Skip to content
2000
image of Mechanistic Overview on Therapeutic Potential of Phenols Targeting the Breast Cancer: Molecular Insights and Future Road to Drug Design

Abstract

Breast cancer is the most common malignancy globally. It is associated with genetic and lifestyle risk factors. Many chemotherapeutic agents are currently available for breast cancer. Despite their moderate efficacy in breast cancer therapy, many of these chemotherapeutic agents are associated with adverse effects. A few patients also have the possibility of developing resistance to these drugs over time. The resistance to these chemotherapeutic agents illustrates the necessity to seek novel therapeutic strategies. Phenols are a class of plant-derived compounds that have an aromatic ring with at least one hydroxyl group. They are well known for their antioxidant, anti-inflammatory, and anti-proliferative effects. A diet rich in fruits and vegetables has a high content of polyphenols. Various and studies in the past two decades have demonstrated the therapeutic potential of phenol in breast cancer. Each of these polyphenol compounds has promising potential to modulate breast cancer in various stages, including proliferation, angiogenesis, invasion, and metastasis. This review focuses on the various and studies done in both phenolic compounds and phenolic extracts and the efficacy of phenols in modulating breast carcinogenesis by various mechanisms. The potential of phenols to inhibit various oncogenes and tumor-associated proteins is also discussed. The ability of polyphenols to sensitize hormone-resistant and chemoresistant breast cancer cell lines to various chemotherapeutic agents has also been highlighted.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155351726250123083250
2025-02-04
2025-06-29
Loading full text...

Full text loading...

References

  1. Mehrotra R. Yadav K. Breast cancer in india: Present scenario and the challenges ahead. World J. Clin. Oncol. 2022 13 3 209 218 10.5306/wjco.v13.i3.209 35433294
    [Google Scholar]
  2. Dall GV. Britt KL. Estrogen effects on the mammary gland in early and late life and breast cancer risk. Front. Oncol. 2017 7 110 10.3389/fonc.2017.00110
    [Google Scholar]
  3. Sun Y.S. Zhao Z. Yang Z.N. Xu F. Lu H.J. Zhu Z.Y. Shi W. Jiang J. Yao P.P. Zhu H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017 13 11 1387 1397 10.7150/ijbs.21635 29209143
    [Google Scholar]
  4. Veronese P. Hachul D.T. Scanavacca M.I. Hajjar L.A. Wu T.C. Sacilotto L. Veronese C. Darrieux F.C.C. Effects of anthracycline, cyclophosphamide and taxane chem'other'apy on QTc measurements in patients with breast cancer. PLoS One 2018 13 5 e0196763 10.1371/journal.pone.0196763 29723224
    [Google Scholar]
  5. Sukumaran S. Zochedh A. Chandran K. Sultan A.B. Kathiresan T. Combinatory effect of gemcitabine and 5‐fluorouracil investigated through chemoinformatics and molecular dynamics simulation against breast cancer. Int. J. Quantum Chem. 2024 124 20 e27498 10.1002/qua.27498
    [Google Scholar]
  6. Borunda O.E. Nuñez A.P. Aguilar A.L.E. Valles G.F.O. Valdespino R.C.A. Subtypes of Breast Cancer. Breast Cancer. Mayrovitz H.N. 2022 10.36255/exon‑publications‑breast‑cancer‑subtypes
    [Google Scholar]
  7. Das S. Filippone S.M. Williams D.S. Das A. Kukreja R.C. Beet root juice protects against doxorubicin toxicity in cardiomyocytes while enhancing apoptosis in breast cancer cells. Mol. Cell. Biochem. 2016 421 1-2 89 101 10.1007/s11010‑016‑2789‑8 27565811
    [Google Scholar]
  8. Panche A.N. Diwan A.D. Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016 5 e47 10.1017/jns.2016.41 28620474
    [Google Scholar]
  9. Haines C.N. Wardell S.E. McDonnell D.P. Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays Biochem. 2021 65 6 985 1001 10.1042/EBC20200174 34328178
    [Google Scholar]
  10. Wang X. Zhang H. Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019 2 2 141 160 10.20517/cdr.2019.10 34322663
    [Google Scholar]
  11. Williams C. Lin C.Y. Oestrogen receptors in breast cancer: Basic mechanisms and clinical implications. Ecancermedicalscience 2013 7 370 24222786
    [Google Scholar]
  12. Basly J.P. Lavier M.C.C. Dietary phytoestrogens: Potential selective estrogen enzyme modulators? Planta Med. 2005 71 4 287 294 10.1055/s‑2005‑864092 15856402
    [Google Scholar]
  13. Adams J.M. Cory S. The Bcl-2 protein family: Arbiters of cell survival. Science 1998 281 5381 1322 1326 10.1126/science.281.5381.1322 9735050
    [Google Scholar]
  14. Sayeed A. Konduri S.D. Liu W. Bansal S. Li F. Das G.M. Estrogen receptor alpha inhibits p53-mediated transcriptional repression: Implications for the regulation of apoptosis. Cancer Res. 2007 67 16 7746 7755 10.1158/0008‑5472.CAN‑06‑3724 17699779
    [Google Scholar]
  15. Thu K.L. Bretones S.I. Mak T.W. Cescon D.W. Targeting the cell cycle in breast cancer: Towards the next phase. Cell Cycle 2018 17 15 1871 1885 10.1080/15384101.2018.1502567 30078354
    [Google Scholar]
  16. Duffy M.J. Maguire T.M. Hill A. McDermott E. O’Higgins N. Metalloproteinases: Role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res. 2000 2 4 252 257 10.1186/bcr65 11250717
    [Google Scholar]
  17. Lainetti P.F. Filho L.A.F. Amorim L.R. Battazza A. Alves F.C.E. Mechanisms of resistance to chemotherapy in breast cancer and possible targets in drug delivery systems. Pharmaceutics 2020 12 12 1193 10.3390/pharmaceutics12121193 33316872
    [Google Scholar]
  18. Meeuwen v.J.A. Korthagen N. Jong d.P.C. Piersma A.H. Berg d.v.M. (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture. Toxicol. Appl. Pharmacol. 2007 221 3 372 383 10.1016/j.taap.2007.03.016 17482226
    [Google Scholar]
  19. Rodriguez V.G.E. Gibson S.B. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid. Med. Cell. Longev. 2021 2021 1 9912436 10.1155/2021/9912436 34426760
    [Google Scholar]
  20. Christidi E. Brunham L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021 12 4 339 10.1038/s41419‑021‑03614‑x 33795647
    [Google Scholar]
  21. Eghbaliferiz S. Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016 30 9 1379 1391 10.1002/ptr.5643 27241122
    [Google Scholar]
  22. Tang Z.R. Zhang R. Lian Z.X. Deng S.L. Yu K. Estrogen-receptor expression and function in female reproductive disease. Cells 2019 8 10 1123 10.3390/cells8101123 31546660
    [Google Scholar]
  23. Sinha D. Sarkar N. Biswas J. Bishayee A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol. 2016 40-41 209 232 10.1016/j.semcancer.2015.11.001 26774195
    [Google Scholar]
  24. Park M.A. Hwang K.A. Choi K.C. Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Lab. Anim. Res. 2011 27 4 265 273 10.5625/lar.2011.27.4.265 22232634
    [Google Scholar]
  25. Lanzilli G. Fuggetta M. Tricarico M. Cottarelli A. Serafino A. Falchetti R. Ravagnan G. Turriziani M. Adamo R. Franzese O. Bonmassar E. Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro. Int. J. Oncol. 2006 28 3 641 648 10.3892/ijo.28.3.641 16465368
    [Google Scholar]
  26. Jenkins S. Betancourt A.M. Wang J. Lamartiniere C.A. Endocrine-active chemicals in mammary cancer causation and prevention. J. Steroid Biochem. Mol. Biol. 2012 129 3-5 191 200 10.1016/j.jsbmb.2011.06.003 21729753
    [Google Scholar]
  27. Bhat K.P. Lantvit D. Christov K. Mehta R.G. Moon R.C. Pezzuto J.M. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res. 2001 61 20 7456 7463 11606380
    [Google Scholar]
  28. Guisado P.E. Merino J.M. Navarro M.S. Benayas L.M.J. Centeno F. Fernandez-Salguero, PM.Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-?B. Int. J. Cancer 2005 115 74 84 10.1002/ijc.20856 15688415
    [Google Scholar]
  29. Tang H.Y. Shih A. Cao H.J. Davis F.B. Davis P.J. Lin H.Y. Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol. Cancer Ther. 2006 5 8 2034 2042 10.1158/1535‑7163.MCT‑06‑0216 16928824
    [Google Scholar]
  30. Kotha A. Sekharam M. Cilenti L. Siddiquee K. Khaled A. Zervos A.S. Carter B. Turkson J. Jove R. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein. Mol. Cancer Ther. 2006 5 3 621 629 10.1158/1535‑7163.MCT‑05‑0268 16546976
    [Google Scholar]
  31. Dolfini E. Roncoroni L. Dogliotti E. Sala G. Erba E. Sacchi N. Ghidoni R. Resveratrol impairs the formation of MDA-MB-231 multicellular tumor spheroids concomitant with ceramide accumulation. Cancer Lett. 2007 249 2 143 147 10.1016/j.canlet.2006.08.013 16996206
    [Google Scholar]
  32. Lubbers J. Lewis S. Harper E. Hledin M.P. Marquez G.A. Johnson A.E. Graves D.R. Hledin B.M.A. Resveratrol enhances anti-proliferative effect of VACM-1/cul5 in T47D cancer cells. Cell Biol. Toxicol. 2011 27 2 95 105 10.1007/s10565‑010‑9173‑3 20949323
    [Google Scholar]
  33. Kim H. Hall P. Smith M. Kirk M. Prasain JK. Barnes S. Grubbs C. Chemoprevention by grape seed extract and genistein in carcinogen-induced mammary cancer in rats is diet dependent. J. Nutr. 2004 134 12 Suppl 3445S 3452S 10.1093/jn/134.12.3445S
    [Google Scholar]
  34. Amicis D.F. Giordano F. Vivacqua A. Pellegrino M. Panno M.L. Tramontano D. Fuqua S.A.W. Andò S. Resveratrol, through NF‐Y/p53/Sin3/HDAC1 complex phosphorylation, inhibits estrogen receptor α gene expression via p38 MAPK /CK2 signaling in human breast cancer cells. FASEB J. 2011 25 10 3695 3707 10.1096/fj.10‑178871 21737614
    [Google Scholar]
  35. Klinge C.M. Blankenship K.A. Risinger K.E. Bhatnagar S. Noisin E.L. Sumanasekera W.K. Zhao L. Brey D.M. Keynton R.S. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors α and β in endothelial cells. J. Biol. Chem. 2005 280 9 7460 7468 10.1074/jbc.M411565200 15615701
    [Google Scholar]
  36. Dudka J. Gieroba R. Korga A. Burdan F. Matysiak W. Jedrych J.B. Mandziuk S. Korobowicz E. Murias M. Different effects of resveratrol on dose-related doxorubicin-induced heart and liver toxicity. Evid. Based Complement. Alternat. Med. 2012 2012 1 10 10.1155/2012/606183 23258992
    [Google Scholar]
  37. Olukman M. Can C. Erol A. Oktem G. Oral O. Cinar MG. Reversal of doxorubicin-induced vascular dysfunction by resveratrol in rat thoracic aorta: Is there a possible role of nitric oxide synthase inhibition? Anadolu. Kardiyol. Derg. 2009 5 4 260 266
    [Google Scholar]
  38. Tang F. Chiang E. Sun Y. Resveratrol inhibits heregulin-β1-mediated matrix metalloproteinase-9 expression and cell invasion in human breast cancer cells. J. Nutr. Biochem. 2008 19 5 287 294 10.1016/j.jnutbio.2007.03.003 17651959
    [Google Scholar]
  39. Lee H.S. Ha A.W. Kim W.K. Effect of resveratrol on the metastasis of 4T1 mouse breast cancer cells in vitro and in vivo. Nutr. Res. Pract. 2012 6 4 294 300 10.4162/nrp.2012.6.4.294 22977682
    [Google Scholar]
  40. Brooker S. Martin S. Pearson A. Bagchi D. Earl J. Gothard L. Hall E. Porter L. Yarnold J. Double-blind, placebo-controlled, randomised phase II trial of IH636 grape seed proanthocyanidin extract (GSPE) in patients with radiation-induced breast induration. Radiother. Oncol. 2006 79 1 45 51 10.1016/j.radonc.2006.02.008 16546280
    [Google Scholar]
  41. Sabatier V.C. Bignon Y.J. Gallon B.D.J. Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutr. Cancer 2003 45 2 247 255 10.1207/S15327914NC4502_15 12881020
    [Google Scholar]
  42. Pons D.G. Serrano N.M. Rossello B.M.M. Serra S.J. Oliver J. Roca P. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio. J. Cell. Biochem. 2014 115 5 949 958 10.1002/jcb.24737 24375531
    [Google Scholar]
  43. Fan S. Meng Q. Auborn K. Carter T. Rosen E.M. BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br. J. Cancer 2006 94 3 407 426 10.1038/sj.bjc.6602935 16434996
    [Google Scholar]
  44. Hwang C.S. Kwak H.S. Lim H.J. Lee S.H. Kang Y.S. Choe T.B. Hur H.G. Han K.O. Isoflavone metabolites and their in vitro dual functions: They can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J. Steroid Biochem. Mol. Biol. 2006 101 4-5 246 253 10.1016/j.jsbmb.2006.06.020 16965913
    [Google Scholar]
  45. Maggiolini M. Vivacqua A. Fasanella G. Recchia A.G. Sisci D. Pezzi V. Montanaro D. Musti A.M. Picard D. Andò S. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells. J. Biol. Chem. 2004 279 26 27008 27016 10.1074/jbc.M403588200
    [Google Scholar]
  46. Mai Z. Blackburn G.L. Zhou J.R. Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor‐positive and HER2‐overexpressing human breast cancer cells. Mol. Carcinog. 2007 46 7 534 542 10.1002/mc.20300 17295235
    [Google Scholar]
  47. Sakla M.S. Shenouda N.S. Ansell P.J. MacDonald R.S. Lubahn D.B. Genistein affects HER2 protein concentration, activation, and promoter regulation in BT-474 human breast cancer cells. Endocr. J. 2007 32 1 69 78 10.1007/s12020‑007‑9006‑1 17992604
    [Google Scholar]
  48. Liu X. Sun C. Jin X. Li P. Ye F. Zhao T. Gong L. Li Q. Genistein enhances the radiosensitivity of breast cancer cells via G₂/M cell cycle arrest and apoptosis. Molecules 2013 18 11 13200 13217 10.3390/molecules181113200 24284485
    [Google Scholar]
  49. Su Y. Simmen R.C.M. Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates -catenin signaling in mammary epithelial cells. Carcinogenesis 2008 30 2 331 339 10.1093/carcin/bgn279 19073877
    [Google Scholar]
  50. Shao Z.M. Wu J. Shen Z.Z. Barsky S.H. Genistein exerts multiple suppressive effects on human breast carcinoma cells. Cancer Res. 1998 58 21 4851 4857 9809990
    [Google Scholar]
  51. Alatawi F.S. Faridi U. Anticancer and anti-metastasis activity of 1,25 dihydroxycholecalciferols and genistein in MCF-7 and MDA-MB-231 breast cancer cell lines. Heliyon 2023 9 11 e21975 10.1016/j.heliyon.2023.e21975 38034665
    [Google Scholar]
  52. Liu Y. Clarke H.L. Zhang Y. Wang X. Pan Y.X. Xuan J. Fleck S.C. Doerge D.R. Helferich W.G. Isoflavones in soy flour diet have different effects on whole‐genome expression patterns than purified isoflavone mix in human MCF‐7 breast tumors in ovariectomized athymic nude mice. Mol. Nutr. Food Res. 2015 59 8 1419 1430 10.1002/mnfr.201500028 25820259
    [Google Scholar]
  53. Allred C.D. Twaddle N.C. Allred K.F. Goeppinger T.S. Churchwell M.I. Ju Y.H. Helferich W.G. Doerge D.R. Soy processing affects metabolism and disposition of dietary isoflavones in ovariectomized BALB/c mice. J. Agric. Food Chem. 2005 53 22 8542 8550 10.1021/jf051246w 16248551
    [Google Scholar]
  54. Nechuta S.J. Caan B.J. Chen W.Y. Lu W. Chen Z. Kwan M.L. Flatt S.W. Zheng Y. Zheng W. Pierce J.P. Shu X.O. Soy food intake after diagnosis of breast cancer and survival: An in-depth analysis of combined evidence from cohort studies of US and Chinese women. Am. J. Clin. Nutr. 2012 96 1 123 132 10.3945/ajcn.112.035972 22648714
    [Google Scholar]
  55. Kwon S.H. Kang M.J. Huh J.S. Ha K.W. Lee J.R. Lee S.K. Lee B.S. Han I.H. Lee M.S. Lee M.W. Lee J. Choi Y.W. Comparison of oral bioavailability of genistein and genistin in rats. Int. J. Pharm. 2007 337 1-2 148 154 10.1016/j.ijpharm.2006.12.046 17280808
    [Google Scholar]
  56. Shu X.O. Zheng Y. Cai H. Gu K. Chen Z. Zheng W. Lu W. Soy food intake and breast cancer survival. JAMA 2009 302 22 2437 2443 10.1001/jama.2009.1783 19996398
    [Google Scholar]
  57. Bezerra P.H.A. Amaral C. Almeida C.F. Correia-da-Silva G. Torqueti M.R. Teixeira N. In vitro effects of combining genistein with aromatase inhibitors: Concerns regarding its consumption during breast cancer treatment. Molecules 2023 28 13 4893 4893 10.3390/molecules28134893 37446555
    [Google Scholar]
  58. Goodin M.G. Fertuck K.C. Zacharewski T.R. Rosengren R.J. Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro. Toxicol. Sci. 2002 69 2 354 361 10.1093/toxsci/69.2.354 12377984
    [Google Scholar]
  59. Baker K.M. Bauer A.C. Green tea catechin, EGCG, suppresses pcb 102-induced proliferation in estrogen-sensitive breast cancer cells. Int. J. Breast Cancer 2015 2015 1 7 10.1155/2015/163591 26783468
    [Google Scholar]
  60. Farabegoli F. Barbi C. Lambertini E. Piva R. (−)-Epigallocatechin-3-gallate downregulates estrogen receptor alpha function in MCF-7 breast carcinoma cells. Cancer Detect. Prev. 2007 31 6 499 504 10.1016/j.cdp.2007.10.018 18061364
    [Google Scholar]
  61. Li Y. Yuan Y.Y. Meeran S.M. Tollefsbol T.O. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol. Cancer 2010 9 1 274 10.1186/1476‑4598‑9‑274 20946668
    [Google Scholar]
  62. Thangapazham R.L. Singh A.K. Sharma A. Warren J. Gaddipati J.P. Maheshwari R.K. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett. 2007 245 1-2 232 241 10.1016/j.canlet.2006.01.027 16519995
    [Google Scholar]
  63. Roy A.M. Baliga M.S. Katiyar S.K. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor–negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol. Cancer Ther. 2005 4 1 81 90 10.1158/1535‑7163.81.4.1 15657356
    [Google Scholar]
  64. Wang X. Song K.S. Guo Q.X. Tian W.X. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem. Pharmacol. 2003 66 10 2039 2047 10.1016/S0006‑2952(03)00585‑9 14599562
    [Google Scholar]
  65. Chen X. Li Y. Lin Q. Wang Y. Sun H. Wang J. Cui G. Cai L. Dong X. Tea polyphenols induced apoptosis of breast cancer cells by suppressing the expression of Survivin. Sci. Rep. 2014 4 1 4416 10.1038/srep04416 24646833
    [Google Scholar]
  66. Jang J.Y. Lee J.K. Jeon Y.K. Kim C.W. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer 2013 13 1 421 10.1186/1471‑2407‑13‑421 24044575
    [Google Scholar]
  67. Nowakowska A. Tarasiuk J. Comparative effects of selected plant polyphenols, gallic acid and epigallocatechin gallate, on matrix metalloproteinases activity in multidrug resistant MCF7/DOX breast cancer cells. Acta Biochim. Pol. 2016 63 3 571 575 10.18388/abp.2016_1256 27231728
    [Google Scholar]
  68. Zhang G. Wang Y. Zhang Y. Wan X. Li J. Liu K. Wang F. Liu Q. Yang C. Yu P. Huang Y. Wang S. Jiang P. Qu Z. Luan J. Duan H. Zhang L. Hou A. Jin S. Hsieh T-C. Wu E. Wu E. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr. Mol. Med. 2012 12 2 163 176 10.2174/156652412798889063 22280355
    [Google Scholar]
  69. Hsu Y.C. Liou Y.M. The anti‐cancer effects of (−)‐Epigalocathine‐3‐gallate on the signaling pathways associated with membrane receptors in MCF‐7 cells. J. Cell. Physiol. 2011 226 10 2721 2730 10.1002/jcp.22623 21792929
    [Google Scholar]
  70. Deb G. Thakur V.S. Limaye A.M. Gupta S. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Mol. Carcinog. 2015 54 6 485 499 10.1002/mc.22121 24481780
    [Google Scholar]
  71. Kim J. Zhang X. Christ R.K.M. Summerhayes I.C. Wazer D.E. Paulson K.E. Yee A.S. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J. Biol. Chem. 2006 281 16 10865 10875 10.1074/jbc.M513378200 16495219
    [Google Scholar]
  72. Gu J.W. Makey K.L. Tucker K.B. Chinchar E. Mao X. Pei I. Thomas E.Y. Miele L. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc. Cell 2013 5 1 9 10.1186/2045‑824X‑5‑9 23638734
    [Google Scholar]
  73. Luo K.W. Ko C.H. Yue G.G.L. Lee J.K.M. Li K.K. Lee M. Li G. Fung K.P. Leung P.C. Lau C.B.S. Green tea (Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice. J. Nutr. Biochem. 2014 25 4 395 403 10.1016/j.jnutbio.2013.11.013 24561153
    [Google Scholar]
  74. Luo K.W. Yue G.G.L. Ko C.H. Gao S. Lee J.K.M. Li G. Fung K.P. Leung P.C. Lau C.B.S. The combined use of Camellia sinensis and metronomic zoledronate in 4T1 mouse carcinoma against tumor growth and metastasis. Oncol. Rep. 2015 34 1 477 487 10.3892/or.2015.4001 25998578
    [Google Scholar]
  75. Shin S.C. Choi J.S. Effects of epigallocatechin gallate on the oral bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. Anticancer Drugs 2009 20 7 584 588 10.1097/CAD.0b013e32832d6834 19491656
    [Google Scholar]
  76. Farabegoli F. Papi A. Orlandi M. (–)-Epigallocatechin-3-gallate down-regulates EGFR, MMP-2, MMP-9 and EMMPRIN and inhibits the invasion of MCF-7 tamoxifen-resistant cells. Biosci. Rep. 2011 31 2 99 108 10.1042/BSR20090143 20446926
    [Google Scholar]
  77. Masó C.J. Palomeras S. Relat J. Camó C. Garza M.Ú. Planas M. Feliu L. Puig T. (−)-Epigallocatechin 3-gallate synthetic analogues inhibit fatty acid synthase and show anticancer activity in triple negative breast cancer. Molecules 2018 23 5 1160 10.3390/molecules23051160 29751678
    [Google Scholar]
  78. Crew K.D. Brown P. Greenlee H. Bevers T.B. Arun B. Hudis C. McArthur H.L. Chang J. Rimawi M. Vornik L. Cornelison T.L. Wang A. Hibshoosh H. Ahmed A. Terry M.B. Santella R.M. Lippman S.M. Hershman D.L. Phase IB randomized, double-blinded, placebo-controlled, dose escalation study of polyphenon E in women with hormone receptor-negative breast cancer. Cancer Prev. Res. 2012 5 9 1144 1154 10.1158/1940‑6207.CAPR‑12‑0117 22827973
    [Google Scholar]
  79. Yu S.S. Spicer D.V. Hawes D. Tseng C.C. Yang C.S. Pike M.C. Wu A.H. Biological effects of green tea capsule supplementation in pre-surgery postmenopausal breast cancer patients. Front. Oncol. 2013 3 298 10.3389/fonc.2013.00298 24380073
    [Google Scholar]
  80. Crew K.D. Ho K.A. Brown P. Greenlee H. Bevers T.B. Arun B. Sneige N. Hudis C. McArthur H.L. Chang J. Rimawi M. Cornelison T.L. Cardelli J. Santella R.M. Wang A. Lippman S.M. Hershman D.L. Effects of a green tea extract, Polyphenon E, on systemic biomarkers of growth factor signalling in women with hormone receptor‐negative breast cancer. J. Hum. Nutr. Diet. 2015 28 3 272 282 10.1111/jhn.12229 24646362
    [Google Scholar]
  81. Scherbakov A.M. Andreeva O.E. Apigenin inhibits growth of breast cancer cells: The role of ERa and HER2/neu. Acta Nat. 2015 7 3 133 139 10.32607/20758251‑2015‑7‑3‑133‑139 26483970
    [Google Scholar]
  82. Shukla S. Gupta S. Apigenin: A promising molecule for cancer prevention. Pharm. Res. 2010 27 6 962 978 10.1007/s11095‑010‑0089‑7 20306120
    [Google Scholar]
  83. Seo H.S. Jo J.K. Ku J.M. Choi H.S. Choi Y.K. Woo J.K. Kim H. Kang S. Lee K. Nam K.W. Park N. Jang B.H. Shin Y.C. Ko S.G. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci. Rep. 2015 35 6 e00276 e00276 10.1042/BSR20150165 26500281
    [Google Scholar]
  84. Coombs M.R.P. Harrison M.E. Hoskin D.W. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett. 2016 380 2 424 433 10.1016/j.canlet.2016.06.023 27378243
    [Google Scholar]
  85. Seo H.S. Choi H.S. Kim S.R. Choi Y.K. Woo S.M. Shin I. Woo J.K. Park S.Y. Shin Y.C. Ko S.K. Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFκB signaling in HER2-overexpressing breast cancer cells. Mol. Cell. Biochem. 2012 366 1-2 319 334 10.1007/s11010‑012‑1310‑2 22527937
    [Google Scholar]
  86. Mafuvadze B. Liang Y. Williford B.C. Zhang X. Hyder S.M. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Horm. Cancer 2012 3 4 160 171 10.1007/s12672‑012‑0114‑x 22569706
    [Google Scholar]
  87. Rice S. Mason H.D. Whitehead S.A. Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. J. Steroid Biochem. Mol. Biol. 2006 101 4-5 216 225 10.1016/j.jsbmb.2006.06.021 16965912
    [Google Scholar]
  88. Pham T.H. Page Y.L. Percevault F. Ferrière F. Flouriot G. Pakdel F. Apigenin, a partial antagonist of the estrogen receptor (er), inhibits er-positive breast cancer cell proliferation through AKT/FOXM1 signaling. Int. J. Mol. Sci. 2021 22 1 470 10.3390/ijms22010470 33466512
    [Google Scholar]
  89. Adel M. Zahmatkeshan M. Akbarzadeh A. Rabiee N. Ahmadi S. Keyhanvar P. Rezayat S.M. Seifalian A.M. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. Biotechnol. Rep. 2022 34 e00730 10.1016/j.btre.2022.e00730 35686000
    [Google Scholar]
  90. Bauer D. Redmon N. Mazzio E. Soliman K.F. Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One 2017 12 4 e0175558 10.1371/journal.pone.0175558 28441391
    [Google Scholar]
  91. Karamese M. Erol H.S. Albayrak M. Guvendi F.G. Aydin E. Karamese A.S. Anti-oxidant and anti-inflammatory effects of apigenin in a rat model of sepsis: An immunological, biochemical, and histopathological study. Immunopharmacol. Immunotoxicol. 2016 38 3 228 237 10.3109/08923973.2016.1173058 27144896
    [Google Scholar]
  92. Plewko K.A. Michalczyk M. Adamczuk G. Humeniuk E. Lesko O.M. Jozefczyk A. Iwan M. Wojcik M. Dudka J. Apigenin and hesperidin downregulate dna repair genes in MCF-7 breast cancer cells and augment doxorubicin toxicity. Molecules 2020 25 19 4421 10.3390/molecules25194421 32993087
    [Google Scholar]
  93. Long X. Fan M. Bigsby R.M. Nephew K.P. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-α-dependent and estrogen receptor-α-independent mechanisms. Mol. Cancer Therap. 7 7 2096 2108
    [Google Scholar]
  94. Seo H.S. Ku J.M. Choi H.S. Woo J.K. Lee B.H. Kim D.S. Song H.J. Jang B.H. Shin Y.C. Ko S.G. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells. Oncol. Rep. 2017 38 2 715 724 10.3892/or.2017.5752 28656316
    [Google Scholar]
  95. Liu Q. Loo W.T.Y. Sze S.C.W. Tong Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine 2009 16 10 916 922 10.1016/j.phymed.2009.04.008 19524420
    [Google Scholar]
  96. Mohammed F. Doubell R.F. Taha S. Cassidy S. Fredericks S. Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. Int. J. Oncol. 2020 57 2 445 455 10.3892/ijo.2020.5065 32626932
    [Google Scholar]
  97. Banerjee M. Singh P. Panda D. Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpoint and induces apoptosis in MCF‐7 cells. FEBS J. 2010 277 16 3437 3448 10.1111/j.1742‑4658.2010.07750.x 20646066
    [Google Scholar]
  98. Ramachandran C. You W. Differential sensitivity of human mammary epithelial and breast carcinoma cell lines to curcumin. Breast Cancer Res. Treat. 1999 54 3 269 278 10.1023/A:1006170224414 10445426
    [Google Scholar]
  99. Sun S.H. Huang H.C. Huang C. Lin J.K. Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by curcumin. Eur. J. Pharmacol. 2012 690 1-3 22 30 10.1016/j.ejphar.2012.05.036 22705896
    [Google Scholar]
  100. Yoon M.J. Kim E.H. Lim J.H. Kwon T.K. Choi K.S. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free Radic. Biol. Med. 2010 48 5 713 726 10.1016/j.freeradbiomed.2009.12.016 20036734
    [Google Scholar]
  101. Grill A.E. Shahani K. Koniar B. Panyam J. Chemopreventive efficacy of curcumin-loaded PLGA microparticles in a transgenic mouse model of HER-2-positive breast cancer. Drug Deliv. Transl. Res. 2018 8 2 329 341 10.1007/s13346‑017‑0377‑4 28417445
    [Google Scholar]
  102. Chakraborty G. Jain S. Kale S. Raja R. Kumar S. Mishra R. Kundu G.C. Curcumin suppresses breast tumor angiogenesis by abrogating osteopontin-induced VEGF expression. Mol. Med. Rep. 2008 1 5 641 646 10.3892/mmr_00000005 21479462
    [Google Scholar]
  103. Jin H. Pi J. Zhao Y. Jiang J. Li T. Zeng X. Yang P. Evans C.E. Cai J. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 2017 9 42 16365 16374 10.1039/C7NR06898K 29052674
    [Google Scholar]
  104. Edgar S.T.J. Scandlyn M.J. Stuart E.C. Nedelec L.M.J. Valentine S.P. Rosengren R.J. The combination of epigallocatechin gallate and curcumin suppresses ERα‐breast cancer cell growth in vitro and in vivo. Int. J. Cancer 2008 122 9 1966 1971 10.1002/ijc.23328 18098290
    [Google Scholar]
  105. Ombredane A.S. Silva V.R.P. Andrade L.R. Pinheiro W.O. Simonelly M. Oliveira J.V. Pinheiro A.C. Gonçalves G.F. Felice G.J. Garcia M.P. Campos P.M. Luz G.V.S. Joanitti G.A. In vivo efficacy and toxicity of curcumin nanoparticles in breast cancer treatment: A systematic review. Front. Oncol. 2021 11 612903 10.3389/fonc.2021.612903 33767985
    [Google Scholar]
  106. Hashemzehi M. Rassouli B.R. Hassanian S.M. Binabaj M.M. Marjaneh MR. Rahmani F. Fiuji H. Jamili M. Mirahmadi M. Boromand N. Piran M. Jafari M. Sahebkar A. Avan A. Khazaei M. RETRACTED: Phytosomal‐curcumin antagonizes cell growth and migration, induced by thrombin through AMP‐Kinase in breast cancer. J. Cell. Biochem. 2018 119 7 5996 6007 10.1002/jcb.26796 29600521
    [Google Scholar]
  107. Jiang M. Huang O. Zhang X. Xie Z. Shen A. Liu H. Geng M. Shen K. Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. Molecules 2013 18 1 701 720 10.3390/molecules18010701 23299550
    [Google Scholar]
  108. Lindvall C. Bu W. Williams B.O. Li Y. Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev. 2007 3 2 157 168 10.1007/s12015‑007‑0025‑3 17873348
    [Google Scholar]
  109. Prasad C.P. Rath G. Mathur S. Bhatnagar D. Ralhan R. Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/β-catenin signaling. Chem. Biol. Interact. 2009 181 2 263 271 10.1016/j.cbi.2009.06.012 19573523
    [Google Scholar]
  110. Aggarwal B.B. Shishodia S. Takada Y. Banerjee S. Newman R.A. Ramos B.C.E. Price J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res. 2005 11 20 7490 7498 10.1158/1078‑0432.CCR‑05‑1192 16243823
    [Google Scholar]
  111. Kang H.J. Lee S.H. Price J.E. Kim L.S. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast J. 2009 15 3 223 229 10.1111/j.1524‑4741.2009.00709.x 19645775
    [Google Scholar]
  112. Saghatelyan T. Tananyan A. Janoyan N. Tadevosyan A. Petrosyan H. Hovhannisyan A. Hayrapetyan L. Arustamyan M. Arnhold J. Rotmann A.R. Hovhannisyan A. Panossian A. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 2020 70 153218 10.1016/j.phymed.2020.153218 32335356
    [Google Scholar]
  113. Zhou Q.M. Wang X.F. Liu X.J. Zhang H. Lu Y.Y. Huang S. Su S.B. Curcumin improves MMC-based chemotherapy by simultaneously sensitising cancer cells to MMC and reducing MMC-associated side-effects. Eur. J. Cancer 2011 47 14 2240 2247 10.1016/j.ejca.2011.04.032 21616659
    [Google Scholar]
  114. Zhou Q.M. Zhang H. Lu Y.Y. Wang X.F. Su S.B. Curcumin reduced the side effects of mitomycin C by inhibiting GRP58‐mediated DNA cross‐linking in MCF‐7 breast cancer xenografts. Cancer Sci. 2009 100 11 2040 2045 10.1111/j.1349‑7006.2009.01297.x 19703194
    [Google Scholar]
  115. Moutabian H. Asl G.R. Mortezazadeh T. Laripour R. Narmani A. Zamani H. Ataei G. Bagheri H. Farhood B. Sathyapalan T. Sahebkar A. The cardioprotective effects of nano‐curcumin against doxorubicin‐induced cardiotoxicity: A systematic review. Biofactors 2022 48 3 597 610 10.1002/biof.1823 35080781
    [Google Scholar]
  116. Robert B.M. Kwiatowski F. Leheurteur M. Gachon F. Planchat E. Abrial C. Reynier M.M.A. Durando X. Barthomeuf C. Chollet P. Phase I. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol. Ther. 2010 9 1 8 14 10.4161/cbt.9.1.10392 19901561
    [Google Scholar]
  117. Wang L.M. Xie K.P. Huo H.N. Shang F. Zou W. Xie M.J. Luteolin inhibits proliferation induced by IGF-1 pathway dependent ERα in human breast cancer MCF-7 cells. Asian Pac. J. Cancer Prev. 2012 13 4 1431 1437 10.7314/APJCP.2012.13.4.1431 22799344
    [Google Scholar]
  118. Park S.H. Ham S. Kwon T.H. Kim M.S. Lee D.H. Kang J.W. Oh S.R. Yoon D.Y. Luteolin induces cell cycle arrest and apoptosis through extrinsic and intrinsic signaling pathways in MCF-7 breast cancer cells. J. Environ. Pathol. Toxicol. Oncol. 2014 33 3 219 231 10.1615/JEnvironPatholToxicolOncol.2014010923 25272060
    [Google Scholar]
  119. Lee E.J. Oh S.Y. Sung M.K. Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem. Toxicol. 2012 50 11 4136 4143 10.1016/j.fct.2012.08.025 22926442
    [Google Scholar]
  120. Wu H.T. Liu Y.E. Hsu K.W. Wang Y.F. Chan Y.C. Chen Y. Chen D.R. MLL3 induced by luteolin causes apoptosis in tamoxifen-resistant breast cancer cells through h3k4 monomethylation and suppression of the PI3K/AKT/mTOR pathway. Am. J. Chin. Med. 2020 48 5 1221 1241 10.1142/S0192415X20500603 32668964
    [Google Scholar]
  121. Wu L. Lin Y. Gao S. Wang Y. Pan H. Wang Z. Pozzolini M. Yang F. Zhang H. Yang Y. Xiao L. Xu Y. Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling. Front. Pharmacol. 2023 14 1200843 10.3389/fphar.2023.1200843 37346292
    [Google Scholar]
  122. Reipas K.M. Law J.H. Couto N. Islam S. Li Y. Li H. Cherkasov A. Jung K. Cheema A.S. Jones S.J.M. Hassell J.A. Dunn S.E. Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1). Oncotarget 2013 4 2 329 345 10.18632/oncotarget.834 23593654
    [Google Scholar]
  123. Coleman D.T. Bigelow R. Cardelli J.A. Inhibition of fatty acid synthase by luteolin post-transcriptionally down-regulates c-Met expression independent of proteosomal/lysosomal degradation. Mol. Cancer Ther. 2009 8 1 214 224 10.1158/1535‑7163.MCT‑08‑0722 19139131
    [Google Scholar]
  124. Sun DW. Zhang HD. Mao L. Mao CF. Chen W. Cui M. Ma R. Cao HX. Jing CW. Wang Z. Wu J.-Z. Tang J.-H. Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing notch signaling and regulating MiRNAs. Cell Physiol. Biochem. 37 5 1693 1711
    [Google Scholar]
  125. Lin D. Kuang G. Wan J. Zhang X. Li H. Gong X. Li H. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol. Rep. 2017 37 2 895 902 10.3892/or.2016.5311 27959422
    [Google Scholar]
  126. Wu H.T. Lin J. Liu Y.E. Chen H.F. Hsu K.W. Lin S.H. Peng K.Y. Lin K.J. Hsieh C.C. Chen D.R. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine 2021 81 153437 10.1016/j.phymed.2020.153437 33352494
    [Google Scholar]
  127. Kollur S.P. Prasad S.K. Pradeep S. Veerapur R. Patil S.S. Amachawadi R.G. Luteolin-Fabricated ZnO Nanostructures Showed PLK-1 Mediated Anti-Breast Cancer Activity. Biomol. 2021 11 385
    [Google Scholar]
  128. Altamimi M.A. Hussain A. AlRajhi M. Alshehri S. Imam S.S. Qamar W. Luteolin-Loaded Elastic Liposomes for Transdermal Delivery to Control Breast Cancer: In Vitro and Ex Vivo Evaluations. Pharmaceuticals 2021 14 11 1143 10.3390/ph14111143 34832925
    [Google Scholar]
  129. Sato Y. Sasaki N. Saito M. Endo N. Kugawa F. Ueno A. Luteolin attenuates doxorubicin-induced cytotoxicity to MCF-7 human breast cancer cells. Biol. Pharm. Bull. 2015 38 5 703 709 10.1248/bpb.b14‑00780 25947916
    [Google Scholar]
  130. Jeon Y.W. Suh Y.J. Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol. Rep. 2013 29 2 819 825 10.3892/or.2012.2158 23229294
    [Google Scholar]
  131. Shih Y.L. Liu H.C. Chen C.S. Hsu C.H. Pan M.H. Chang H.W. Chang C.H. Chen F.C. Ho C.T. Yang Y.Y. Ho Y.S. Combination treatment with luteolin and quercetin enhances antiproliferative effects in nicotine-treated MDA-MB-231 cells by down-regulating nicotinic acetylcholine receptors. J. Agric. Food Chem. 2010 58 1 235 241 10.1021/jf9031684 19921817
    [Google Scholar]
  132. Pichardo C.L. Montemayor M.M.M. Martínez J.E. Wall K.M. Cubano L.A. Dharmawardhane S. Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols. Clin. Exp. Metastasis 2009 26 6 505 516 10.1007/s10585‑009‑9250‑2 19294520
    [Google Scholar]
  133. Rivera R.A. Pichardo C.L. Gerena Y. Dharmawardhane S. Anti-breast cancer potential of quercetin via the akt/ampk/mammalian target of rapamycin (mtor) signaling cascade. PLoS One 2016 11 6 e0157251 10.1371/journal.pone.0157251 27285995
    [Google Scholar]
  134. Steiner J.L. Davis J.M. McClellan J.L. Enos R.T. Carson J.A. Fayad R. Nagarkatti M. Nagarkatti P.S. Altomare D. Creek K.E. Murphy E.A. Dose-dependent benefits of quercetin on tumorigenesis in the C3(1)/SV40Tag transgenic mouse model of breast cancer. Cancer Biol. Ther. 2014 15 11 1456 1467 10.4161/15384047.2014.955444 25482952
    [Google Scholar]
  135. Jeong J.H. An J.Y. Kwon Y.T. Rhee J.G. Lee Y.J. Effects of low dose quercetin: Cancer cell‐specific inhibition of cell cycle progression. J. Cell. Biochem. 2009 106 1 73 82 10.1002/jcb.21977 19009557
    [Google Scholar]
  136. Chou C.C. Yang J.S. Lu H.F. Ip S.W. Lo C. Wu C.C. Lin J.P. Tang N.Y. Chung J.G. Chou M.J. Teng Y.H. Chen D.R. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res. 2010 33 8 1181 1191 10.1007/s12272‑010‑0808‑y 20803121
    [Google Scholar]
  137. Chien S.Y. Wu Y.C. Chung J.G. Yang J.S. Lu H.F. Tsou M.F. Wood W.G. Kuo S.J. Chen D.R. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum. Exp. Toxicol. 2009 28 8 493 503 10.1177/0960327109107002 19755441
    [Google Scholar]
  138. Srinivasan A. Thangavel C. Liu Y. Shoyele S. Den R.B. Selvakumar P. Lakshmikuttyamma A. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Mol. Carcinog. 2016 55 5 743 756 10.1002/mc.22318 25968914
    [Google Scholar]
  139. Cao L. Yang Y. Ye Z. Lin B. Zeng J. Li C. Liang T. Zhou K. Li J. Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways. Int. J. Mol. Med. 2018 42 3 1625 1636 10.3892/ijmm.2018.3741 29956731
    [Google Scholar]
  140. Zhao X. Wang Q. Yang S. Chen C. Li X. Liu J. Zou Z. Cai D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol. 2016 781 60 68 10.1016/j.ejphar.2016.03.063 27041643
    [Google Scholar]
  141. Li S. Yuan S. Zhao Q. Wang B. Wang X. Li K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother. 2018 100 441 447 10.1016/j.biopha.2018.02.055 29475141
    [Google Scholar]
  142. Zanden v.J.J. Geraets L. Wortelboer H.M. Bladeren P.J. Rietjens I.M.C.M. Cnubben N.H.P. Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1-1 and GS-X pump activity in MCF7 breast cancer cells. Biochem. Pharmacol. 2004 67 8 1607 1617 10.1016/j.bcp.2003.12.032
    [Google Scholar]
  143. Wang H. Tao L. Qi K. Zhang H. Feng D. Wei W. Kong H. Chen T. Lin Q. Quercetin reverses tamoxifen resistance in breast cancer cells. J. BUON 2015 20 3 707 713 26214621
    [Google Scholar]
  144. Liu H. Lee J.I. Ahn T.G. Effect of quercetin on the anti-tumor activity of cisplatin in EMT6 breast tumor-bearing mice. Obstet. Gynecol. Sci. 2019 62 4 242 248 10.5468/ogs.2019.62.4.242 31338341
    [Google Scholar]
  145. Ranapour S. Motamed N. Effect of silibinin on the expression of Mir-20b, Bcl2L11, and Erbb2 in breast cancer cell lines. Mol. Biotechnol. 2023 65 12 1979 1990 10.1007/s12033‑023‑00702‑5 36905464
    [Google Scholar]
  146. Noh E.M. Yi M.S. Youn H.J. Lee B.K. Lee Y.R. Han J.H. Yu H.N. Kim J.S. Jung S.H. Silibinin enhances ultraviolet B-induced apoptosis in mcf-7 human breast cancer cells. J. Breast Cancer 2011 14 1 8 13 10.4048/jbc.2011.14.1.8 21847388
    [Google Scholar]
  147. Si L. Liu W. Hayashi T. Ji Y. Fu J. Nie Y. Mizuno K. Hattori S. Onodera S. Ikejima T. Silibinin-induced apoptosis of breast cancer cells involves mitochondrial impairment. Arch. Biochem. Biophys. 2019 671 42 51 10.1016/j.abb.2019.05.009 31085166
    [Google Scholar]
  148. Si L. Fu J. Liu W. Hayashi T. Mizuno K. Hattori S. Fujisaki H. Onodera S. Ikejima T. Silibinin-induced mitochondria fission leads to mitophagy, which attenuates silibinin-induced apoptosis in MCF-7 and MDA-MB-231 cells. Arch. Biochem. Biophys. 2020 685 108284 108284 10.1016/j.abb.2020.108284 32014401
    [Google Scholar]
  149. Si L. Fu J. Liu W. Hayashi T. Nie Y. Mizuno K. Hattori S. Fujisaki H. Onodera S. Ikejima T. Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Mol. Cell. Biochem. 2020 463 1-2 189 201 10.1007/s11010‑019‑03640‑6 31612353
    [Google Scholar]
  150. Jeong J.C. Shin W.Y. Kim T.H. Kwon C.H. Kim J.H. Kim Y.K. Kim K.H. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death. J. Exp. Clin. Cancer Res. 2011 30 1 44 10.1186/1756‑9966‑30‑44 21501525
    [Google Scholar]
  151. Liu W. Ji Y. Sun Y. Si L. Fu J. Hayashi T. Onodera S. Ikejima T. Estrogen receptors participate in silibinin-caused nuclear translocation of apoptosis-inducing factor in human breast cancer MCF-7 cells. Arch. Biochem. Biophys. 2020 689 108458 108458 10.1016/j.abb.2020.108458 32524997
    [Google Scholar]
  152. Zheng N. Liu L. Liu W. Li F. Hayashi T. Tashiro S. Onodera S. Ikejima T. Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro. Acta Pharmacol. Sin. 2017 38 2 277 289 10.1038/aps.2016.117 27867187
    [Google Scholar]
  153. Lee S.O. Jeong Y.J. Im H.G. Kim C.H. Chang Y.C. Lee I.S. Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochem. Biophys. Res. Commun. 2007 354 1 165 171 10.1016/j.bbrc.2006.12.181 17214970
    [Google Scholar]
  154. Kim S. Han J. Jeon M. You D. Lee J. Kim H.J. Bae S. Nam S.J. Lee J.E. Silibinin inhibits triple negative breast cancer cell motility by suppressing TGF-β2 expression. Tumour Biol. 2016 37 8 11397 11407 10.1007/s13277‑016‑5000‑7 26984157
    [Google Scholar]
  155. Molavi O. Narimani F. Asiaee F. Sharifi S. Tarhriz V. Shayanfar A. Hejazi M. Lai R. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy. Pharm. Biol. 2017 55 1 729 739 10.1080/13880209.2016.1270972 28027688
    [Google Scholar]
  156. Singh M. Kadhim M.M. A Systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Caner Cell Int. 2023 23 1 88
    [Google Scholar]
  157. Ghadi R. Pandey P.K. Gabhale A. Wadikar A. Dharshini M. Kuche K. Date T. Jain S. Genipin-crosslinked albumin nanoparticles containing neratinib and silibinin: A dual-death therapy for triple negative breast cancer. Int. J. Pharm. 2023 648 123570 123570 10.1016/j.ijpharm.2023.123570 37918494
    [Google Scholar]
  158. Chimento A. Casaburi I. Rosano C. Avena P. Luca D.A. Campana C. Martire E. Santolla M.F. Maggiolini M. Pezzi V. Sirianni R. Oleuropein and hydroxytyrosol activate GPER / GPR 30‐dependent pathways leading to apoptosis of ER ‐negative SKBR 3 breast cancer cells. Mol. Nutr. Food Res. 2014 58 3 478 489 10.1002/mnfr.201300323 24019118
    [Google Scholar]
  159. Sirianni R. Chimento A. Luca D.A. Casaburi I. Rizza P. Onofrio A. Iacopetta D. Puoci F. Andò S. Maggiolini M. Pezzi V. Oleuropein and hydroxytyrosol inhibit MCF‐7 breast cancer cell proliferation interfering with ERK1/2 activation. Mol. Nutr. Food Res. 2010 54 6 833 840 10.1002/mnfr.200900111 20013881
    [Google Scholar]
  160. Asgharzade S. Sheikhshabani S.H. Ghasempour E. Heidari R. Rahmati S. Mohammadi M. Jazaeri A. Farsani A.Z. The effect of oleuropein on apoptotic pathway regulators in breast cancer cells. Eur. J. Pharmacol. 2020 886 173509 10.1016/j.ejphar.2020.173509 32889065
    [Google Scholar]
  161. Hassan Z.K. Elamin M.H. Omer S.A. Daghestani M.H. Olayan A.E.S. Elobeid M.A. Virk P. Oleuropein induces apoptosis via the p53 pathway in breast cancer cells. Asian Pac. J. Cancer Prev. 2013 14 11 6739 6742 10.7314/APJCP.2013.14.11.6739 24377598
    [Google Scholar]
  162. Elamin M.H. Daghestani M.H. Omer S.A. Elobeid M.A. Virk P. Olayan A.E.M. Hassan Z.K. Mohammed O.B. Aboussekhra A. Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells. Food Chem. Toxicol. 2013 53 310 316 10.1016/j.fct.2012.12.009 23261678
    [Google Scholar]
  163. Liman R. Çoban F. Ciğerci I. Bulduk İ. Bozkurt S. Antiangiogenic and apoptotic effects of oleuropein on breast cancer cells. Br. J. Pharm. Res. 2017 16 4 1 10 10.9734/BJPR/2017/33403
    [Google Scholar]
  164. Hassan Z.K. Elamin M.H. Daghestani M.H. Omer S.A. Olayan A.E.M. Elobeid M.A. Virk P. Mohammed O.B. Oleuropein induces anti-metastatic effects in breast cancer. Asian Pac. J. Cancer Prev. 2012 13 9 4555 4559 10.7314/APJCP.2012.13.9.4555 23167379
    [Google Scholar]
  165. Menendez J.A. Martin V.A. Colomer R. Brunet J. Pancorbo C.A. Villalba G.R. Gutierrez F.A. Carretero S.A. Olive Oil’s Bitter Principle Reverses Acquired Autoresistance to Trastuzumab (HerceptinTM) in HER2-Overexpressing Breast Cancer Cells. BMC Can 2007 7
    [Google Scholar]
  166. Menendez J. Martin V.A. Ferraros O.C. Extra-virgin olive oil polyphenols inhibit HER2 (erbB-2)-induced malignant transformation in human breast epithelial cells: Relationship between the chemical structures of extra-virgin olive oil secoiridoids and lignans and their inhibitory activities on the tyrosine kinase activity of HER2. Int. J. Oncol. 1992 34 1 43 51 10.3892/ijo_00000127 19082476
    [Google Scholar]
  167. Castro A.A.J. Domínguez F. Regalado G.A. Sánchez G.I. Cerbón M.A. Carrancá G.A. Magnolia dealbata seeds extract exert cytotoxic and chemopreventive effects on MDA-MB231 breast cancer cells. Pharm. Biol. 2014 52 5 621 627 10.3109/13880209.2013.859160
    [Google Scholar]
  168. Muniraj N. Siddharth S. Shriver M. Nagalingam A. Parida S. Woo J. Elsey J. Gabrielson K. Gabrielson E. Arbiser J.L. Saxena N.K. Sharma D. Induction of STK11-dependent cytoprotective autophagy in breast cancer cells upon honokiol treatment. Cell Death Discov. 2020 6 1 81 10.1038/s41420‑020‑00315‑w 32963809
    [Google Scholar]
  169. Liu H. Zang C. Emde A. Silva P.M.D. Rosche M. Kühnl A. Schulz C.O. Elstner E. Possinger K. Eucker J. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur. J. Pharmacol. 2008 591 1-3 43 51 10.1016/j.ejphar.2008.06.026 18588872
    [Google Scholar]
  170. Park E-J. Min H-Y. Chung H-J. Hong J-Y. Kang Y-J. Hung T.M. Youn U.J. Kim Y.S. Bae K.H. Kang S.S. Lee S.K. Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett. 2009 277 2 133 140 10.1016/j.canlet.2008.11.029
    [Google Scholar]
  171. Sengupta S. Nagalingam A. Muniraj N. Bonner M.Y. Mistriotis P. Afthinos A. Kuppusamy P. Lanoue D. Cho S. Korangath P. Shriver M. Begum A. Merino V.F. Huang C-Y. Arbiser J.L. Matsui W. Győrffy B. Konstantopoulos K. Sukumar S. Marignani P.A. Saxena N.K. Sharma D. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene 2017 36 41 5709 5721 10.1038/onc.2017.164 28581518
    [Google Scholar]
  172. Banik K. Ranaware A.M. Deshpande V. Nalawade S.P. Padmavathi G. Bordoloi D. Sailo B.L. Shanmugam M.K. Fan L. Arfuso F. Sethi G. Kunnumakkara A.B. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res. 2019 144 192 209 10.1016/j.phrs.2019.04.004 31002949
    [Google Scholar]
  173. Xu D. Lu Q. Hu X. Down-regulation of P-glycoprotein expression in MDR breast cancer cell MCF-7/ADR by honokiol. Cancer Lett. 2006 243 2 274 280 10.1016/j.canlet.2005.11.031 16406853
    [Google Scholar]
  174. Mikhaevich E.I. Sorokin D.V. Scherbakov A.M. Honokiol inhibits the growth of hormone-resistant breast cancer cells: Its promising effect in combination with metformin. Res. Pharm. Sci. 2023 18 5 580 591 10.4103/1735‑5362.383712 37842518
    [Google Scholar]
  175. Crane C. Panner A. Pieper R.O. Arbiser J. Parsa A.T. Honokiol-mediated inhibition of PI3K/mTOR pathway: A potential strategy to overcome immunoresistance in glioma, breast, and prostate carcinoma without impacting T cell function. J. Immunother. 2009 32 6 585 592 10.1097/CJI.0b013e3181a8efe6 19483651
    [Google Scholar]
  176. Galanty A. In the Search for Novel, Isoflavone-Rich Functional Foods-Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer. Pharmaceuticals 2022 15 7 806
    [Google Scholar]
  177. Spagnuolo P. Rasini E. Luini A. Legnaro M. Luzzani M. Casareto E. Carreri M. Paracchini S. Marino F. Cosentino M. Isoflavone content and estrogenic activity of different batches of red clover (Trifolium pratense L.) extracts: An in vitro study in MCF-7 cells. Fitoterapia 2014 94 62 69 10.1016/j.fitote.2014.01.027 24508860
    [Google Scholar]
  178. Hsu J.T. Hung H.C. Chen C.J. Hsu W.L. Ying C. Effects of the dietary phytoestrogen biochanin A on cell growth in the mammary carcinoma cell line MCF-7. J. Nutr. Biochem. 1999 10 9 510 517 10.1016/S0955‑2863(99)00037‑6 15539330
    [Google Scholar]
  179. Moon Y.J. Shin B.S. An G. Morris M.E. Biochanin A inhibits breast cancer tumor growth in a murine xenograft model. Pharm. Res. 2008 25 9 2158 2163 10.1007/s11095‑008‑9583‑6 18454305
    [Google Scholar]
  180. Ren G. Shi Z. Teng C. Yao Y. Antiproliferative activity of combined biochanin a and ginsenoside rh₂ on mda-mb-231 and mcf-7 human breast cancer cells. Molecules. 2018 23 11 2908
    [Google Scholar]
  181. Moon Y.J. Brazeau D.A. Morris M.E. Effects of flavonoids genistein and biochanin a on gene expression and their metabolism in human mammary cells. Nutr. Cancer 2007 57 1 48 58 10.1080/01635580701268196 17516862
    [Google Scholar]
  182. Zakłos-Szyda M. Budryn G. The effects of trifolium pratense l. sprouts’ phenolic compounds on cell growth and migration of MDA-MB-231, MCF-7 and HUVEC Cells. Nutrients 2020 12 1 257 10.3390/nu12010257 31963833
    [Google Scholar]
  183. Ferraris C. Ballestra B. Listorti C. Cappelletti V. Reduzzi C. Scaperrotta G.P. Pulice I. Ferrari E.G.A. Folli S. Mariani L. Martelli G. Red clover and lifestyle changes to contrast menopausal symptoms in premenopausal patients with hormone-sensitive breast cancer receiving tamoxifen. Breast Cancer Res. Treat. 2020 180 1 157 165 10.1007/s10549‑020‑05534‑4 31975316
    [Google Scholar]
  184. Chen L. Choi J. Leonard S.W. Banuvar S. Barengolts E. Viana M. Chen S.N. Pauli G.F. Bolton J.L. Breemen v.R.B. No clinically relevant pharmacokinetic interactions of a red clover dietary supplement with cytochrome p450 enzymes in women. J. Agric. Food Chem. 2020 68 47 13929 13939 10.1021/acs.jafc.0c05856 33197178
    [Google Scholar]
  185. Liu X. Suzuki N. Laxmi Y.R.S. Okamoto Y. Shibutani S. Anti-breast cancer potential of daidzein in rodents. Life Sci. 2012 91 11-12 415 419 10.1016/j.lfs.2012.08.022 23227466
    [Google Scholar]
  186. Ju Y.H. Fultz J. Allred K.F. Doerge D.R. Helferich W.G. Effects of dietary daidzein and its metabolite, equol, at physiological concentrations on the growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in ovariectomized athymic mice. Carcinogenesis 2006 27 4 856 863 10.1093/carcin/bgi320 16399773
    [Google Scholar]
  187. Lin Y.J. Hou Y.C. Lin C.H. Hsu Y.A. Sheu J.J.C. Lai C.H. Chen B.H. Chao L.P.D. Wan L. Tsai F.J. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun. 2009 378 4 683 688 10.1016/j.bbrc.2008.10.178 19013426
    [Google Scholar]
  188. Li H. Zhang M. Wang Y. Gong K. Yan T. Wang D. Meng X. Yang X. Chen Y. Han J. Duan Y. Zhang S. Daidzein alleviates doxorubicin-induced heart failure via the SIRT3/FOXO3a signaling pathway. Food Funct. 2022 13 18 9576 9588 10.1039/D2FO00772J 36000402
    [Google Scholar]
  189. Koo J. Petroski C.S. Petrie J.L. Diette N. White R.J. Schramm L. Induction of proto-oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein. BMC Cancer 2015 15 1 905 10.1186/s12885‑015‑1914‑5 26573593
    [Google Scholar]
  190. Poschner S. Salamon M.A. Zehl M. Wackerlig J. Dobusch D. Pachmann B. Sterlini K.L. Jäger W. The Impacts of Genistein and Daidzein on Estrogen Conjugations in Human Breast Cancer Cells: A Targeted Metabolomics Approach. Front. Pharmacol. 2017 8 699 10.3389/fphar.2017.00699 29051735
    [Google Scholar]
  191. Lamartiniere C.A. Wang J. Johnson S.M. Eltoum I.E. Daidzein: Bioavailability, potential for reproductive toxicity, and breast cancer chemoprevention in female rats. Toxicol. Sci. 2002 65 2 228 238 10.1093/toxsci/65.2.228 11812927
    [Google Scholar]
  192. Cosentino M. Marino F. Ferrari M. Rasini E. Bombelli R. Luini A. Legnaro M. Canne M. Luzzani M. Crema F. Paracchini S. Lecchini S. Estrogenic activity of 7-hydroxymatairesinol potassium acetate (HMR/lignan™) from Norway spruce (Picea abies) knots and of its active metabolite enterolactone in MCF-7 cells. Pharmacol. Res. 2007 56 2 140 147 10.1016/j.phrs.2007.05.001 17572100
    [Google Scholar]
  193. Xiong X.Y. Hu X.J. Li Y. Liu C.M. Inhibitory effects of enterolactone on growth and metastasis in human breast cancer. Nutr. Cancer 2015 67 8 1326 1334 10.1080/01635581.2015.1082113 26473769
    [Google Scholar]
  194. Chen J. Saggar J.K. Corey P. Thompson L.U. Flaxseed cotyledon fraction reduces tumour growth and sensitises tamoxifen treatment of human breast cancer xenograft (MCF-7) in athymic mice. Br. J. Nutr. 2011 105 3 339 347 10.1017/S0007114510003557 21138602
    [Google Scholar]
  195. Chen J. Stavro P.M. Thompson L.U. Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr. Cancer 2002 43 2 187 192 10.1207/S15327914NC432_9 12588699
    [Google Scholar]
  196. Jungeström B.M. Thompson L.U. Dabrosin C. Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin. Cancer Res. 2007 13 3 1061 1067 10.1158/1078‑0432.CCR‑06‑1651 17289903
    [Google Scholar]
  197. Chandorkar S.S. Mali A.V. Wagh U.V. Hegde M.V. Surve S.V. Patole M.V. In vitro anti-metastatic activity of enterolactone, a mammalian lignan derived from flax lignan, and down-regulation of matrix metalloproteinases in MCF-7 and MDA MB 231 cell lines. Indian J. Cancer 2012 49 1 181 187 10.4103/0019‑509X.98948 22842186
    [Google Scholar]
  198. Lindahl G. Saarinen N. Abrahamsson A. Dabrosin C. Tamoxifen, flaxseed, and the lignan enterolactone increase stroma- and cancer cell-derived IL-1Ra and decrease tumor angiogenesis in estrogen-dependent breast cancer. Cancer Res. 2011 71 1 51 60 10.1158/0008‑5472.CAN‑10‑2289 21097717
    [Google Scholar]
  199. Thompson L.U. Chen J.M. Li T. Weippl S.K. Goss P.E. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin. Cancer Res. 2005 11 10 3828 3835 10.1158/1078‑0432.CCR‑04‑2326 15897583
    [Google Scholar]
  200. McCann S.E. Edge S.B. Hicks D.G. Thompson L.U. Morrison C.D. Fetterly G. Andrews C. Clark K. Wilton J. Kulkarni S. A pilot study comparing the effect of flaxseed, aromatase inhibitor, and the combination on breast tumor biomarkers. Nutr. Cancer 2014 66 4 566 575 10.1080/01635581.2014.894097 24669750
    [Google Scholar]
  201. Pietinen P. Stumpf K. Männistö S. Kataja V. Uusitupa M. Adlercreutz H. Serum enterolactone and risk of breast cancer: A case-control study in eastern Finland. Cancer Epidemiol. Biomarkers Prev. 2001 10 4 339 344 11319174
    [Google Scholar]
  202. Kersh E.D.M. Ezzat S.M. Salama M.M. Mahrous E.A. Attia Y.M. Ahmed M.S. Elmazar M.M. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci. Rep. 2021 11 1 7121 10.1038/s41598‑021‑86599‑z 33782546
    [Google Scholar]
  203. Kubatka P. Kapinová A. Kello M. Kruzliak P. Kajo K. Výbohová D. Mahmood S. Murin R. Viera T. Mojžiš J. Zulli A. Péč M. Adamkov M. Kassayová M. Bojková B. Stollárová N. Dobrota D. Fruit peel polyphenols demonstrate substantial anti-tumour effects in the model of breast cancer. Eur. J. Nutr. 2016 55 3 955 965 10.1007/s00394‑015‑0910‑5 25930965
    [Google Scholar]
  204. Sergeev I.N. Ho C.T. Li S. Colby J. Dushenkov S. Apoptosis‐inducing activity of hydroxylated polymethoxyflavones and polymethoxyflavones from orange peel in human breast cancer cells. Mol. Nutr. Food Res. 2007 51 12 1478 1484 10.1002/mnfr.200700136 17979096
    [Google Scholar]
  205. Morley K.L. Ferguson P.J. Koropatnick J. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Lett. 2007 251 1 168 178 10.1016/j.canlet.2006.11.016 17197076
    [Google Scholar]
  206. Kim D.I. Lee S.J. Lee S.B. Park K. Kim W.J. Moon S.K. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis 2008 29 9 1701 1709 10.1093/carcin/bgn055 18296682
    [Google Scholar]
  207. Kim M.Y. Bo H.H. Choi E.O. Kwon D.H. Kim H.J. Ahn K.I. Ji S.Y. Jeong J.W. Park S.H. Hong S.H. Kim G.Y. Park C. Kim H.S. Moon S.K. Yun S.J. Kim W.J. Choi Y.H. Induction of apoptosis by <i>citrus unshiu</i> peel in human breast cancer MCF-7 cells: Involvement of ros-dependent activation of AMPK. Biol. Pharm. Bull. 2018 41 5 713 721 10.1248/bpb.b17‑00898 29709909
    [Google Scholar]
  208. Arivazhagan L. Pillai S.S. Tangeretin, a citrus pentamethoxyflavone, exerts cytostatic effect via p53/p21 up-regulation and suppresses metastasis in 7,12-dimethylbenz(α)anthracene-induced rat mammary carcinoma. J. Nutr. Biochem. 2014 25 11 1140 1153 10.1016/j.jnutbio.2014.06.007 25151216
    [Google Scholar]
  209. Ye L. Chan F.L. Chen S. Leung L.K. The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. J. Nutr. Biochem. 2012 23 10 1230 1237 10.1016/j.jnutbio.2011.07.003 22209285
    [Google Scholar]
  210. Lam I.K. Alex D. Wang Y.H. Liu P. Liu A.L. Du G.H. Lee Y.S.M. In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: Identifying sinensetin as a novel antiangiogenesis agent. Mol. Nutr. Food Res. 2012 56 6 945 956 10.1002/mnfr.201100680 22707269
    [Google Scholar]
  211. Chang L. Jia S. Fu Y. Zhou T. Cao J. He Q. Yang B. Li X. Sun C. Su D. Zhu H. Chen K. Ougan (Citrus reticulata cv. Suavissima) flavedo extract suppresses cancer motility by interfering with epithelial-to-mesenchymal transition in SKOV3 cells. Chin. Med. 2015 10 1 14 10.1186/s13020‑015‑0042‑0 26131016
    [Google Scholar]
  212. Jin H. Lee W.S. Yun J.W. Jung J.H. Yi S.M. Kim H.J. Choi Y.H. Kim G. Jung J.M. Ryu C.H. Shin S.C. Hong S.C. Flavonoids from Citrus unshiu Marc. inhibit cancer cell adhesion to endothelial cells by selective inhibition of VCAM-1. Oncol. Rep. 2013 30 5 2336 2342 10.3892/or.2013.2711 24002113
    [Google Scholar]
  213. Kim C. Kim D. Nam D. Chung W.S. Ahn K.S. Kim S.H. Choi S.H. Shim B.S. Cho S.K. Ahn K.S. Anti-metastatic effect of supercritical extracts from the Citrus hassaku pericarp via inhibition of C-X-C chemokine receptor type 4 (CXCR4) and matrix metalloproteinase-9 (MMP-9). Phytother. Res. 2014 28 9 1374 1382 10.1002/ptr.5140 24638915
    [Google Scholar]
  214. Surichan S. Androutsopoulos V.P. Sifakis S. Koutala E. Tsatsakis A. Arroo R.R.J. Boarder M.R. Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells. Food Chem. Toxicol. 2012 50 9 3320 3328 10.1016/j.fct.2012.06.030 22743247
    [Google Scholar]
  215. Li F. Chow S. Cheung W. Chan F.L. Chen S. Leung L.K. The citrus flavonone hesperetin prevents letrozole-induced bone loss in a mouse model of breast cancer. J. Nutr. Biochem. 2013 24 6 1112 1116 10.1016/j.jnutbio.2012.08.010 23238426
    [Google Scholar]
  216. Kello M. Takac P. Kubatka P. Kuruc T. Petrova K. Mojzis J. Oxidative stress-induced dna damage and apoptosis in clove buds-treated mcf-7 cells. Biomolecules 2020 10 1 139 10.3390/biom10010139 31947708
    [Google Scholar]
  217. Kubatka P. Uramova S. Kello M. Kajo K. Kruzliak P. Mojzis J. Vybohova D. Adamkov M. Jasek K. Lasabova Z. Zubor P. Fialova S. Dokupilova S. Solar P. Pec M. Adamicova K. Danko J. Adamek M. Busselberg D. Antineoplastic effects of clove buds ( Syzygium aromaticum L.) in the model of breast carcinoma. J. Cell. Mol. Med. 2017 21 11 2837 2851 10.1111/jcmm.13197 28524540
    [Google Scholar]
  218. Koval A. Pieme C.A. Queiroz E.F. Ragusa S. Ahmed K. Blagodatski A. Wolfender J.L. Petrova T.V. Katanaev V.L. Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts. Cancer Lett. 2018 435 110 120 10.1016/j.canlet.2018.08.003 30098400
    [Google Scholar]
  219. Kumar P. Febriyanti R. Sofyan F. Luftimas D. Abdulah R. Anticancer potential of Syzygium aromaticum L. in MCF-7 human breast cancer cell lines. Pharmacognosy Res. 2014 6 4 350 354 10.4103/0974‑8490.138291 25276075
    [Google Scholar]
  220. Yan X. Zhang G. Bie F. Lv Y. Ma Y. Ma M. Wang Y. Hao X. Yuan N. Jiang X. Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1β/ERRα signaling pathway in MCF10A-ras cells. Sci. Rep. 2017 7 1 12920 10.1038/s41598‑017‑13505‑x 29018241
    [Google Scholar]
  221. Anita Y. Radifar M. Kardono L.B.S. Hanafi M. Istyastono E.P. Structure-based design of eugenol analogs as potential estrogen receptor antagonists. Bioinformation 2012 8 19 901 906 10.6026/97320630008901 23144548
    [Google Scholar]
  222. Valizadeh A. Khaleghi A.A. Alipanah H. Zarenezhad E. Osanloo M. Anticarcinogenic effect of chitosan nanoparticles containing syzygium aromaticum essential oil or eugenol toward breast and skin cancer cell lines. Bionanoscience 2021 11 3 678 686 10.1007/s12668‑021‑00880‑z
    [Google Scholar]
  223. Thenmozhi T. Functionalization of iron oxide nanoparticles with clove extract to induce apoptosis in MCF-7 breast cancer cells. 3 Biotech 2020 10 2 82 10.1007/s13205‑020‑2088‑7 32099733
    [Google Scholar]
  224. Shehabeldine A.M. Doghish A.S. Dakroury E.W.A. Hassanin M.M.H. Askar A.A.A. AbdElgawad H. Hashem A.H. Antimicrobial, antibiofilm, and anticancer activities of syzygium aromaticum essential oil nanoemulsion. Molecules 2023 28 15 5812 10.3390/molecules28155812 37570781
    [Google Scholar]
  225. D’Angelo S. Martino E. Ilisso C.P. Bagarolo M.L. Porcelli M. Cacciapuoti G. Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. Int. J. Oncol. 2017 51 3 939 948 10.3892/ijo.2017.4088 28766690
    [Google Scholar]
  226. Li C.X. Lin Z.X. Zhao X.H. Zuo W.F. Wang N. Zhang Z.Y. Chen X.S. Differential effects of phenolic extracts from red‐fleshed apple peels and flesh induced G1 cell cycle arrest and apoptosis in human breast cancer MDA‐MB‐231 cells. J. Food Sci. 2021 86 9 4209 4222 10.1111/1750‑3841.15863 34392532
    [Google Scholar]
  227. Martino E. Vuoso D.C. D’Angelo S. Mele L. D’Onofrio N. Porcelli M. Cacciapuoti G. Annurca apple polyphenol extract selectively kills MDA-MB-231 cells through ROS generation, sustained JNK activation and cell growth and survival inhibition. Sci. Rep. 2019 9 1 13045 10.1038/s41598‑019‑49631‑x 31506575
    [Google Scholar]
  228. Schiavano G.F. Santi D.M. Brandi G. Fanelli M. Bucchini A. Giamperi L. Giomaro G. Inhibition of breast cancer cell proliferation and in vitro tumorigenesis by a new red apple cultivar. PLoS One 2015 10 8 e0135840 10.1371/journal.pone.0135840 26284516
    [Google Scholar]
  229. Vuoso D.C. D’Angelo S. Ferraro R. Caserta S. Guido S. Cammarota M. Porcelli M. Cacciapuoti G. Annurca apple polyphenol extract promotes mesenchymal-to-epithelial transition and inhibits migration in triple-negative breast cancer cells through ROS/JNK signaling. Sci. Rep. 2020 10 1 15921 10.1038/s41598‑020‑73092‑2 32985606
    [Google Scholar]
  230. Wu K.H. Ho C.T. Chen Z.F. Chen L.C. Peng W.J. Lin T.N. Ho Y.S. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. Yao Wu Shi Pin Fen Xi 2018 26 1 221 231 29389559
    [Google Scholar]
  231. Xintaropoulou C. Ward C. Wise A. Marston H. Turnbull A. Langdon S.P. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget 2015 6 28 25677 25695 10.18632/oncotarget.4499 26259240
    [Google Scholar]
  232. Grossmann M.E. Mizuno N.K. Schuster T. Cleary M.P. Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation. Int. J. Oncol. 2010 36 2 421 426 20043077
    [Google Scholar]
  233. Sreeja S. Kumar S.T.R. Lakshmi B.S. Sreeja S. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation. J. Nutr. Biochem. 2012 23 7 725 732 10.1016/j.jnutbio.2011.03.015 21839626
    [Google Scholar]
  234. Shirode A.B. Kovvuru P. Chittur S.V. Henning S.M. Heber D. Reliene R. Antiproliferative effects of pomegranate extract in MCF-7 breast cancer cells are associated with reduced DNA repair gene expression and induction of double strand breaks. Mol. Carcinog. 2014 53 6 458 470 10.1002/mc.21995 23359482
    [Google Scholar]
  235. Adams L.S. Zhang Y. Seeram N.P. Heber D. Chen S. Pomegranate ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in breast cancer cells in vitro. Cancer Prev. Res. 2010 3 1 108 113 10.1158/1940‑6207.CAPR‑08‑0225 20051378
    [Google Scholar]
  236. Larrosa M. Sarrías G.A. Conesa G.M.T. Barberán T.F.A. Espín J.C. Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities. J. Agric. Food Chem. 2006 54 5 1611 1620 10.1021/jf0527403 16506809
    [Google Scholar]
  237. Chen H.S. Bai M.H. Zhang T. Li G.D. Liu M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int. J. Oncol. 2015 46 4 1730 1738 10.3892/ijo.2015.2870 25647396
    [Google Scholar]
  238. Kim N.D. Mehta R. Yu W. Neeman I. Livney T. Amichay A. Poirier D. Nicholls P. Kirby A. Jiang W. Mansel R. Ramachandran C. Rabi T. Kaplan B. Lansky E. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res. Treat. 2002 71 3 203 217 10.1023/A:1014405730585 12002340
    [Google Scholar]
  239. Bagheri M. Fazli M. Saeednia S. Kor A. Ahmadiankia N. Pomegranate peel extract inhibits expression of β-catenin, epithelial mesenchymal transition, and metastasis in triple negative breast cancer cells. Cell. Mol. Biol. 2018 64 7 86 91 10.14715/cmb/2018.64.7.15 29974851
    [Google Scholar]
  240. Mandal A. Bishayee A. Mechanism of breast cancer preventive action of pomegranate: Disruption of estrogen receptor and wnt/β-catenin signaling pathways. Molecules 2015 20 12 22315 22328 10.3390/molecules201219853 26703530
    [Google Scholar]
  241. Rocha A. Wang L. Penichet M. Green M.M. Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer. Breast Cancer Res. Treat. 2012 136 3 647 658 10.1007/s10549‑012‑2264‑5 23065001
    [Google Scholar]
  242. Arumugam A. Agullo P. Boopalan T. Nandy S. Lopez R. Gutierrez C. Narayan M. Rajkumar L. Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis. Cancer Biol. Ther. 2014 15 1 26 34 10.4161/cbt.26604 24146019
    [Google Scholar]
  243. Elumalai P. Gunadharini D.N. Senthilkumar K. Banudevi S. Arunkumar R. Benson C.S. Sharmila G. Arunakaran J. Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway. Toxicol. Lett. 2012 215 2 131 142 10.1016/j.toxlet.2012.10.008 23089555
    [Google Scholar]
  244. Elumalai P. Gunadharini D.N. Senthilkumar K. Banudevi S. Arunkumar R. Benson C.S. Sharmila G. Arunakaran J. Ethanolic neem (Azadirachta indica A. Juss) leaf extract induces apoptosis and inhibits the IGF signaling pathway in breast cancer cell lines. Biom. Prev. Nutri. 2012 2 1 59 68 10.1016/j.bionut.2011.12.008
    [Google Scholar]
  245. Vinothini G. Manikandan P. Anandan R. Nagini S. Chemoprevention of rat mammary carcinogenesis by Azadirachta indica leaf fractions: Modulation of hormone status, xenobiotic-metabolizing enzymes, oxidative stress, cell proliferation and apoptosis. Food Chem. Toxicol. 2009 47 8 1852 1863 10.1016/j.fct.2009.04.045 19427891
    [Google Scholar]
  246. Trivedi A. Ahmad R. Sahabjada Misra A. Effect of alkaline pH on cytotoxicity profile of neem (Azadirachta indica) ethanolic extract against human breast cancer cell line MDA-MB-231. Eur. J. Integr. Med. 2018 24 1 7 10.1016/j.eujim.2018.10.004
    [Google Scholar]
  247. Beuth J. Schneider H. Ko H.L. Enhancement of immune responses to neem leaf extract (Azadirachta indica) correlates with antineoplastic activity in BALB/c-mice. In Vivo 2006 20 2 247 251 16634526
    [Google Scholar]
  248. Ghosh M.I. Chattopadhyay U. Baral R. Neem leaf preparation enhances Th1 type immune response and anti-tumor immunity against breast tumor associated antigen. Cancer Immun. 2007 7 8 17394284
    [Google Scholar]
  249. Roy S. Barik S. Banerjee S. Bhuniya A. Pal S. Basu P. Biswas J. Goswami S. Chakraborty T. Bose A. Baral R. Neem leaf glycoprotein overcomes indoleamine 2,3 dioxygenase mediated tolerance in dendritic cells by attenuating hyperactive regulatory T cells in cervical cancer stage IIIB patients. Hum. Immunol. 2013 74 8 1015 1023 10.1016/j.humimm.2013.04.022 23628394
    [Google Scholar]
  250. Dey A. Manna S. Chattopadhyay S. Mondal D. Azadirachta indica leaves mediated green synthesized copper oxide nanoparticles induce apoptosis through activation of TNF-α and caspases signaling. J. Saudi. Chem. Soc. 2019 23 2 222 238
    [Google Scholar]
  251. Dkhil M.A. Quraishy A.S. Aref A.M. Othman M.S. Deib E.K.M. Moneim A.A.E. The potential role of Azadirachta indica treatment on cisplatin-induced hepatotoxicity and oxidative stress in female rats. Oxid. Med. Cell. Longev. 2013 2013 1 9 10.1155/2013/741817 24369490
    [Google Scholar]
  252. Zhou M. Jiang M. Ying X. Cui Q. Han Y. Hou Y. Gao J. Bai G. Luo G. Identification and comparison of anti-inflammatory ingredients from different organs of Lotus nelumbo by UPLC/Q-TOF and PCA coupled with a NF-κB reporter gene assay. PLoS One 2013 8 11 e81971 10.1371/journal.pone.0081971 24312388
    [Google Scholar]
  253. Paudel K.R. Panth N. Phytochemical profile and biological activity of nelumbo nucifera. Evid. Based Complement. Alternat. Med. 2015 2015 1 16 10.1155/2015/789124 27057194
    [Google Scholar]
  254. Liu Y. Ma S. Ibrahim S.A. Li E. Yang H. Huang W. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages. Food Chem. 2015 185 159 164 10.1016/j.foodchem.2015.03.117 25952854
    [Google Scholar]
  255. N’guessan B.B. Asiamah A.D. Arthur N.K. Manso F.S. Amoateng P. Amponsah S.K. Kukuia K.E. Sarkodie J.A. Opuni K.F.M. Gyekye A.I.J. Opong A.R. Ethanolic extract of Nymphaea lotus L. (Nymphaeaceae) leaves exhibits in vitro antioxidant, in vivo anti-inflammatory and cytotoxic activities on Jurkat and MCF-7 cancer cell lines. BMC Comp. Med. Ther. 2021 21 1 22 10.1186/s12906‑020‑03195‑w 33413340
    [Google Scholar]
  256. Yang M.Y. Chang Y.C. Chan K.C. Lee Y.J. Wang C.J. Flavonoid-enriched extracts from Nelumbo nucifera leaves inhibits proliferation of breast cancer in vitro and in vivo. Eur. J. Integr. Med. 2011 3 3 e153 e163 10.1016/j.eujim.2011.08.008
    [Google Scholar]
  257. Hsu L.S. Chang C.H. Lee Y.J. Wang C.J. Nelumbo nucifera leaves prevent nmu-induced mammary tumor through downregulation of fatty acid synthase, estrogen receptor-α and her2 expression. Am. J. Chin. Med. 2019 47 8 1885 1899 10.1142/S0192415X19500964 31838869
    [Google Scholar]
  258. Chang C.H. Ou T.T. Yang M.Y. Huang C.C. Wang C.J. Nelumbo nucifera Gaertn leaves extract inhibits the angiogenesis and metastasis of breast cancer cells by downregulation connective tissue growth factor (CTGF) mediated PI3K/AKT/ERK signaling. J. Ethnopharmacol. 2016 188 111 122 10.1016/j.jep.2016.05.012 27178635
    [Google Scholar]
  259. Venugopal K. Ahmad H. Manikandan E. Arul T.K. Kavitha K. Moodley M.K. Rajagopal K. Balabhaskar R. Bhaskar M. The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. J. Photochem. Photobiol. B 2017 173 99 107 10.1016/j.jphotobiol.2017.05.031 28570910
    [Google Scholar]
  260. Liu R. Choi H.S. Zhen X. Kim S.L. Kim J.H. Ko Y.C. Yun B.S. Lee D.S. Betavulgarin isolated from sugar beet (beta vulgaris) suppresses breast cancer stem cells through stat3 signaling. Molecules 2020 25 13 2999 10.3390/molecules25132999 32630026
    [Google Scholar]
  261. Nowacki L. Vigneron P. Rotellini L. Cazzola H. Merlier F. Prost E. Ralanairina R. Gadonna J.P. Rossi C. Vayssade M. Betanin-enriched red beetroot ( beta vulgaris l.) extract induces apoptosis and autophagic cell death in MCF-7 cells. Phytother. Res. 2015 29 12 1964 1973 10.1002/ptr.5491 26463240
    [Google Scholar]
  262. Kapadia G.J. Azuine M.A. Rao G.S. Arai T. Iida A. Tokuda H. Cytotoxic effect of the red beetroot (Beta vulgaris L.) extract compared to doxorubicin (Adriamycin) in the human prostate (PC-3) and breast (MCF-7) cancer cell lines. Anticancer. Agents Med. Chem. 2011 11 3 280 284 10.2174/187152011795347504 21434853
    [Google Scholar]
  263. Susilowati S. Istiadi H. Suhartono S. Prajoko Y. Riwanto I. Susilaningsih N. Suharti C. The role of beetroot extract in overcoming chemoresistance of neoadjuvant adriamycin cyclophosphamide regimen by targeting immune response in tumor microenvironment: A preclinical study in mammary adenocarcinoma rats. Asian Pac. J. Cancer Prev. 2022 23 3 1061 1068 10.31557/APJCP.2022.23.3.1061 35345381
    [Google Scholar]
/content/journals/npj/10.2174/0122103155351726250123083250
Loading
/content/journals/npj/10.2174/0122103155351726250123083250
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test