2015.04.01925979136
    [Google Scholar]
  106. XingR MustaphaO AliT RehmanM ZaidiSS BaseerA Development, characterization, and evaluation of sln-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery.Biomed Res Int.20212021
    [Google Scholar]
  107. CunhaS. AmaralM.H. LoboJ.M.S. SilvaA.C. Lipid nanoparticles for nasal/intranasal drug delivery.Crit. Rev. Ther. Drug Carrier Syst.201734325728210.1615/CritRevTherDrugCarrierSyst.201701869328845761
    [Google Scholar]
  108. CostaC.P. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies.Acta Pharm. Sin. B202111492594010.1016/j.apsb.2021.02.01233996407
    [Google Scholar]
  109. ParanjpeM. Müller-GoymannC. Nanoparticle-mediated pulmonary drug delivery: A review.Int. J. Mol. Sci.20141545852587310.3390/ijms1504585224717409
    [Google Scholar]
  110. YaghmurA. MuH. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles.Acta Pharm. Sin. B202111487188510.1016/j.apsb.2021.02.01333996404
    [Google Scholar]
  111. LeongEWX GeR Lipid nanoparticles as delivery vehicles for inhaled therapeutics.Biomedicines2022102179
    [Google Scholar]
  112. GastaldiL. BattagliaL. PeiraE. ChirioD. MuntoniE. SolazziI. GallarateM. DosioF. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art.Eur. J. Pharm. Biopharm.201487343344410.1016/j.ejpb.2014.05.00424833004
    [Google Scholar]
  113. NevesA.R. QueirozJ.F. WekslerB. RomeroI.A. CouraudP.O. ReisS. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: Two new strategies of functionalization with apolipoprotein E.Nanotechnology2015264949510310.1088/0957‑4484/26/49/49510326574295
    [Google Scholar]
  114. MallipeddiR. RohanL.C. Progress in antiretroviral drug delivery using nanotechnology.Int. J. Nanomedicine20105153354720957115
    [Google Scholar]
  115. IliT MitroviJR Parenteral lipid-based nanoparticles for cns disorders : Integrating various facets of preclinical evaluation towards more effective clinical translation. Pharmaceutics2023152443
    [Google Scholar]
  116. YasirM. SaraU.V.S. Solid lipid nanoparticles for nose to brain delivery of haloperidol: In vitro drug release and pharmacokinetics evaluation.Acta Pharm. Sin. B20144645446310.1016/j.apsb.2014.10.00526579417
    [Google Scholar]
  117. HangargekarS.R. MohantyP. JainA. Solid lipid nanoparticles for brain targeting.J. Drug Deliv. Ther.201996-s24825210.22270/jddt.v9i6‑s.3783
    [Google Scholar]
  118. KarunakaranB. GuptaR. PatelP. SalaveS. SharmaA. DesaiD. BenivalD. KommineniN. Emerging trends in lipid-based vaccine delivery: A special focus on developmental strategies, fabrication methods, and applications.Vaccines202311366110.3390/vaccines1103066136992244
    [Google Scholar]
  119. FrancisJ.E. SkakicI. DekiwadiaC. ShuklaR. TakiA.C. WalduckA. SmookerP.M. Solid lipid nanoparticle carrier platform containing synthetic TLR4 agonist mediates non-viral DNA vaccine delivery.Vaccines20208355110.3390/vaccines803055132967285
    [Google Scholar]
  120. AlmeidaA.J. RungeS. MüllerR.H. Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters.Int. J. Pharm.1997149225526510.1016/S0378‑5173(97)04885‑0
    [Google Scholar]
  121. AshtariA. NiazvandF. KhorsandiL. Chemotherapy drugs based on solid lipid nanoparticles for breast cancer treatment.Medicina2020561269410.3390/medicina5612069433322127
    [Google Scholar]
  122. BayL AlkortaI AranaL. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs.Nanomaterials201993474
    [Google Scholar]
  123. SoofiyaniS.R. BaradaranB. LotfipourF. KazemiT. MohammadnejadL. Gene Therapy, Early Promises, Subsequent Problems, and Recent Breakthroughs.201332249255
    [Google Scholar]
  124. HaldC KulkarniJA WitzigmannD LindM PeterssonK SimonsenJB Since January 2020 Elsevier has created a COVID-19 resource centre with free information in english and mandarin on the novel coronavirus COVID- 19.The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information2020
    [Google Scholar]
  125. VighiE. LeoE. MontanariM. MucciA. HanuskovaM. IannuccelliV. Structural investigation and intracellular trafficking of a novel multicomposite cationic solid lipid nanoparticle platform as a pDNA carrier.Ther. Deliv.20112111419143510.4155/tde.11.11822826874
    [Google Scholar]
  126. KaurT. SlavcevR. Solid Lipid Nanoparticles : Tuneable Anti-Cancer Gene.Drug Deliv. Syst.2013
    [Google Scholar]
  127. DoktorovovaS. ShegokarR. RakovskyE. Gonzalez-MiraE. LopesC.M. SilvaA.M. Martins-LopesP. MullerR.H. SoutoE.B. Cationic solid lipid nanoparticles (cSLN): Structure, stability and DNA binding capacity correlation studies.Int. J. Pharm.2011420234134910.1016/j.ijpharm.2011.08.04221907778
    [Google Scholar]
  128. AnamikaJ NikharV LaxmikantG PriyaS SonalV VyasSP Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: options and opportunity.20201095111010.1007/s13346‑020‑00770‑z
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385271393231117063750
Loading
/content/journals/pnt/10.2174/0122117385271393231117063750
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test