Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background

Paraquat (PQ) is an effective herbicide which is widely used around the world to remove weeds in agriculture. As a water-soluble carotenoid, crocin is a pharmacologically active constituent of . (saffron).

Objectives

In the present study, we investigated the effects of crocin-loaded niosomes (Cro-NIO) compared to free crocin on PQ-induced toxicity in the eukaryotic human embryonic kidney (HEK293) cell line.

Methods

The Cro-NIO was synthesized and characterized. Cell viability was determined using the MTT assay in PQ-exposed HEK293 cell lines. The activities of biochemical markers were quantitatively determined to reveal the potential mechanism of PQ-induced oxidative stress in HEK293 cell line.

Results

The particle size, zeta potential, polydispersity index (PDI), DL, and EE of Cro-NIO were 145.4 ± 19.5 nm, -22.3 ± 3.11 mV, 0.3 ± 0.03, 1.74 ± 0.01%, and 55.3 ± 7.1%, respectively. PQ-treated HEK293 cell lines decreased cell viability. The results of oxidative status showed that PQ significantly could increase ROS accumulation, accompanied by a decreasing antioxidant defense system. However, treatment with Cro-NIO, compared to crocin, not only did dose-dependently improve the cell viability but also significantly attenuated the ROS accumulation and increased antioxidant markers.

Conclusion

According to these results, Cro-NIO, compared to crocin, was superior to ameliorating PQ-induced cytotoxicity and oxidative damage in HEK293 cells.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385256493231019045141
2024-01-16
2025-05-24
Loading full text...

Full text loading...

References

  1. YangB. LiuY. LiY. ZhuS. LiY. YiJ. OuyangZ. LiuB. MehmoodK. HussainR. PanJ. HuL. TangZ. WangG. LiY. ZhangH. Exposure to the herbicide butachlor activates hepatic stress signals and disturbs lipid metabolism in mice.Chemosphere202128313122610.1016/j.chemosphere.2021.13122634146870
    [Google Scholar]
  2. ChenJ. SuY. LinF. IqbalM. MehmoodK. ZhangH. ShiD. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications.Ecotoxicol. Environ. Saf.202122411271110.1016/j.ecoenv.2021.11271134455184
    [Google Scholar]
  3. RashidipourM. MalekiA. KordiS. BirjandiM. PajouhiN. MohammadiE. HeydariR. RezaeeR. RasoulianB. DavariB. Pectin/chitosan/tripolyphosphate nanoparticles: Efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity.J. Agric. Food Chem.201967205736574510.1021/acs.jafc.9b0110631042035
    [Google Scholar]
  4. HarcheganiA.L. HemmatiA.A. Nili-AhmadabadiA. DarabiB. ShabibS. Cromolyn sodium attenuates paraquat-induced lung injury by modulation of proinflammatory cytokines.Drug Res.201767528328810.1055/s‑0042‑12371128561222
    [Google Scholar]
  5. GeW. ZhangY. HanX. RenJ. Cardiac-specific overexpression of catalase attenuates paraquat-induced myocardial geometric and contractile alteration: Role of ER stress.Free Radic. Biol. Med.201049122068207710.1016/j.freeradbiomed.2010.10.68620937379
    [Google Scholar]
  6. KimS. GilH.W. YangJ.O. LeeE.Y. HongS.Y. The clinical features of acute kidney injury in patients with acute paraquat intoxication.Nephrol. Dial. Transplant.20082441226123210.1093/ndt/gfn61518987262
    [Google Scholar]
  7. AndersonT. MerrillA.K. EckardM.L. MarvinE. ConradK. WelleK. OberdörsterG. SobolewskiM. Cory-SlechtaD.A. Paraquat inhalation, a translationally relevant route of exposure: Disposition to the brain and male-specific olfactory impairment in mice.Toxicol. Sci.2021180117518510.1093/toxsci/kfaa18333372994
    [Google Scholar]
  8. LiuY. LuoX. LiG. WeiL. YuX. LiY. Increased 90-day mortality in spontaneously breathing patients with paraquat poisoning: In addition to disease severity, lung strain may play a role.Crit. Care Med.201947221922810.1097/CCM.000000000000351830371520
    [Google Scholar]
  9. HuX. ChenL. LiT. ZhaoM. TLR3 is involved in paraquat-induced acute renal injury.Life Sci.201922310210910.1016/j.lfs.2019.03.02930876938
    [Google Scholar]
  10. MaJ. LiY. LiW. LiX. Hepatotoxicity of paraquat on common carp (Cyprinus carpio L.).Sci. Total Environ.2018616-61788989810.1016/j.scitotenv.2017.10.23129107372
    [Google Scholar]
  11. MakhdoomiS. AriafarS. MirzaeiF. MohammadiM. Aluminum neurotoxicity and autophagy: A mechanistic view.Neurol. Res.202345321622510.1080/01616412.2022.213272736208459
    [Google Scholar]
  12. KalantarM. KalantariH. GoudarziM. KhorsandiL. BakhitS. KalantarH. Crocin ameliorates methotrexate-induced liver injury via inhibition of oxidative stress and inflammation in rats.Pharmacol. Rep.201971474675210.1016/j.pharep.2019.04.00431220735
    [Google Scholar]
  13. JahanbakhshZ. RasoulianB. JafariM. ShekarforoushS. EsmailidehajM. MohammadiM.T. AghaiH. SalehiM. KhoshbatenA. Protective effect of crocin against reperfusion-induced cardiac arrhythmias in anaesthetized rats.EXCLI J.201211202927366133
    [Google Scholar]
  14. HatziagapiouK. KakouriE. LambrouG.I. BethanisK. TarantilisP.A. Antioxidant properties of Crocus sativus L. and its constituents and relevance to neurodegenerative diseases; focus on Alzheimer’s and Parkinson’s disease.Curr. Neuropharmacol.201917437740210.2174/1570159X1666618032109570529564976
    [Google Scholar]
  15. ZhengY.Q. LiuJ.X. WangJ.N. XuL. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia.Brain Res.20071138869410.1016/j.brainres.2006.12.06417274961
    [Google Scholar]
  16. EL-MaraghySA. RizkSM. El-SawalhiMM. Hepatoprotective potential of crocin and curcumin against iron overload-induced biochemical alterations in rat.Afr. J. Biochem. Res.200935215221
    [Google Scholar]
  17. GunasekaranT. HaileT. NigusseT. DhanarajuM.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine.Asian Pac. J. Trop. Biomed.201441S1S710.12980/APJTB.4.2014C98025183064
    [Google Scholar]
  18. Ag SeleciD SeleciM WalterJ-G StahlF ScheperT Niosomes as nanoparticular drug carriers: Fundamentals and recent applications.J. nanomat.2016201610.1155/2016/7372306
    [Google Scholar]
  19. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.01524747765
    [Google Scholar]
  20. GorjianH. Raftani AmiriZ. Mohammadzadeh MilaniJ. Ghaffari KhalighN. Preparation and characterization of the encapsulated myrtle extract nanoliposome and nanoniosome without using cholesterol and toxic organic solvents: A comparative study.Food Chem.202134212834210.1016/j.foodchem.2020.12834233092927
    [Google Scholar]
  21. FirozianF. KaramiS. RanjbarA. AzandaryaniM.T. Nili-AhmadabadiA. Improvement of therapeutic potential N-acetylcysteine in acetaminophen hepatotoxicity by encapsulation in PEGylated nano-niosomes.Life Sci.202025511783210.1016/j.lfs.2020.11783232450164
    [Google Scholar]
  22. HarsinA.O. FirozianF. AhmadabadiA.N. SoleimaniM. RanjbarA. Nanocrocin protective effects on paraquat-induced oxidative stress in the MRC-5 cell line.Indian J. Clin. Biochem.20221810.1007/s12291‑022‑01096‑y
    [Google Scholar]
  23. D’ApolitoM. DuX. PisanelliD. Pettoello-MantovaniM. CampanozziA. GiaccoF. MaffioneA.B. ColiaA.L. BrownleeM. GiardinoI. Urea-induced ROS cause endothelial dysfunction in chronic renal failure.Atherosclerosis2015239239340010.1016/j.atherosclerosis.2015.01.03425682038
    [Google Scholar]
  24. El-KharragR. AminA. HisaindeeS. GreishY. KaramS.M. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles.Int. J. Oncol.201750121222210.3892/ijo.2016.376927878253
    [Google Scholar]
  25. JavaniR. HashemiF.S. GhanbarzadehB. HamishehkarH. Quercetin-loaded niosomal nanoparticles prepared by the thin-layer hydration method: Formulation development, colloidal stability, and structural properties.Lebensm. Wiss. Technol.202114111086510.1016/j.lwt.2021.110865
    [Google Scholar]
  26. WenX. GibsonC.J. YangI. BuckleyB. GoedkenM.J. RichardsonJ.R. AleksunesL.M. MDR1 transporter protects against paraquat-induced toxicity in human and mouse proximal tubule cells.Toxicol. Sci.2014141247548310.1093/toxsci/kfu14125015657
    [Google Scholar]
  27. GöcgeldiE. UysalB. KorkmazA. OgurR. ReiterR.J. KurtB. ÖterS. TopalT. HasdeM. Establishing the use of melatonin as an adjuvant therapeutic against paraquat-induced lung toxicity in rats.Exp. Biol. Med.200823391133114110.3181/0802‑RM‑6518535163
    [Google Scholar]
  28. KimJ.H. GilH.W. YangJ.O. LeeE.Y. HongS.Y. Serum uric acid level as a marker for mortality and acute kidney injury in patients with acute paraquat intoxication.Nephrol. Dial. Transplant.20112661846185210.1093/ndt/gfq63220966188
    [Google Scholar]
  29. YamamotoH. MohananP.V. Effects of melatonin on paraquat or ultraviolet light exposure-induced DNA damage.J. Pineal Res.200131430831310.1034/j.1600‑079X.2001.310404.x11703559
    [Google Scholar]
  30. ChenQ. ZhangX. ZhaoJ.Y. LuX.N. ZhengP.S. XueX. Oxidative damage of the male reproductive system induced by paraquat.J. Biochem. Mol. Toxicol.2017313e2187010.1002/jbt.2187027762473
    [Google Scholar]
  31. Zeinvand-LorestaniH. Nili-AhmadabadiA. BalakF. HasanzadehG. SabzevariO. Protective role of thymoquinone against paraquat-induced hepatotoxicity in mice.Pestic. Biochem. Physiol.2018148162110.1016/j.pestbp.2018.03.00629891368
    [Google Scholar]
  32. MakhdoomiS. MahboobianM.M. HaddadiR. KomakiA. MohammadiM. Silibinin-loaded nanostructured lipid carriers (NLCs) ameliorated cognitive deficits and oxidative damages in aluminum chloride-induced neurotoxicity in male mice.Toxicology202247715326010.1016/j.tox.2022.15326035850386
    [Google Scholar]
  33. ParthasarathiG. UdupaN. UmadeviP. PillaiG. Niosome encapsulated of vincristine sulfate: Improved anticancer activity with reduced toxicity in mice.J. Drug Target.19942217318210.3109/106118694090159078069596
    [Google Scholar]
  34. AkbarzadehI. TavakkoliY.M. BourbourM. NoorbazarganH. LajevardiA. Sadat ShilsarS.M. HeidariF. MousavianS.M. Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation.J. Drug Deliv. Sci. Technol.20205710171510.1016/j.jddst.2020.101715
    [Google Scholar]
  35. AkbarzadehI. Tavakkoli YarakiM. AhmadiS. ChianiM. NourouzianD. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation.Adv. Powder Technol.20203194064407110.1016/j.apt.2020.08.011
    [Google Scholar]
  36. AkbariG. ali MardS. VeisiA. A comprehensive review on regulatory effects of crocin on ischemia/reperfusion injury in multiple organs.Biomed. Pharmacother.20189966467010.1016/j.biopha.2018.01.11329710463
    [Google Scholar]
  37. NaderiR. PardakhtyA. AbbasiM.F. RanjbarM. IranpourM. Preparation and evaluation of crocin loaded in nanoniosomes and their effects on ischemia–reperfusion injuries in rat kidney.Sci. Rep.20211112352510.1038/s41598‑021‑02073‑w34876613
    [Google Scholar]
  38. HosseinzadehH. SadeghniaH.R. ZiaeeT. DanaeeA. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats.J. Pharm. Pharm. Sci.20058338739316401388
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385256493231019045141
Loading
/content/journals/pnt/10.2174/0122117385256493231019045141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test