Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

Dementia associated with Alzheimer’s disease (AD) is a neurological disorder. AD is a progressive neurodegenerative condition that predominantly impacts the elderly population, although it can also manifest in younger people through the impairment of cognitive functions, such as memory, cognition, and behaviour. Donepezil HCl and Memantine HCl are encapsulated in Nanostructured Lipid Carriers (NLCs) to prolong systemic circulation and minimize the systemic side effects.

Objective

This work explores the use of data mining tools to optimize the formulation of NLCs comprising of Donepezil HCl and Memantine HCl for transdermal drug delivery. Neuroprotective drugs and excipients are utilized for protecting the nervous system against damage or degeneration.

Methods

The NLCs were formulated using a high-speed homogenization technique followed by ultrasonication. NLCs were optimized using Box Behnken Design (BBD) in Design Expert Software and artificial neural network (ANN) in IBM SPSS statistics. The independent variables included the ratio of solid lipid to liquid lipid, the percentage of surfactant, and the revolutions per minute (RPM) of the high-speed homogenizer.

Results

The NLCs that were formulated had a mean particle size ranging from 67.0±0.45 to 142.4±0.52 nm. Both drugs have a %EE range over 75%, and Zeta potential was determined to be -26±0.36 mV. CryoSEM was used to do the structural study. The permeation study showed the prolonged release of the formulation.

Conclusion

The results indicate that NLCs have the potential to be a carrier for transporting medications to deeper layers of the skin and reaching systemic circulation, making them a suitable formulation for the management of Dementia. Both ANN and BBD techniques are effective tools for systematically developing and optimizing NLC formulation.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385294969240326052312
2024-04-09
2025-01-09
Loading full text...

Full text loading...

References

  1. QiuC. KivipeltoM. von StraussE. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention.Dialogues Clin. Neurosci.200911211112810.31887/DCNS.2009.11.2/cqiu19585947
    [Google Scholar]
  2. LimR.H. SharmeenT. Medicines management issues in dementia and coping strategies used by people living with dementia and family carers: A systematic review.Int. J. Geriatr. Psychiatry201833121562158110.1002/gps.498530270451
    [Google Scholar]
  3. NguyenT.T. GiauV.V. VoT.K. Current advances in transdermal delivery of drugs for Alzheimer’s disease.Indian J. Pharmacol.201749214515410.4103/0253‑7613.20814328706327
    [Google Scholar]
  4. FlynnE. Drug bioavailability. In: The Comprehensive Pharmacology ReferenceStatPearls Publishing20071210.1016/B978‑008055232‑3.60035‑2
    [Google Scholar]
  5. YuY.Q. YangX. WuX.F. FanY.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications.Front. Bioeng. Biotechnol.2021964655410.3389/fbioe.2021.64655433855015
    [Google Scholar]
  6. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. TorresR.M.P. TorresA.L.S. TorresD.L.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  7. WangS. DiJ. WangD. DaiX. HuaY. GaoX. ZhengA. GaoJ. State-of-the-art review of artificial neural networks to predict, characterize and optimize pharmaceutical formulation.Pharmaceutics202214118310.3390/pharmaceutics1401018335057076
    [Google Scholar]
  8. PatelJ. PatelA. Artificial neural networking in controlled drug delivery. In: Artificial neural network for drug design, delivery and dispositionAcademic Press201619521810.1016/B978‑0‑12‑801559‑9.00010‑7
    [Google Scholar]
  9. PatelB.M. GohelM.C. ThakkarV.T. BaldaniyaL.H. ChristianR.R. GandhiT.R. Screening of sacrificial excipients for arresting devitrification of itraconazole from solid dispersion.Turkish Journal of Pharmaceutical Sciences201916221121910.4274/tjps.galenos.2018.5487132454716
    [Google Scholar]
  10. DargahM.M. FalahatiZ. DabirmaneshB. NasrollahiP. KhajehK. Machine learning in surface plasmon resonance for environmental monitoring.Artificial Intelligence and Data Science in Environmental Sensing.Academic Press202226929810.1016/B978‑0‑323‑90508‑4.00012‑5
    [Google Scholar]
  11. ThakkarV. PatelA. DalwadiS. RanaH. ThakkarT. Response surface and artificial neural network simulation used in dissolution enhancement of poorly soluble lornoxicam using microwave-assisted solid dispersion technique. In: Human-Centric Smart ComputingSingaporeSpringer202429730810.1007/978‑981‑99‑7711‑6_24
    [Google Scholar]
  12. SimõesM.F. SilvaG. PintoA.C. FonsecaM. SilvaN.E. PintoR.M.A. SimõesS. Artificial neural networks applied to quality-by-design: From formulation development to clinical outcome.Eur. J. Pharm. Biopharm.202015228229510.1016/j.ejpb.2020.05.01232442736
    [Google Scholar]
  13. DasS. DeyR. NayakA.K. Artificial intelligence in pharmacy.Indian J. Pharm. Educ. Res.202155230431810.5530/ijper.55.2.68
    [Google Scholar]
  14. KumarA.M. KumarC.P. BashaS.S. ThadipatriR. MahammedN. Artificial neural networks in optimization of pharmaceutical formulations.Saudi J Med Pharm Sci.20217836837810.36348/sjmps.2021.v07i08.004
    [Google Scholar]
  15. DalwadiS. ThakkarV.T. RanaH.B. Hybrid liquisolid technique: A ovel approach to enhance the in-vitro performance of antidiabetic drugs.Curr. Drug Ther.202116540942210.2174/1574885516666210531130134
    [Google Scholar]
  16. UnnisaA. ChettupalliA.K. AlazragiR.S. AlelwaniW. BannunahA.M. BarnawiJ. AmarachintaP.R. JandrajupalliS.B. ElamineB.A. MohamedO.A. HussainT. Nanostructured lipid carriers to enhance the bioavailability and solubility of ranolazine: Statistical optimization and pharmacological evaluations.Pharmaceuticals2023168115110.3390/ph1608115137631066
    [Google Scholar]
  17. GargN.K. TandelN. BhadadaS.K. TyagiR.K. Nanostructured lipid carrier–mediated transdermal delivery of aceclofenac hydrogel present an effective therapeutic approach for inflammatory diseases.Front. Pharmacol.20211271361610.3389/fphar.2021.71361634616297
    [Google Scholar]
  18. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.01534588846
    [Google Scholar]
  19. BnyanR. KhanI. EhtezaziT. SaleemI. GordonS. O’NeillF. RobertsM. Surfactant effects on lipid-based vesicles properties.J. Pharm. Sci.201810751237124610.1016/j.xphs.2018.01.00529336980
    [Google Scholar]
  20. DalwadiS. ThakkarV. ShahP. PatelK. Optimizing analysis of Donepezil HCl and Memantine HCl using multivariate analysis as a data mining tool in HPTLC methodology. In: Human-Centric Smart ComputingSingaporeSpringer202430932110.1007/978‑981‑99‑7711‑6_25
    [Google Scholar]
  21. ThakkarH. DesaiJ. ParmarM. Application of box-behnken design for optimization of formulation parameters for nanostructured lipid carriers of candesartan cilexetil.Asian J. Pharm.201482818910.4103/0973‑8398.134921
    [Google Scholar]
  22. JiangH. ZhangH. YinS.J. LuM. WangX. YangF.Q. Determination of lipid–water partition coefficient of neutral and ionic drugs by liposome electrokinetic chromatography.Electrophoresis20214214-151436144910.1002/elps.20200038233908064
    [Google Scholar]
  23. WuC. JiP. YuT. LiuY. JiangJ. XuJ. ZhaoY. HaoY. QiuY. ZhaoW. Naringenin-loaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics.Drug Des. Devel. Ther.20161091192510.2147/DDDT.S9773827041995
    [Google Scholar]
  24. GomaaE. FathiH.A. EissaN.G. ElsabahyM. Methods for preparation of nanostructured lipid carriers.Methods20221993810.1016/j.ymeth.2021.05.00333992771
    [Google Scholar]
  25. SoniK. RizwanullahM. KohliK. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments.Artif. Cells Nanomed. Biotechnol.201846sup1153110.1080/21691401.2017.140812429183147
    [Google Scholar]
  26. ShahP. PatelK. PatelK. ThakkarV. DalwadiS. GandhiT. BhavsarB. Exploring the advance data mining tool for optimization of nanoparticles laden in situ gel for ocular drug delivery.Curr. Drug Ther.20241918810210.2174/1574885518666230417085251
    [Google Scholar]
  27. JahanS. AqilM. AhadA. ImamS.S. WaheedA. QadirA. Nanostructured lipid carrier for transdermal gliclazide delivery: Development and optimization by Box-Behnken design. In: Inorganic and Nano-Metal ChemistryTaylor & Francis, Routledge202211410.1080/24701556.2021.2025097
    [Google Scholar]
  28. HassanD.H. ShohdyJ.N. El-SetouhyD.A. El-NabarawiM. NaguibM.J. Compritol-based nanostrucutured lipid carriers (NLCs) for augmentation of zolmitriptan bioavailability via the transdermal route: In vitro optimization, Ex vivo permeation, in vivo pharmacokinetic study.Pharmaceutics2022147148410.3390/pharmaceutics1407148435890379
    [Google Scholar]
  29. SilvaA.C. AmaralM.H. LoboS.J.M. TichotaD. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration.Int. J. Nanomedicine2014913855386410.2147/IJN.S6400825143733
    [Google Scholar]
  30. MakoniP.A. KasongoW.K. WalkerR.B. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions.Pharmaceutics201911839710.3390/pharmaceutics1108039731398820
    [Google Scholar]
  31. SivadasanD. SultanM.H. MadkhaliO. AlmoshariY. ThangavelN. Polymeric lipid hybrid nanoparticles (Plns) as emerging drug delivery platform—A comprehensive review of their properties, preparation methods, and therapeutic applications.Pharmaceutics2021138129110.3390/pharmaceutics1308129134452251
    [Google Scholar]
  32. GhanS.Y. SiowL.F. TanC.P. CheongK.W. ThooY.Y. Influence of soya lecithin, sorbitan and glyceryl monostearate on physicochemical properties of organogels.Food Biophys.202015338639510.1007/s11483‑020‑09633‑z
    [Google Scholar]
  33. ShahK.A. JoshiM.D. PatravaleV.B. Biocompatible microemulsions for fabrication of glyceryl monostearate solid lipid nanoparticles (SLN) of tretinoin.J. Biomed. Nanotechnol.20095439640010.1166/jbn.2009.104820055085
    [Google Scholar]
  34. Sainaga JyothiV.G.S. GhouseS.M. KhatriD.K. NanduriS. SinghS.B. MadanJ. Lipid nanoparticles in topical dermal drug delivery: Does chemistry of lipid persuade skin penetration?J. Drug Deliv. Sci. Technol.20226910317610.1016/j.jddst.2022.103176
    [Google Scholar]
  35. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.5728220502539
    [Google Scholar]
  36. SomI. BhatiaK. YasirM. Status of surfactants as penetration enhancers in transdermal drug delivery.J. Pharm. Bioallied Sci.2012412910.4103/0975‑7406.9272422368393
    [Google Scholar]
  37. NgN. RogersM.A. Surfactants. In: Encyclopedia of Food ChemistryAcademic Press201827628210.1016/B978‑0‑08‑100596‑5.21598‑9
    [Google Scholar]
  38. Method OECD guideline for the testing of chemicals. partition coefficient (n-octanol/water): Shake flask method.Guidance.1995107July1410.1787/9789264069626‑en
    [Google Scholar]
  39. TsumeY. MudieD.M. LangguthP. AmidonG.E. AmidonG.L. The biopharmaceutics classification system: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC.Eur. J. Pharm. Sci.201457115216310.1016/j.ejps.2014.01.00924486482
    [Google Scholar]
  40. KimM.H. KimK.T. SohnS.Y. LeeJ.Y. LeeC.H. YangH. LeeB.K. LeeK.W. KimD.D. Formulation and evaluation of nanostructured lipid carriers (NLCs) of 20(s)-protopanaxadiol (PPD) by box-behnken design.Int. J. Nanomedicine2019148509852010.2147/IJN.S21583531749618
    [Google Scholar]
  41. ApostolouM. AssiS. FatokunA.A. KhanI. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers.J. Pharm. Sci.202111082859287210.1016/j.xphs.2021.04.01233901564
    [Google Scholar]
  42. Karn-orachaiK. SmithS.M. PhunpeeS. TreethongA. PuttipipatkhachornS. PratontepS. RuktanonchaiU.R. The effect of surfactant composition on the chemical and structural properties of nanostructured lipid carriers.J. Microencapsul.201431660961810.3109/02652048.2014.91137424861323
    [Google Scholar]
  43. GhadiriM. FatemiS. VatanaraA. DoroudD. NajafabadiA.R. DarabiM. RahimiA.A. Loading hydrophilic drug in solid lipid media as nanoparticles: Statistical modeling of entrapment efficiency and particle size.Int. J. Pharm.20124241-212813710.1016/j.ijpharm.2011.12.03722227603
    [Google Scholar]
  44. GardouhA. SayedH. GhorabM. RahmanA.S. Effect of viscosity, method of preparation and homogenization speed on physical characteristics of solid lipid nanoparticles.J. Sci. Technol.20122996100610.21608/zjps.2010.167378
    [Google Scholar]
  45. SolankiH.K. PrajapatiV.D. JaniG.K. Microwave technology-A potential tool in pharmaceutical science.Int. J. Pharm. Tech. Res.2010231754176110.1002/chin.201124236
    [Google Scholar]
  46. PezeshkiA. GhanbarzadehB. MohammadiM. FathollahiI. HamishehkarH. Encapsulation of vitamin A palmitate in nanostructured lipid carrier (NLC)-effect of surfactant concentration on the formulation properties.Adv. Pharm. Bull.20144S256356810.5681/apb.2014.08325671190
    [Google Scholar]
  47. DhimanN. AwasthiR. SharmaB. KharkwalH. KulkarniG.T. Lipid nanoparticles as carriers for bioactive delivery.Front Chem.2021958011810.3389/fchem.2021.58011833981670
    [Google Scholar]
  48. KushwahaA.K. VuddandaP.R. KarunanidhiP. SinghS.K. SinghS. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability.BioMed Res. Int.201320131910.1155/2013/58454924228255
    [Google Scholar]
  49. KadnárM. KáčerP. HarničárováM. ValíčekJ. TóthF. BujnaM. KušnerováM. MikušR. BoržanM. Comparison of linear regression and artificial neural network models for the dimensional control of the welded stamped steel arms.Machines202311337610.3390/machines11030376
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385294969240326052312
Loading
/content/journals/pnt/10.2174/0122117385294969240326052312
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test