Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Emerging lipid-based carriers are revolutionizing drug delivery in the pharmaceutical and biomedical sciences. These innovative carriers harness the unique properties of lipids to improve the solubility, stability, and targeted delivery of therapeutic agents, ushering in a new era of precision medicine. Lipid-based carriers, such as liposomes, lipid nanoparticles, and solid lipid nanoparticles, offer several advantages. They can encapsulate both hydrophilic and hydrophobic drugs, enabling the delivery of a wide range of compounds. Additionally, lipids are biocompatible and biodegradable, minimizing the risk of toxicity. Their ability to mimic cell membranes allows for enhanced cellular uptake and controlled release, optimizing drug efficacy while minimizing side effects. Furthermore, lipid-based carriers are ideal for delivering drugs to specific sites within the body. By modifying the lipid composition, surface charge, and size, researchers can tailor these carriers to target tumours, inflamed tissues, or specific cells, improving therapeutic outcomes and reducing systemic toxicity. In summary, emerging lipid-based carriers are poised to transform pharmaceutical and biomedical sciences by addressing critical challenges in drug delivery. These carriers enhance drug stability, bioavailability, and targeted delivery, offering the potential to revolutionize the treatment of various diseases and improve patient outcomes. As research in this field continues to advance, we can expect even more sophisticated lipid-based carrier systems to emerge, further expanding the possibilities for precision medicine. This review focuses on the contribution of lipid carriers in the pharmaceutical and biomedical sciences.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385268268231204061938
2024-01-25
2025-01-06
Loading full text...

Full text loading...

References

  1. RogerE. LagarceF. BenoitJ.P. Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration.Eur. J. Pharm. Biopharm.201179118118810.1016/j.ejpb.2011.01.02121303693
    [Google Scholar]
  2. PrabhuS. OrtegaM. MaC. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam.Int. J. Pharm.20053011-220921610.1016/j.ijpharm.2005.05.03216046087
    [Google Scholar]
  3. AmidonG.L. LennernäsH. ShahV.P. CrisonJ.R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability.Pharm. Res.199512341342010.1023/A:10162128042887617530
    [Google Scholar]
  4. PorterC.J.H. CharmanW.N. In vitro assessment of oral lipid based formulations.Adv. Drug Deliv. Rev.200150Suppl. 1S127S14710.1016/S0169‑409X(01)00182‑X11576699
    [Google Scholar]
  5. BriggerI. DubernetC. CouvreurP. Nanoparticles in cancer therapy and diagnosis.Adv. Drug Deliv. Rev.200254563165110.1016/S0169‑409X(02)00044‑312204596
    [Google Scholar]
  6. PanyamJ. LabhasetwarV. Biodegradable nanoparticles for drug and gene delivery to cells and tissue.Adv. Drug Deliv. Rev.200355332934710.1016/S0169‑409X(02)00228‑412628320
    [Google Scholar]
  7. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.200254Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑712460720
    [Google Scholar]
  8. HaussDJ Oral lipid-based formulations : Enhancing the bioavailability of poorly water-soluable drugs.CRC Press200710.3109/9781420017267
    [Google Scholar]
  9. ChakrabortyS. ShuklaD. MishraB. SinghS. Lipid - An emerging platform for oral delivery of drugs with poor bioavailability.Eur. J. Pharm. Biopharm.200973111510.1016/j.ejpb.2009.06.00119505572
    [Google Scholar]
  10. PoutonC.W. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems.Eur. J. Pharm. Sci.200011Suppl. 2S93S9810.1016/S0928‑0987(00)00167‑611033431
    [Google Scholar]
  11. PorterC.J.H. PoutonC.W. CuineJ.F. CharmanW.N. Enhancing intestinal drug solubilisation using lipid-based delivery systems.Adv. Drug Deliv. Rev.200860667369110.1016/j.addr.2007.10.01418155801
    [Google Scholar]
  12. StrickleyR.G. Currently marketed oral lipid-based dosage forms: Drug products and excipients.Oral Lipid-Based Formulat.2007235410.3109/9781420017267‑4
    [Google Scholar]
  13. KawabataY. WadaK. NakataniM. YamadaS. OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications.Int. J. Pharm.2011420111010.1016/j.ijpharm.2011.08.03221884771
    [Google Scholar]
  14. BalakrishnanP. LeeB.J. OhD.H. KimJ.O. HongM.J. JeeJ.P. KimJ.A. YooB.K. WooJ.S. YongC.S. ChoiH.G. Enhanced oral bioavailability of dexibuprofen by a novel solid Self-emulsifying drug delivery system (SEDDS).Eur. J. Pharm. Biopharm.200972353954510.1016/j.ejpb.2009.03.00119298857
    [Google Scholar]
  15. TanA. RaoS. PrestidgeC.A. Transforming lipid-based oral drug delivery systems into solid dosage forms: An overview of solid carriers, physicochemical properties, and biopharmaceutical performance.Pharm. Res.201330122993301710.1007/s11095‑013‑1107‑323775443
    [Google Scholar]
  16. PoutonC.W. PorterC.J.H. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies.Adv. Drug Deliv. Rev.200860662563710.1016/j.addr.2007.10.01018068260
    [Google Scholar]
  17. StuchlíkM. ŽákS. Lipid-based vehicle for oral drug delivery.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.20011452172610.5507/bp.2001.00812426768
    [Google Scholar]
  18. RoweR.C. SheskeyP.J. OwenS.C. Handbook of pharmaceutical excipients.2006918
    [Google Scholar]
  19. WestesenK. SiekmannB. KochM.H.J. Characterization of submicron-sized drug carrier systems based on solid lipids by synchrotron radiation x-ray diffraction.Prog. Colloid Polym. Sci.19939335610.1007/BFB0118612/COVER
    [Google Scholar]
  20. ShresthaH. BalaR. AroraS. Lipid-based drug delivery systems.J. Pharm.2014201411010.1155/2014/80182026556202
    [Google Scholar]
  21. KalepuS. ManthinaM. PadavalaV. Oral lipid-based drug delivery systems - An overview.Acta Pharm. Sin. B20133636137210.1016/j.apsb.2013.10.001
    [Google Scholar]
  22. ZubairA-HA ShesheSM BashirMR SadeSM Lipid based drug delivery system: A review.J Appl Life Sci Int2021334610.9734/jalsi/2021/v24i330228
    [Google Scholar]
  23. PaliwalR. PaliwalS.R. KenwatR. KurmiB.D. SahuM.K. Solid lipid nanoparticles: A review on recent perspectives and patents.Expert Opin. Ther. Pat.202030317919410.1080/13543776.2020.172064932003260
    [Google Scholar]
  24. AttamaA.A. NkemneleM.O. In vitro evaluation of drug release from self micro-emulsifying drug delivery systems using a biodegradable homolipid from Capra hircus.Int. J. Pharm.20053041-241010.1016/j.ijpharm.2005.08.01816198521
    [Google Scholar]
  25. SchwarzC. MehnertW. LucksJ.S. MüllerR.H. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization.J. Control. Release1994301839610.1016/0168‑3659(94)90047‑7
    [Google Scholar]
  26. LippacherA. MüllerR.H. MäderK. Semisolid SLN™ dispersions for topical application: Influence of formulation and production parameters on viscoelastic properties.Eur. J. Pharm. Biopharm.200253215516010.1016/S0939‑6411(01)00233‑811879997
    [Google Scholar]
  27. SalviV.R. PawarP. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier.J. Drug Deliv. Sci. Technol.20195125526710.1016/j.jddst.2019.02.017
    [Google Scholar]
  28. OlbrichC. GessnerA. KayserO. MüllerR.H. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate.J. Drug Target.200210538739610.1080/106118602100000183212442809
    [Google Scholar]
  29. OnuigboE.B. OkoreV.C. NgeneA.A. EsimoneC.O. AttamaA.A. Preliminary studies of a stearylamine-based cationic liposome.J. Pharm. Res.2011102529
    [Google Scholar]
  30. OnuigboE.B. OkoreV.C. OfokansiK.C. OkoyeJ.O.A. NworuC.S. EsimoneC.O. AttamaA.A. Preliminary evaluation of the immunoenhancement potential of Newcastle disease vaccine formulated as a cationic liposome.Avian Pathol.201241435536010.1080/03079457.2012.69115422834549
    [Google Scholar]
  31. GuoC. WangJ. CaoF. LeeR.J. ZhaiG. Lyotropic liquid crystal systems in drug delivery.Drug Discov. Today20101523-241032104010.1016/j.drudis.2010.09.00620934534
    [Google Scholar]
  32. UchegbuI.F. VyasS.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery.Int. J. Pharm.19981721-2337010.1016/S0378‑5173(98)00169‑0
    [Google Scholar]
  33. ConacherM AlexanderJ BrewerJM Niosomes as immunological adjuvants.2000182205
    [Google Scholar]
  34. LakshmiP.K. DeviG. BhaskaranS. SacchidanandS. Niosomal methotrexate gel in the treatment of localized psoriasis: Phase I and phase II studies.Indian J. Dermatol. Venereol. Leprol.200773315716110.4103/0378‑6323.3270917558046
    [Google Scholar]
  35. CevcG. GebauerD. StieberJ. SchätzleinA. BlumeG. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin.Biochim. Biophys. Acta Biomembr.19981368220121510.1016/S0005‑2736(97)00177‑69459598
    [Google Scholar]
  36. CevcG. SchätzleinA. RichardsenH. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.Biochim. Biophys. Acta Biomembr.200215641213010.1016/S0005‑2736(02)00401‑712100992
    [Google Scholar]
  37. LovelynC. AttamaA.A. LovelynC. AttamaA.A. Current state of nanoemulsions in drug delivery.J. Biomater. Nanobiotechnol.20112562663910.4236/jbnb.2011.225075
    [Google Scholar]
  38. KottaS. KhanA.W. PramodK. AnsariS.H. SharmaR.K. AliJ. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs.Expert Opin. Drug Deliv.20129558559810.1517/17425247.2012.66852322512597
    [Google Scholar]
  39. CannonJ.B. LongM.A. Emulsions, microemulsions, and lipid-based drug delivery systems for drug solubilization and delivery, Part II: Oral applications.2nd ed.In: Boca Raton, FLCRC Press2008
    [Google Scholar]
  40. ConstantinidesP.P. Lipid microemulsions for improving drug dissolution and oral absorption: Physical and biopharmaceutical aspects.Pharm. Res.199512111561157210.1023/A:10162683118678592652
    [Google Scholar]
  41. StrickleyR.G. Solubilizing excipients in oral and injectable formulations.Pharm. Res.200421220123010.1023/B:PHAM.0000016235.32639.2315032302
    [Google Scholar]
  42. CannonB. Chemical and physical stability considerations for lipid-based drug formulations.Am. Pharm. Rev.200710132138
    [Google Scholar]
  43. ChristieWW High-performance liquid chromatography and lipids: A practical guide.Elsevier1987
    [Google Scholar]
  44. RehageH. M. J. Schick (Ed.): Nonionic Surfactants: Physical Chemistry, Vol. 23 aus: Surfactant Science Series, Marcel Dekker Inc., New York 1987. 1160 Seiten, Preis: $ 195.00 (U.S. und Canada), $ 234.00 (alle anderen Länder).Ber. Bunsenges. Phys. Chem1988921103A10410.1002/bbpc.198800024
    [Google Scholar]
  45. PoutonC.W. Formulation of self-emulsifying drug delivery systems.Adv. Drug Deliv. Rev.1997251475810.1016/S0169‑409X(96)00490‑5
    [Google Scholar]
  46. CaoY. MarraM. AndersonB.D. Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles.J. Pharm. Sci.200493112768277910.1002/jps.2012615389678
    [Google Scholar]
  47. KaukonenA.M. BoydB.J. PorterC.J.H. CharmanW.N. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations.Pharm. Res.200421224525310.1023/B:PHAM.0000016282.77887.1f15032305
    [Google Scholar]
  48. CollnotE.M. BaldesC. WempeM.F. HyattJ. NavarroL. EdgarK.J. SchaeferU.F. LehrC.M. Influence of vitamin E TPGS poly(ethylene glycol) chain length on apical efflux transporters in Caco-2 cell monolayers.J. Control. Release20061111-2354010.1016/j.jconrel.2005.11.00516410030
    [Google Scholar]
  49. LiX. YangL. ChenX. ShiS. Green synthesis of silver nanoparticles incorporated in lipid nanocarriers for improving stability and drug-loading capacity.J. Control. Release202032447148210.1016/j.jconrel.2020.05.049
    [Google Scholar]
  50. CortesiR. EsposjtoE. LucaG. NastruzziC. Production of lipospheres as carriers for bioactive compounds.Biomaterials200223112283229410.1016/S0142‑9612(01)00362‑312013175
    [Google Scholar]
  51. SoritaG.D. Santamaria-EchartA. GozzoA.M. GonçalvesO.H. LeimannF.V. BonaE. ManriqueY. FernandesI.P.M. FerreiraI.C.F.R. BarreiroM.F. Lipid composition optimization in spray congealing technique and testing with curcumin-loaded microparticles.Adv. Powder Technol.20213251710172210.1016/j.apt.2021.03.028
    [Google Scholar]
  52. (aLi, X., Yang, L., Chen, X., & Shi, S. (2020) Green synthesis of silver nanoparticles incorporated in lipid nanocarriers for improving stability and drug-loading capacity.Journal of Controlled Release, 32447148210.1016/j.jconrel.2020.05.049
    [Google Scholar]
  53. (b Sanchez-VazquezB. LeeJ.B. StrimaiteM. BuanzA. BaileyR. GershkovichP. PasparakisG. WilliamsG.R. Solid lipid nanoparticles self-assembled from spray dried microparticles.Int. J. Pharm.201957211878410.1016/j.ijpharm.2019.11878431676339
    [Google Scholar]
  54. VenkatesanN. YoshimitsuJ. OhashiY. ItoY. SugiokaN. ShibataN. TakadaK. Pharmacokinetic and pharmacodynamic studies following oral administration of erythropoietin mucoadhesive tablets to beagle dogs.Int. J. Pharm.20063101-2465210.1016/j.ijpharm.2005.11.01416439074
    [Google Scholar]
  55. ItoY. KusawakeT. IshidaM. TawaR. ShibataN. TakadaK. Oral solid gentamicin preparation using emulsifier and adsorbent.J. Control. Release20051051-2233110.1016/j.jconrel.2005.03.01715908031
    [Google Scholar]
  56. KrsticM. DjurisJ. PetrovicO. LazarevicN. CvijicS. IbricS. Application of the melt granulation technique in development of lipid matrix tablets with immediate release of carbamazepine.J. Drug Deliv. Sci. Technol.20173946747410.1016/j.jddst.2017.04.024
    [Google Scholar]
  57. SantoI.E. PedroA.S. FialhoR. Cabral-AlbuquerqueE. Characteristics of lipid micro- and nanoparticles based on supercritical formation for potential pharmaceutical application.Nanoscale Res. Lett.20138138610.1186/1556‑276X‑8‑38624034341
    [Google Scholar]
  58. (a ItoY KusawakeT IshidaM TawaR ShibataN TakadaK Oral solid gentamicin preparation using emulsifier and adsorbent.J Control Release2005105233110.1016/J.JCONREL.2005.03.017
    [Google Scholar]
  59. (b AttamaA.A. SLN, NLC, LDC: State of the art in drug and active delivery.Recent Pat. Drug Deliv. Formul.20115317818710.2174/18722111179720052421834777
    [Google Scholar]
  60. WestesenK. BunjesH. KochM.H.J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential.J. Control. Release1997482-322323610.1016/S0168‑3659(97)00046‑1
    [Google Scholar]
  61. WeiL. SunP. NieS. PanW. Preparation and evaluation of SEDDS and SMEDDS containing carvedilol.Drug Dev. Ind. Pharm.200531878579410.1080/0363904050021642816221613
    [Google Scholar]
  62. EdwardsG. PorterC.J. CaliphS.M. CharmanW.N. Animal models for the study of intestinal lymphatic drug transport.Adv. Drug Deliv. Rev.2001501-2456010.1016/S0169‑409X(01)00148‑X11489333
    [Google Scholar]
  63. SeeballuckF. AshfordM.B. O’DriscollC.M. The effects of pluronics block copolymers and Cremophor EL on intestinal lipoprotein processing and the potential link with P-glycoprotein in Caco-2 cells.Pharm. Res.20032071085109210.1023/A:102442262559612880295
    [Google Scholar]
  64. KhattakM.I.K. AhmedN. UmerM.F. RiazA. AhmadN.M. KhanG.M. Chloroform-Injection (CI) and Spontaneous-Phase-Transition (SPT) are novel methods, simplifying the fabrication of liposomes with versatile solution to cholesterol content and size distribution.Pharmaceutics20201211106510.3390/pharmaceutics1211106533182248
    [Google Scholar]
  65. RocesC.B. PortE.C. DaskalakisN.N. WattsJ.A. AylottJ.W. HalbertG.W. PerrieY. Rapid scale-up and production of active-loaded PEGylated liposomes.Int. J. Pharm.202058611956610.1016/j.ijpharm.2020.11956632622812
    [Google Scholar]
  66. YanarF. MosayyebiA. NastruzziC. CarugoD. ZhangX. Continuous-flow production of liposomes with a millireactor under varying fluidic conditions.Pharmaceutics20201211100110.3390/pharmaceutics1211100133105650
    [Google Scholar]
  67. OgawaK. FuchigamiY. HagimoriM. FumotoS. MiuraY. KawakamiS. Efficient gene transfection to the brain with ultrasound irradiation in mice using stabilized bubble lipopolyplexes prepared by the surface charge regulation method.Int. J. Nanomedicine2018132309232010.2147/IJN.S15737529713163
    [Google Scholar]
  68. PengJ.Q. FumotoS. SugaT. MiyamotoH. KurodaN. KawakamiS. NishidaK. Targeted co-delivery of protein and drug to a tumor in vivo by sophisticated RGD-modified lipid-calcium carbonate nanoparticles.J. Control. Release2019302425310.1016/j.jconrel.2019.03.02130926479
    [Google Scholar]
  69. TanakaH. TakahashiT. KonishiM. TakataN. GomiM. ShiraneD. MiyamaR. HagiwaraS. YamasakiY. SakuraiY. UedaK. HigashiK. MoribeK. ShinshoE. NishidaR. FukuzawaK. YonemochiE. OkuwakiK. MochizukiY. NakaiY. TangeK. YoshiokaH. TamagawaS. AkitaH. Self‐degradable lipid‐like materials based on “hydrolysis accelerated by the intra‐particle enrichment of reactant (HyPER)” for messenger RNA delivery.Adv. Funct. Mater.20203034191057510.1002/adfm.201910575
    [Google Scholar]
  70. Garcia-PinelB. JabaleraY. OrtizR. CabezaL. Jimenez-LopezC. MelguizoC. PradosJ. Biomimetic magnetoliposomes as oxaliplatin nanocarriers: In vitro study for potential application in colon cancer.Pharmaceutics202012658910.3390/pharmaceutics1206058932599905
    [Google Scholar]
  71. LaraP. ChanA.B. CruzL.J. QuestA.F.G. KoganM.J. Exploiting the natural properties of extracellular vesicles in targeted delivery towards specific cells and tissues.Pharmaceutics20201211102210.3390/pharmaceutics1211102233114492
    [Google Scholar]
  72. Ledezma-GallegosF. JuradoR. MirR. MedinaL.A. Mondragon-FuentesL. Garcia-LopezP. Liposomes co-encapsulating cisplatin/mifepristone improve the effect on cervical cancer: In vitro and in vivo assessment.Pharmaceutics202012989710.3390/pharmaceutics1209089732971785
    [Google Scholar]
  73. FumotoS KinoshitaE OhtaK NakamuraKI HirayamaT NagasawaH A pH-adjustable tissue clearing solution that preserves lipid ultrastructures: Suitable tissue clearing method for DDS evaluation.Pharmaceutics202012107010.3390/pharmaceutics12111070
    [Google Scholar]
  74. HuaS. CabotP.J. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: A potential novel treatment of acute and chronic pain condition.Pain Physician2013316E199E21610.36076/ppj.2013/16/E19923703419
    [Google Scholar]
  75. MonteiroN. MartinsA. ReisR.L. NevesN.M. Liposomes in tissue engineering and regenerative medicine.J. R. Soc. Interface2014111012014045910.1098/rsif.2014.045925401172
    [Google Scholar]
  76. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  77. SempleS.C. ChonnA. CullisP.R. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo.Adv. Drug Deliv. Rev.1998321-231710.1016/S0169‑409X(97)00128‑210837632
    [Google Scholar]
  78. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S6886125678787
    [Google Scholar]
  79. TorchilinV.P. Immunoliposomes and PEGylated immunoliposomes: Possible use for targeted delivery of imaging agents.ImmunoMethods19944324425810.1006/immu.1994.10277820455
    [Google Scholar]
  80. VingerhoedsM.H. StormG. CrommelinD.J.A. Immunoliposomes in vivo.ImmunoMethods19944325927210.1006/immu.1994.10287820456
    [Google Scholar]
  81. ForssenE. WillisM. Ligand-targeted liposomes.Adv. Drug Deliv. Rev.199829324927110.1016/S0169‑409X(97)00083‑510837594
    [Google Scholar]
  82. FerrariM. Nanovector therapeutics.Curr. Opin. Chem. Biol.20059434334610.1016/j.cbpa.2005.06.00115967706
    [Google Scholar]
  83. RiehemannK. SchneiderS.W. LugerT.A. GodinB. FerrariM. FuchsH. Nanomedicine--challenge and perspectives.Angew. Chem. Int. Ed.200948587289710.1002/anie.20080258519142939
    [Google Scholar]
  84. GabizonA. HorowitzA.T. GorenD. TzemachD. ShmeedaH. ZalipskyS. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice.Clin. Cancer Res.20039176551655914695160
    [Google Scholar]
  85. KirpotinD.B. DrummondD.C. ShaoY. ShalabyM.R. HongK. NielsenU.B. MarksJ.D. BenzC.C. ParkJ.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models.Cancer Res.200666136732674010.1158/0008‑5472.CAN‑05‑419916818648
    [Google Scholar]
  86. ParkJ.W. HongK. KirpotinD.B. ColbernG. ShalabyR. BaselgaJ. ShaoY. NielsenU.B. MarksJ.D. MooreD. PapahadjopoulosD. BenzC.C. Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery.Clin. Cancer Res.2002841172118111948130
    [Google Scholar]
  87. SawantR.R. TorchilinV.P. Challenges in development of targeted liposomal therapeutics.AAPS J.201214230331510.1208/s12248‑012‑9330‑022415612
    [Google Scholar]
  88. KraftJ.C. FreelingJ.P. WangZ. HoR.J.Y. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems.J. Pharm. Sci.20141031295210.1002/jps.2377324338748
    [Google Scholar]
  89. HuaS. MarksE. SchneiderJ.J. KeelyS. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue.Nanomedicine20151151117113210.1016/j.nano.2015.02.01825784453
    [Google Scholar]
  90. CocoR. PlapiedL. PourcelleV. JérômeC. BraydenD.J. SchneiderY.J. PréatV. Drug delivery to inflamed colon by nanoparticles: Comparison of different strategies.Int. J. Pharm.2013440131210.1016/j.ijpharm.2012.07.01722820482
    [Google Scholar]
  91. Holmén LarssonJ.M. KarlssonH. SjövallH. HanssonG.C. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn.Glycobiology200919775676610.1093/glycob/cwp04819321523
    [Google Scholar]
  92. AntoniL. NudingS. WehkampJ. StangeE.F. Intestinal barrier in inflammatory bowel disease.World J. Gastroenterol.20142051165117910.3748/wjg.v20.i5.116524574793
    [Google Scholar]
  93. CarlsonM. RaabY. PetersonC. HällgrenR. VengeP. Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion.Am. J. Gastroenterol.19999471876188310.1111/j.1572‑0241.1999.01223.x10406252
    [Google Scholar]
  94. PetersonC.G.B. EklundE. TahaY. RaabY. CarlsonM. A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: Establishment of normal levels and clinical application in patients with inflammatory bowel disease.Am. J. Gastroenterol.20029771755176210.1111/j.1572‑0241.2002.05837.x12135031
    [Google Scholar]
  95. FelgnerP.L. GadekT.R. HolmM. RomanR. ChanH.W. WenzM. NorthropJ.P. RingoldG.M. DanielsenM. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure.Proc. Natl. Acad. Sci.198784217413741710.1073/pnas.84.21.74132823261
    [Google Scholar]
  96. CampbellR.B. FukumuraD. BrownE.B. MazzolaL.M. IzumiY. JainR.K. TorchilinV.P. MunnL.L. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors.Cancer Res.200262236831683612460895
    [Google Scholar]
  97. RanS. DownesA. ThorpeP.E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels.Cancer Res.200262216132614012414638
    [Google Scholar]
  98. LvH. ZhangS. WangB. CuiS. YanJ. Toxicity of cationic lipids and cationic polymers in gene delivery.J. Control. Release2006114110010910.1016/j.jconrel.2006.04.01416831482
    [Google Scholar]
  99. ShresthaH. BalaR. AroraS. Lipid-Based Drug Delivery Systems.J. Pharm. (Cairo)2014201411010.1155/2014/80182026556202
    [Google Scholar]
  100. MaincentP. The regulatory environment: The challenges for lipid-based formulations.Bulletin Technique Gattefosse20071004749
    [Google Scholar]
  101. ChenM.L. Lipid excipients and delivery systems for pharmaceutical development: A regulatory perspective.Adv. Drug Deliv. Rev.200860676877710.1016/j.addr.2007.09.01018077051
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385268268231204061938
Loading
/content/journals/pnt/10.2174/0122117385268268231204061938
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test