Skip to content
2000
image of A Comprehensive Pharmacological Review of Natural Products Active Ingredients in Ulcerative Colitis

Abstract

Ulcerative colitis (UC) is a nonspecific, prolonged, and recurrent autoimmune disease characterized by diarrhea, mucopurulent stools, and abdominal pain. Modern medicine believes that the disease is related to infectious, genetic, psychiatric, allergic and especially autoimmune factors, but the exact cause is unknown. Given that the disease is recurrent, aggravating and persistent, and has a certain cancer rate, it is increasingly urgent to find effective treatments. It has been proved that UC is related to the abnormal regulation of signaling pathways in the body, dysregulation of intestinal ecology, and intestinal immune disorders, and natural products active ingredients for the treatment of UC have the advantage of long-term efficacy and less toxic side effects compared to existing drugs. This paper reviews the pharmacological mechanisms associated with UC to gain insight into the therapeutic mechanisms of natural products active ingredients for UC and to better understand the advantages and potential of natural products active ingredients in the treatment of UC. This will provide guidance for the development of new therapeutic strategies and drugs, and offer new hope for improving the quality of life of patients with UC.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155348415241119073736
2025-01-03
2025-07-13
Loading full text...

Full text loading...

References

  1. Gajendran M. Loganathan P. Jimenez G. Catinella A.P. Ng N. Umapathy C. Ziade N. Hashash J.G. A comprehensive review and update on ulcerative colitis. Dis. Mon. 2019 65 12 100851 10.1016/j.disamonth.2019.02.004 30837080
    [Google Scholar]
  2. Liu Y. Li B.G. Su Y.H. Zhao R.X. Song P. Li H. Cui X.H. Gao H.M. Zhai R.X. Fu X.J. Ren X. Potential activity of traditional chinese medicine against ulcerative colitis: A review. J. Ethnopharmacol. 2022 289 115084 10.1016/j.jep.2022.115084 35134488
    [Google Scholar]
  3. Silva B.C. Lyra A.C. Rocha R. Santana G.O. Epidemiology, demographic characteristics and prognostic predictors of ulcerative colitis. World J. Gastroenterol. 2014 20 28 9458 9467 10.3748/wjg.v20.i28.9458 25071340
    [Google Scholar]
  4. Le Berre C. Honap S. Peyrin-Biroulet L. Ulcerative colitis. Lancet 2023 402 10401 571 584 10.1016/S0140‑6736(23)00966‑2 37573077
    [Google Scholar]
  5. Xue J.C. Yuan S. Meng H. Hou X.T. Li J. Zhang H.M. Chen L.L. Zhang C.H. Zhang Q.G. The role and mechanism of flavonoid herbal natural products in ulcerative colitis. Biomed. Pharmacother. 2023 158 114086 10.1016/j.biopha.2022.114086 36502751
    [Google Scholar]
  6. Salas A. Hernandez-Rocha C. Duijvestein M. Faubion W. McGovern D. Vermeire S. Vetrano S. Vande Casteele N. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020 17 6 323 337 10.1038/s41575‑020‑0273‑0 32203403
    [Google Scholar]
  7. Kakiuchi N. Yoshida K. Uchino M. Kihara T. Akaki K. Inoue Y. Kawada K. Nagayama S. Yokoyama A. Yamamoto S. Matsuura M. Horimatsu T. Hirano T. Goto N. Takeuchi Y. Ochi Y. Shiozawa Y. Kogure Y. Watatani Y. Fujii Y. Kim S. K. Kon A. Kataoka K. Yoshizato T. Nakagawa M. M. Yoda A. Nanya Y. Makishima H. Shiraishi Y. Chiba K. Tanaka H. Sanada M. Sugihara E. Sato T. Maruyama T. Miyoshi H. Taketo M. M. Oishi J. Inagaki R. Ueda Y. Okamoto S. Okajima H. Sakai Y. Sakurai T. Haga H. Hirota S. Ikeuchi H. Nakase H. Marusawa H. Chiba T. Takeuchi O. Miyano S. Seno H. Ogawa S. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 2020 577 260 10.1038/s41586‑019‑1856‑1
    [Google Scholar]
  8. Piotrowska M. Swierczynski M. Fichna J. Piechota-Polanczyk A. The Nrf2 in the pathophysiology of the intestine: Molecular mechanisms and therapeutic implications for inflammatory bowel diseases. Pharmacol. Res. 2021 163 105243 10.1016/j.phrs.2020.105243 33080322
    [Google Scholar]
  9. Saber S. Khalil R.M. Abdo W.S. Nassif D. El-Ahwany E. Olmesartan ameliorates chemically-induced ulcerative colitis in rats via modulating NFκB and Nrf-2/HO-1 signaling crosstalk. Toxicol. Appl. Pharmacol. 2019 364 120 132 10.1016/j.taap.2018.12.020 30594690
    [Google Scholar]
  10. Zhang Z. Cao H. Shen P. Liu J. Cao Y. Zhang N. Ping weisan alleviates chronic colitis in mice by regulating intestinal microbiota composition. J. Ethnopharmacol. 2020 255 112715 10.1016/j.jep.2020.112715 32114163
    [Google Scholar]
  11. Shen Z.H. Zhu C.X. Quan Y.S. Yang Z.Y. Wu S. Luo W.W. Tan B. Wang X.Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2018 24 1 5 14 10.3748/wjg.v24.i1.5 29358877
    [Google Scholar]
  12. Donohoe D.R. Collins L.B. Wali A. Bigler R. Sun W. Bultman S.J. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 2012 48 4 612 626 10.1016/j.molcel.2012.08.033 23063526
    [Google Scholar]
  13. Parada Venegas D. De la Fuente M.K. Landskron G. González M.J. Quera R. Dijkstra G. Harmsen H.J.M. Faber K.N. Hermoso M.A. Short chain fatty acids (SCFAs)-Mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019 10 277 10.3389/fimmu.2019.00277 30915065
    [Google Scholar]
  14. Neurath M.F. Leppkes M. Resolution of ulcerative colitis. Semin. Immunopathol. 2019 41 6 747 756 10.1007/s00281‑019‑00751‑6 31278430
    [Google Scholar]
  15. de Souza H.S.P. Fiocchi C. Immunopathogenesis of IBD: Current state of the art. Nat. Rev. Gastroenterol. Hepatol. 2016 13 1 13 27 10.1038/nrgastro.2015.186 26627550
    [Google Scholar]
  16. Kanwal N. Rasul A. Hussain G. Anwar H. Shah M.A. Sarfraz I. Riaz A. Batool R. Shahbaz M. Hussain A. Selamoglu Z. Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways. Food Chem. Toxicol. 2020 143 111570 10.1016/j.fct.2020.111570 32640345
    [Google Scholar]
  17. Abdalla Y. Abdalla A. Hamza A.A. Amin A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front. Pharmacol. 2022 12 777500 10.3389/fphar.2021.777500 35177980
    [Google Scholar]
  18. Murali C. Mudgil P. Gan C.Y. Tarazi H. El-Awady R. Abdalla Y. Amin A. Maqsood S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci. Rep. 2021 11 1 7062 10.1038/s41598‑021‑86391‑z 33782460
    [Google Scholar]
  19. Varol A. Sezen S. Evcimen D. Zarepour A. Ulus G. Zarrabi A. Badr G. Daştan S.D. Orbayoğlu A.G. Selamoğlu Z. Varol M. Cellular targets and molecular activity mechanisms of bee venom in cancer: Recent trends and developments. Toxin Rev. 2022 41 4 1382 1395 10.1080/15569543.2021.2024576
    [Google Scholar]
  20. Luo H. Ji X. Zhang M. Ren Y. Tan R. Jiang H. Wu X. Aloe-emodin: Progress in pharmacological activity, safety, and pharmaceutical formulation applications. Mini Rev. Med. Chem. 2024 24 19 1784 1798 10.2174/0113895575298364240409064833 38639277
    [Google Scholar]
  21. Rehman M.F. Akhter S. Batool A.I. Selamoglu Z. Sevindik M. Eman R. Mustaqeem M. Akram M.S. Kanwal F. Lu C. Aslam M. Effectiveness of natural antioxidants against SARS-CoV-2? Insights from the In-Silico world. Antibiotics 2021 10 8 1011 10.3390/antibiotics10081011 34439061
    [Google Scholar]
  22. Sevindik M. Akgul H. Selamoglu Z. Braidy N. Antioxidant and antigenotoxic potential of Infundibulicybe geotropa Mushroom collected from Northwestern Turkey. Oxid. Med. Cell. Longev. 2020 2020 1 8 10.1155/2020/5620484 32148651
    [Google Scholar]
  23. Selamoglu Z. Dusgun C. Akgul H. Gulhan M.F. In-vitro Antioxidant activities of the ethanolic extracts of some contained-allantoin plants. Iran. J. Pharm. Res. 2017 16 Suppl. 92 98 29844780
    [Google Scholar]
  24. Rana S.V. Sharma S. Prasad K.K. Sinha S.K. Singh K. Role of oxidative stress & antioxidant defence in ulcerative colitis patients from north India. Indian J. Med. Res. 2014 139 4 568 571 24927343
    [Google Scholar]
  25. Zafar S. Sarfraz I. Rasul A. Shah M.A. Hussain G. Zahoor M.K. Shafiq N. Riaz A. Selamoglu Z. Sarker S.D. Osthole: A multifunctional natural compound with potential anticancer, antioxidant and anti-inflammatory Activities. Mini Rev. Med. Chem. 2021 21 18 2747 2763 10.2174/18755607MTA4nMDMiw 32646359
    [Google Scholar]
  26. Li C. Ai G. Wang Y. Lu Q. Luo C. Tan L. Lin G. Liu Y. Li Y. Zeng H. Chen J. Lin Z. Xian Y. Huang X. Xie J. Su Z. Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway. Pharmacol. Res. 2020 152 104603 10.1016/j.phrs.2019.104603 31863867
    [Google Scholar]
  27. Fu Y.P. Peng X. Zhang C.W. Jiang Q.X. Li C.Y. Paulsen B.S. Rise F. Huang C. Feng B. Li L.X. Chen X.F. Jia R.Y. Li Y.P. Zhao X.H. Ye G. Tang H.Q. Liang X.X. Lv C. Tian M.L. Yin Z.Q. Zou Y.F. Salvia miltiorrhiza polysaccharide and its related metabolite 5-methoxyindole-3-carboxaldehyde ameliorate experimental colitis by regulating Nrf2/Keap1 signaling pathway. Carbohydr. Polym. 2023 306 120626 10.1016/j.carbpol.2023.120626 36746576
    [Google Scholar]
  28. Li F. Yan H. Jiang L. Zhao J. Lei X. Ming J. Cherry polyphenol extract ameliorated dextran sodium sulfate-induced ulcerative colitis in mice by suppressing Wnt/β-Catenin signaling pathway. Foods 2021 11 1 49 10.3390/foods11010049 35010176
    [Google Scholar]
  29. Li W. Zhang L. Xu Q. Yang W. Zhao J. Ren Y. Yu Z. Ma L. Taxifolin alleviates DSS-induced ulcerative colitis by acting on gut microbiome to produce butyric acid. Nutrients 2022 14 5 1069 10.3390/nu14051069 35268045
    [Google Scholar]
  30. Zheng K. Jia J. Yan S. Shen H. Zhu P. Yu J. Paeoniflorin ameliorates ulcerative colitis by modulating the dendritic cell-mediated TH17/Treg balance. Inflammopharmacology 2020 28 6 1705 1716 10.1007/s10787‑020‑00722‑6 32472435
    [Google Scholar]
  31. Zhuang H. Lv Q. Zhong C. Cui Y. He L. Zhang C. Yu J. Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway. Front. Immunol. 2021 12 649463 10.3389/fimmu.2021.649463 33868286
    [Google Scholar]
  32. Botros S.R. Matouk A.I. Amin A. Heeba G.H. Comparative effects of incretin-based therapy on doxorubicin-induced nephrotoxicity in rats: The role of SIRT1/Nrf2/NF-κB/TNF-α signaling pathways. Front. Pharmacol. 2024 15 1353029 10.3389/fphar.2024.1353029 38440177
    [Google Scholar]
  33. Abdu S. Juaid N. Amin A. Moulay M. Miled N. Effects of sorafenib and quercetin alone or in combination in treating hepatocellular carcinoma: In Vitro and In Vivo approaches. Molecules 2022 27 22 10.3390/molecules27228082
    [Google Scholar]
  34. Abdel-latif R. Heeba G.H. Hassanin S.O. Waz S. Amin A. TLRs-JNK/ NF-κB pathway underlies the protective effect of the sulfide salt against liver toxicity. Front. Pharmacol. 2022 13 850066 10.3389/fphar.2022.850066 35517830
    [Google Scholar]
  35. Othman E.M. Habib H.A. Zahran M.E. Amin A. Heeba G.H. Mechanistic protective effect of cilostazol in cisplatin-induced testicular damage via regulation of oxidative stress and TNF-α/NF-κB/Caspase-3 pathways. Int. J. Mol. Sci. 2023 24 16 12651 10.3390/ijms241612651 37628836
    [Google Scholar]
  36. Hamza A.A. Heeba G.H. Hassanin S.O. Elwy H.M. Bekhit A.A. Amin A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed. Pharmacother. 2023 165 115148 10.1016/j.biopha.2023.115148 37450997
    [Google Scholar]
  37. Hassanin S.O. Hegab A.M.M. Mekky R.H. Said M.A. Khalil M.G. Hamza A.A. Amin A. Combining In Vitro, In Vivo and network pharmacology assays to identify targets and molecular mechanisms of spirulina-derived biomolecules against breast cancer. Mar. Drugs 2024 22 7 328 10.3390/md22070328 39057437
    [Google Scholar]
  38. Christian F. Smith E. Carmody R. The regulation of NF-κB subunits by phosphorylation. Cells 2016 5 1 12 10.3390/cells5010012 26999213
    [Google Scholar]
  39. Hoffmann A. Natoli G. Ghosh G. Transcriptional regulation via the NF-κB signaling module. Oncogene 2006 25 51 6706 6716 10.1038/sj.onc.1209933 17072323
    [Google Scholar]
  40. Razani B. Reichardt A.D. Cheng G. Non‐canonical NF‐κB signaling activation and regulation: Principles and perspectives. Immunol. Rev. 2011 244 1 44 54 10.1111/j.1600‑065X.2011.01059.x 22017430
    [Google Scholar]
  41. Karin M. Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu. Rev. Immunol. 2000 18 1 621 663 10.1146/annurev.immunol.18.1.621 10837071
    [Google Scholar]
  42. Zinatizadeh M.R. Schock B. Chalbatani G.M. Zarandi P.K. Jalali S.A. Miri S.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021 8 3 287 297 10.1016/j.gendis.2020.06.005 33997176
    [Google Scholar]
  43. Napetschnig J. Wu H. Molecular basis of NF-κB signaling. Annu. Rev. Biophys. 2013 42 1 443 468 10.1146/annurev‑biophys‑083012‑130338 23495970
    [Google Scholar]
  44. Sun J. Xu G. Wang Z. Li Q. Cui Y. Xie L. Zhang R. The Effect of NF-κB signalling pathway on expression and regulation of nacrein in pearl oyster, pinctada fucata. PLoS One 2015 10 7 e0131711 10.1371/journal.pone.0131711 26158525
    [Google Scholar]
  45. Melgar S. Yeung M.M-W. Bas A. Forsberg G. Suhr O. Öberg Å. Hammarström S. Danielsson Å. Hammarström M-L. Over-expression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis. Clin. Exp. Immunol. 2003 134 1 127 137 10.1046/j.1365‑2249.2003.02268.x 12974765
    [Google Scholar]
  46. Jeon Y.D. Lee J.H. Lee Y.M. Kim D.K. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed. Pharmacother. 2020 124 109847 10.1016/j.biopha.2020.109847 31981944
    [Google Scholar]
  47. Ismail Abo El-Fadl H.M. Mohamed M.F.A. Targeting endoplasmic reticulum stress, Nrf-2/HO-1, and NF-κB by myristicin and its role in attenuation of ulcerative colitis in rats. Life Sci. 2022 311 Pt B 121187 10.1016/j.lfs.2022.121187 36403646
    [Google Scholar]
  48. Tonelli C. Chio I.I.C. Tuveson D.A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 2018 29 17 1727 1745 10.1089/ars.2017.7342 28899199
    [Google Scholar]
  49. Cuadrado A. Manda G. Hassan A. Alcaraz M.J. Barbas C. Daiber A. Ghezzi P. León R. López M.G. Oliva B. Pajares M. Rojo A.I. Robledinos-Antón N. Valverde A.M. Guney E. Schmidt H.H.H.W. Transcription factor NRF2 as a therapeutic target for chronic diseases: A systems medicine approach. Pharmacol. Rev. 2018 70 2 348 383 10.1124/pr.117.014753 29507103
    [Google Scholar]
  50. Ulasov A.V. Rosenkranz A.A. Georgiev G.P. Sobolev A.S. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 2022 291 120111 10.1016/j.lfs.2021.120111 34732330
    [Google Scholar]
  51. Pompili S. Sferra R. Gaudio E. Viscido A. Frieri G. Vetuschi A. Latella G. Can Nrf2 modulate the development of intestinal fibrosis and cancer in inflammatory bowel disease? Int. J. Mol. Sci. 2019 20 16 4061 10.3390/ijms20164061 31434263
    [Google Scholar]
  52. Niture S.K. Khatri R. Jaiswal A.K. Regulation of Nrf2—an update. Free Radic. Biol. Med. 2014 66 36 44 10.1016/j.freeradbiomed.2013.02.008 23434765
    [Google Scholar]
  53. Wen Z. Liu W. Li X. Chen W. Liu Z. Wen J. Liu Z. A protective role of the NRF2-Keap1 pathway in maintaining intestinal barrier function. Oxid. Med. Cell. Longev. 2019 2019 1 7 10.1155/2019/1759149 31346356
    [Google Scholar]
  54. Khodir A.E. Atef H. Said E. ElKashef H.A. Salem H.A. Implication of Nrf2/HO-1 pathway in the coloprotective effect of coenzyme Q10 against experimentally induced ulcerative colitis. Inflammopharmacology 2017 25 1 119 135 10.1007/s10787‑016‑0305‑0 28050757
    [Google Scholar]
  55. Zhou Y. Dou F. Song H. Liu T. Anti‐ulcerative effects of wogonin on ulcerative colitis induced by dextran sulfate sodium via Nrf2/ TLR4 / NF‐κB signaling pathway in BALB /c mice. Environ. Toxicol. 2022 37 4 954 963 10.1002/tox.23457 35044701
    [Google Scholar]
  56. Li H.X. Zhao W. Shi Y. Li Y.N. Zhang L.S. Zhang H.Q. Wang D. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis. Tumour Biol. 2015 36 11 8671 8678 10.1007/s13277‑015‑3534‑8 26044560
    [Google Scholar]
  57. Banerjee S. Biehl A. Gadina M. Hasni S. Schwartz D.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs 2017 77 5 521 546 10.1007/s40265‑017‑0701‑9 28255960
    [Google Scholar]
  58. Gulubova M.V. Chonov D.C. Ivanova K.V. Hristova M.K. Krasimirova-Ignatova M.M. Vlaykova T.I. Intratumoural expression of IL-6/STAT3, IL-17 and FOXP3 immune cells in the immunosuppressive tumour microenvironment of colorectal cancer Immune cells-positive for IL-6, STAT3, IL-17 and FOXP3 and colorectal cancer development. Biotechnol. Biotechnol. Equip. 2022 36 1 327 338 10.1080/13102818.2022.2072765
    [Google Scholar]
  59. Xuan-qing C.H.E.N. Xiang-yu L.V. Shi-jia L.I.U. Baitouweng decoction alleviates dextran sulfate sodium-induced ulcerative colitis by regulating intestinal microbiota and the IL-6/STAT3 signaling pathway. J. Ethnopharmacol. 2021 265 113357 10.1016/j.jep.2020.113357 32891820
    [Google Scholar]
  60. Morris R. Kershaw N.J. Babon J.J. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018 27 12 1984 2009 10.1002/pro.3519 30267440
    [Google Scholar]
  61. Hu X. li J. Fu M. Zhao X. Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021 6 1 402 10.1038/s41392‑021‑00791‑1 34824210
    [Google Scholar]
  62. Xin P. Xu X. Deng C. Liu S. Wang Y. Zhou X. Ma H. Wei D. Sun S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 2020 80 106210 10.1016/j.intimp.2020.106210 31972425
    [Google Scholar]
  63. Virtanen A.T. Haikarainen T. Raivola J. Silvennoinen O. Selective JAKinibs: Prospects in inflammatory and autoimmune diseases. BioDrugs 2019 33 1 15 32 10.1007/s40259‑019‑00333‑w 30701418
    [Google Scholar]
  64. O’Shea J.J. Schwartz D.M. Villarino A.V. Gadina M. McInnes I.B. Laurence A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015 66 1 311 328 10.1146/annurev‑med‑051113‑024537 25587654
    [Google Scholar]
  65. Wei T. Wu L. Ji X. Gao Y. Xiao G. Ursolic acid protects sodium dodecyl sulfate-induced Drosophila Ulcerative Colitis model by inhibiting the JNK signaling. Antioxidants 2022 11 2 426 10.3390/antiox11020426 35204308
    [Google Scholar]
  66. Shidan C. Effect of astragalus polysaccharide on intestinal inflammation responses and colonic mucosal JAK/STAT pathway in rats with ulcerative colitis induced by tnbs. Acta Med. Mediter. 2019 4 1855 1859 10.19193/0393‑6384_2019_4_289
    [Google Scholar]
  67. Fu J. Zang Y. Zhou Y. Chen C. Shao S. Shi G. Wu L. Zhu G. Sun T. Zhang D. Zhang T. Exploring a novel triptolide derivative possess anti-colitis effect via regulating T cell differentiation. Int. Immunopharmacol. 2021 94 107472 10.1016/j.intimp.2021.107472 33611058
    [Google Scholar]
  68. Zhang M. Zhang S. Mitogen‐activated protein kinase cascades in plant signaling. J. Integr. Plant Biol. 2022 64 2 301 341 10.1111/jipb.13215 34984829
    [Google Scholar]
  69. Plotnikov A. Flores K. Maik-Rachline G. Zehorai E. Kapri-Pardes E. Berti D.A. Hanoch T. Besser M.J. Seger R. The nuclear translocation of ERK1/2 as an anticancer target. Nat. Commun. 2015 6 1 6685 10.1038/ncomms7685 25819065
    [Google Scholar]
  70. Pua L.J.W. Mai C.W. Chung F.F.L. Khoo A.S.B. Leong C.O. Lim W.M. Hii L.W. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma. Int. J. Mol. Sci. 2022 23 3 1108 10.3390/ijms23031108 35163030
    [Google Scholar]
  71. Xu C. Liu R. Zhang Q. Chen X. Qian Y. Fang W. The diversification of evolutionarily conserved MAPK cascades correlates with the evolution of fungal species and development of lifestyles. Genome Biol. Evol. 2016 ••• evw051 10.1093/gbe/evw051 26957028
    [Google Scholar]
  72. Zhang W. Liu H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002 12 1 9 18 10.1038/sj.cr.7290105 11942415
    [Google Scholar]
  73. Paton E.L. Turner J.A. Schlaepfer I.R. Overcoming resistance to therapies targeting the MAPK pathway in BRAF-mutated tumours. J. Oncol. 2020 2020 1 14 10.1155/2020/1079827 32411231
    [Google Scholar]
  74. Lin H. Wang M. Chen Y. Nomura K. Hui S. Gui J. Zhang X. Wu Y. Liu J. Li Q. Deng Y. Li L. Yuan M. Wang S. He S.Y. He Z. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Sci. Adv. 2022 8 10 eabg8723 10.1126/sciadv.abg8723 35263144
    [Google Scholar]
  75. Piechota-Polanczyk A. Fichna J. Review article: The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch. Pharmacol. 2014 387 7 605 620 10.1007/s00210‑014‑0985‑1 24798211
    [Google Scholar]
  76. Wang J. Luo L. Zhao X. Xue X. Liao L. Deng Y. Zhou M. Peng C. Li Y. Forsythiae fructuse extracts alleviates LPS-induced acute lung injury in mice by regulating PPAR-γ/RXR-α in lungs and colons. J. Ethnopharmacol. 2022 293 115322 10.1016/j.jep.2022.115322 35483561
    [Google Scholar]
  77. Li D. Xie T. Guo T. Hu Z. Li M. Tang Y. Wu Q. Luo F. Lin Q. Wang H. Sialic acid exerts anti-inflammatory effect through inhibiting MAPK-NF-κB/AP-1 pathway and apoptosis in ulcerative colitis. J. Funct. Foods 2023 101 105416 10.1016/j.jff.2023.105416
    [Google Scholar]
  78. Ji W. Liu W. Huo Y. Hu C. Zhang Y. Banxia Xiexin decoction ameliorates dextran sulfate sodium (DSS)-Induced ulcerative colitis via inhibiting serine-threonine protein kinase (Akt)/Mitogen-activated protein kinase (MAPK) signaling pathway. Appl. Biochem. Biotechnol 2023 70 40 1530 1542 10.1002/bab.2451
    [Google Scholar]
  79. Zhang J. Xu X. Li N. Cao L. Sun Y. Wang J. He S. Si J. Qing D. Licoflavone B, an isoprene flavonoid derived from licorice residue, relieves dextran sodium sulfate-induced ulcerative colitis by rebuilding the gut barrier and regulating intestinal microflora. Eur. J. Pharmacol. 2022 916 174730 10.1016/j.ejphar.2021.174730 34968462
    [Google Scholar]
  80. Wu H. Tu S. Zhuo Z. Jiang R. Zeng R. Yang Q. Lian Q. Sha W. Chen H. Investigating the mechanisms of bisdemethoxycurcumin in ulcerative colitis: Network pharmacology and experimental verification. Molecules 2022 28 1 68 10.3390/molecules28010068 36615264
    [Google Scholar]
  81. Kotipalli R.S.S. Tirunavalli S.K. Pote A.B. Sahu B.D. Kuncha M. Jerald M.K. Sistla R. Andugulapati S.B. Sinigrin attenuates the dextran sulfate sodium-induced colitis in mice by modulating the MAPK pathway. Inflammation 2023 46 3 787 807 10.1007/s10753‑022‑01780‑4 36622573
    [Google Scholar]
  82. Lin X. Guo X. Qu L. Tu J. Li S. Cao G. Liu Y. Preventive effect of Atractylodis Rhizoma extract on DSS-induced acute ulcerative colitis through the regulation of the MAPK/NF-κB signals in vivo and in vitro. J. Ethnopharmacol. 2022 292 115211 10.1016/j.jep.2022.115211 35331877
    [Google Scholar]
  83. Cheng X. Xu X. Chen D. Zhao F. Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed. Pharmacother. 2019 110 473 481 10.1016/j.biopha.2018.11.082 30530050
    [Google Scholar]
  84. Jung Y.S. Park J.I. Wnt signaling in cancer: Therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex Exp Mol Med 52 189 191
    [Google Scholar]
  85. Zhang Y. Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020 13 1 165 10.1186/s13045‑020‑00990‑3 33276800
    [Google Scholar]
  86. Zhong Z. Virshup D.M. Wnt signaling and drug resistance in cancer. Mol. Pharmacol. 2020 97 2 72 89 10.1124/mol.119.117978 31787618
    [Google Scholar]
  87. Stewart D.J. Wnt signaling pathway in non-small cell lung cancer. J. Natl. Cancer Inst. 2014 106 1 djt356 10.1093/jnci/djt356 24309006
    [Google Scholar]
  88. MacDonald B.T. Tamai K. He X. Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009 17 1 9 26 10.1016/j.devcel.2009.06.016 19619488
    [Google Scholar]
  89. Huang P. Yan R. Zhang X. Wang L. Ke X. Qu Y. Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacol. Ther. 2019 196 79 90 10.1016/j.pharmthera.2018.11.008 30468742
    [Google Scholar]
  90. Kuhnert F. Davis C.R. Wang H.T. Chu P. Lee M. Yuan J. Nusse R. Kuo C.J. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc. Natl. Acad. Sci. USA 2004 101 1 266 271 10.1073/pnas.2536800100 14695885
    [Google Scholar]
  91. Dong Y. Fan H. Zhang Z. Jiang F. Li M. Zhou H. Guo W. Zhang Z. Kang Z. Gui Y. Shou Z. Li J. Zhu R. Fu Y. Sarapultsev A. Wang H. Luo S. Zhang G. Hu D. Berberine ameliorates DSS-induced intestinal mucosal barrier dysfunction through microbiota-dependence and Wnt/β-catenin pathway. Int. J. Biol. Sci. 2022 18 4 1381 1397 10.7150/ijbs.65476 35280677
    [Google Scholar]
  92. Zhou J. Wu H. Hou J. Wang J. Wang J. Li M. Yao X. Gao J. Zhang Q. Daurisoline alleviated experimental colitis in vivo and in vitro Involvement of NF-κB and Wnt/β-Catenin pathway. Int. Immunopharmacol. 2022 108 108714 10.1016/j.intimp.2022.108714 35366641
    [Google Scholar]
  93. Blumberg R. Powrie F. Microbiota, disease, and back to health: A metastable journey. Sci. Transl. Med. 2012 4 137 137rv7 10.1126/scitranslmed.3004184 22674557
    [Google Scholar]
  94. Zheng J. Li H. Zhang P. Yue S. Zhai B. Zou J. Cheng J. Zhao C. Guo D. Wang J. Paeonol Ameliorates ulcerative colitis in mice by modulating the gut microbiota and metabolites. Metabolites 2022 12 10 956 10.3390/metabo12100956 36295858
    [Google Scholar]
  95. He X. Liu J. Long G. Xia X.H. Liu M. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside, a major bioactive component from Polygoni multiflori Radix (Heshouwu) suppresses DSS induced acute colitis in BALb/c mice by modulating gut microbiota. Biomed. Pharmacother. 2021 137 111420 10.1016/j.biopha.2021.111420 33761623
    [Google Scholar]
  96. Dalile B. Van Oudenhove L. Vervliet B. Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019 16 8 461 478 10.1038/s41575‑019‑0157‑3 31123355
    [Google Scholar]
  97. Corrêa-Oliveira R. Fachi J.L. Vieira A. Sato F.T. Vinolo M.A.R. Regulation of immune cell function by short‐chain fatty acids. Clin. Transl. Immunology 2016 5 4 e73 10.1038/cti.2016.17 27195116
    [Google Scholar]
  98. Weng Y.J. Gan H.Y. Li X. Huang Y. Li Z.C. Deng H.M. Chen S.Z. Zhou Y. Wang L.S. Han Y.P. Tan Y.F. Song Y.J. Du Z.M. Liu Y.Y. Wang Y. Qin N. Bai Y. Yang R.F. Bi Y.J. Zhi F.C. Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease. J. Dig. Dis. 2019 20 9 447 459 10.1111/1751‑2980.12795 31240835
    [Google Scholar]
  99. Sánchez de Medina F. Romero-Calvo I. Mascaraque C. Martínez-Augustin O. Intestinal inflammation and mucosal barrier function. Inflamm. Bowel Dis. 2014 20 12 2394 2404 10.1097/MIB.0000000000000204 25222662
    [Google Scholar]
  100. Tian B. Geng Y. Wang P. Cai M. Neng J. Hu J. Xia D. Cao W. Yang K. Sun P. Ferulic acid improves intestinal barrier function through altering gut microbiota composition in high-fat diet-induced mice. Eur. J. Nutr. 2022 61 7 3767 3783 10.1007/s00394‑022‑02927‑7 35732902
    [Google Scholar]
  101. Kraehenbuhl J-P. Pringault E. Neutra M.R. Review article: Intestinal epithelia and barrier functions. Aliment. Pharmacol. Ther. 1997 11 s3 Suppl. 3. 3 9 10.1111/j.1365‑2036.1997.tb00803.x
    [Google Scholar]
  102. Che Q. Luo T. Shi J. He Y. Xu D.L. Mechanisms by which traditional Chinese medicines influence the intestinal flora and intestinal barrier. Front. Cell. Infect. Microbiol. 2022 12 863779 10.3389/fcimb.2022.863779 35573786
    [Google Scholar]
  103. Peterson L.W. Artis D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014 14 3 141 153 10.1038/nri3608 24566914
    [Google Scholar]
  104. Chen G. Bei B. Feng Y. Li X. Jiang Z. Si J.Y. Qing D.G. Zhang J. Li N. Glycyrrhetinic acid maintains intestinal homeostasis via HuR. Front. Pharmacol. 2019 10 535 10.3389/fphar.2019.00535 31156441
    [Google Scholar]
  105. Buckley A. Turner J.R. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol. 2018 10 1 a029314 10.1101/cshperspect.a029314 28507021
    [Google Scholar]
  106. El-Akabawy G. El-Sherif N.M. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress. Biomed. Pharmacother. 2019 111 841 851 10.1016/j.biopha.2019.01.001 30616083
    [Google Scholar]
  107. Chelakkot C. Ghim J. Ryu S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018 50 8 1 9 10.1038/s12276‑018‑0126‑x 30115904
    [Google Scholar]
  108. An J. Liu Y. Wang Y. Fan R. Hu X. Zhang F. Yang J. Chen J. The role of intestinal mucosal barrier in autoimmune disease: A potential target. Front. Immunol. 2022 13 871713 10.3389/fimmu.2022.871713 35844539
    [Google Scholar]
  109. Li J. Ma Y. Li X. Wang Y. Huo Z. Lin Y. Li J. Yang H. Zhang Z. Yang P. Zhang C. Fermented Astragalus and its metabolites regulate inflammatory status and gut microbiota to repair intestinal barrier damage in dextran sulfate sodium-induced ulcerative colitis. Front. Nutr. 2022 9 1035912 10.3389/fnut.2022.1035912 36451737
    [Google Scholar]
  110. Schroeder B.O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. (Oxf.) 2019 7 1 3 12 10.1093/gastro/goy052 30792861
    [Google Scholar]
  111. Shi G. Jiang H. Feng J. Zheng X. Zhang D. Jiang C. Zhang J. Aloe vera mitigates dextran sulfate sodium-induced rat ulcerative colitis by potentiating colon mucus barrier. J. Ethnopharmacol. 2021 279 114108 10.1016/j.jep.2021.114108 33839199
    [Google Scholar]
  112. Maslowski K.M. Vieira A.T. Ng A. Kranich J. Sierro F. Di Yu Schilter H.C. Rolph M.S. Mackay F. Artis D. Xavier R.J. Teixeira M.M. Mackay C.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009 461 7268 1282 1286 10.1038/nature08530 19865172
    [Google Scholar]
  113. Geremia A. Biancheri P. Allan P. Corazza G.R. Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 2014 13 1 3 10 10.1016/j.autrev.2013.06.004 23774107
    [Google Scholar]
  114. Ungaro R. Mehandru S. Allen P.B. Peyrin-Biroulet L. Colombel J.F. Ulcerative colitis. Lancet 2017 389 10080 1756 1770 10.1016/S0140‑6736(16)32126‑2 27914657
    [Google Scholar]
  115. Chassaing B. Aitken J. D. Malleshappa M. Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice Curr Protoc Immunol 2014 104 15.25.1 15.25.14 10.1002/0471142735.im1525s104
    [Google Scholar]
  116. Tatiya-aphiradee N. Chatuphonprasert W. Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J. Basic Clin. Physiol. Pharmacol. 2018 30 1 1 10 10.1515/jbcpp‑2018‑0036 30063466
    [Google Scholar]
  117. Gomez-Bris R. Saez A. Herrero-Fernandez B. Rius C. Sanchez-Martinez H. Gonzalez-Granado J.M. CD4 T-cell subsets and the pathophysiology of inflammatory bowel disease. Int. J. Mol. Sci. 2023 24 3 2696 10.3390/ijms24032696 36769019
    [Google Scholar]
  118. Tindemans I. Joosse M.E. Samsom J.N. Dissecting the heterogeneity in T-cell mediated inflammation in IBD. Cells 2020 9 1 110 10.3390/cells9010110 31906479
    [Google Scholar]
  119. Funes S.C. Manrique de Lara A. Altamirano-Lagos M.J. Mackern-Oberti J.P. Escobar-Vera J. Kalergis A.M. Immune checkpoints and the regulation of tolerogenicity in dendritic cells: Implications for autoimmunity and immunotherapy. Autoimmun. Rev. 2019 18 4 359 368 10.1016/j.autrev.2019.02.006 30738957
    [Google Scholar]
  120. Zhang N. Bevan M.J. CD8(+) T cells: Foot soldiers of the immune system. Immunity 2011 35 2 161 168 10.1016/j.immuni.2011.07.010 21867926
    [Google Scholar]
  121. Sakaguchi S. Miyara M. Costantino C.M. Hafler D.A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 2010 10 7 490 500 10.1038/nri2785 20559327
    [Google Scholar]
  122. Hirahara K. Nakayama T. CD4 + T-cell subsets in inflammatory diseases: Beyond the T h 1/T h 2 paradigm. Int. Immunol. 2016 28 4 163 171 10.1093/intimm/dxw006 26874355
    [Google Scholar]
  123. DuPage M. Bluestone J.A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 2016 16 3 149 163 10.1038/nri.2015.18 26875830
    [Google Scholar]
  124. Chen Z. Lin F. Gao Y. Li Z. Zhang J. Xing Y. Deng Z. Yao Z. Tsun A. Li B. FOXP3 and RORγt: Transcriptional regulation of Treg and Th17. Int. Immunopharmacol. 2011 11 5 536 542 10.1016/j.intimp.2010.11.008 21081189
    [Google Scholar]
  125. Acharya S. Timilshina M. Jiang L. Neupane S. Choi D.Y. Park S.W. Lee S.Y. Jeong B.S. Kim J.A. Nam T. Chang J.H. Amelioration of experimental autoimmune encephalomyelitis and DSS induced colitis by NTG-A-009 through the inhibition of Th1 and Th17 cells differentiation. Sci. Rep. 2018 8 1 7799 10.1038/s41598‑018‑26088‑y 29773813
    [Google Scholar]
  126. Omenetti S. Bussi C. Metidji A. Iseppon A. Lee S. Tolaini M. Li Y. Kelly G. Chakravarty P. Shoaie S. Gutierrez M.G. Stockinger B. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 2019 51 1 77 89.e6 10.1016/j.immuni.2019.05.004 31229354
    [Google Scholar]
  127. Kobayashi T. Okamoto S. Hisamatsu T. Kamada N. Chinen H. Saito R. Kitazume M.T. Nakazawa A. Sugita A. Koganei K. Isobe K. Hibi T. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut 2008 57 12 1682 1689 10.1136/gut.2007.135053 18653729
    [Google Scholar]
  128. Josefowicz S.Z. Lu L.F. Rudensky A.Y. Regulatory T. Regulatory T cells: Mechanisms of differentiation and function. Annu. Rev. Immunol. 2012 30 1 531 564 10.1146/annurev.immunol.25.022106.141623 22224781
    [Google Scholar]
  129. Caza T. Landas S. Functional and Phenotypic plasticity of CD4 + T cell subsets. BioMed Res. Int. 2015 2015 1 13 10.1155/2015/521957 26583116
    [Google Scholar]
  130. Zhong Y.B. Kang Z.P. Wang M.X. Long J. Wang H.Y. Huang J.Q. Wei S.Y. Zhou W. Zhao H.M. Liu D.Y. Curcumin ameliorated dextran sulfate sodium-induced colitis via regulating the homeostasis of DCs and Treg and improving the composition of the gut microbiota. J. Funct. Foods 2021 86 104716 10.1016/j.jff.2021.104716
    [Google Scholar]
  131. Lv L. Chen Z. Bai W. Hao J. Heng Z. Meng C. Wang L. Luo X. Wang X. Cao Y. He J. Taurohyodeoxycholic acid alleviates trinitrobenzene sulfonic acid induced ulcerative colitis via regulating Th1/Th2 and Th17/Treg cells balance. Life Sci. 2023 318 121501 10.1016/j.lfs.2023.121501 36801213
    [Google Scholar]
  132. Yu F.Y. Huang S-G. Zhang H-Y. Ye H. Chi H-G. Zou Y. Lv R-X. Zheng X-B. Effects of baicalin in CD4 + CD29 + T cell subsets of ulcerative colitis patients. World J. Gastroenterol. 2014 20 41 15299 15309 10.3748/wjg.v20.i41.15299 25386078
    [Google Scholar]
  133. Chen X. Zhang M. Zhou F. Gu Z. Li Y. Yu T. Peng C. Zhou L. Li X. Zhu D. Zhang X. Yu C. SIRT3 activator honokiol inhibits Th17 cell differentiation and alleviates colitis. Inflamm. Bowel Dis. 2023 29 12 1929 1940 10.1093/ibd/izad099 37335900
    [Google Scholar]
  134. Zagórska A. Través P.G. Lew E.D. Dransfield I. Lemke G. Diversification of TAM receptor tyrosine kinase function. Nat. Immunol. 2014 15 10 920 928 10.1038/ni.2986 25194421
    [Google Scholar]
  135. Orecchioni M. Ghosheh Y. Pramod A.B. Ley K. Macrophage polarization: Different gene signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. Alternatively activated macrophages. Front. Immunol. 2019 10 1084 10.3389/fimmu.2019.01084 31178859
    [Google Scholar]
  136. Seyedizade S.S. Afshari K. Bayat S. Rahmani F. Momtaz S. Rezaei N. Abdolghaffari A.H. Current status of M1 and M2 macrophages pathway as drug targets for inflammatory bowel disease. Arch. Immunol. Ther. Exp. (Warsz.) 2020 68 2 10 10.1007/s00005‑020‑00576‑4 32239308
    [Google Scholar]
  137. Yang Z. Lin S. Feng W. Liu Y. Song Z. Pan G. Zhang Y. Dai X. Ding X. Chen L. Wang Y. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front. Pharmacol. 2022 13 999179 10.3389/fphar.2022.999179 36147340
    [Google Scholar]
  138. Na Y.R. Stakenborg M. Seok S.H. Matteoli G. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD. Nat. Rev. Gastroenterol. Hepatol. 2019 16 9 531 543 10.1038/s41575‑019‑0172‑4 31312042
    [Google Scholar]
  139. Han X. Ding S. Jiang H. Liu G. Roles of macrophages in the development and treatment of gut inflammation. Front. Cell Dev. Biol. 2021 9 625423 10.3389/fcell.2021.625423 33738283
    [Google Scholar]
  140. Lissner D. Schumann M. Batra A. Kredel L.I. Kühl A.A. Erben U. May C. Schulzke J.D. Siegmund B. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm. Bowel Dis. 2015 21 6 1 10.1097/MIB.0000000000000384 25901973
    [Google Scholar]
  141. Wang K. Mao T. Lu X. Wang M. Yun Y. Jia Z. Shi L. Jiang H. Li J. Shi R. A potential therapeutic approach for ulcerative colitis: Targeted regulation of macrophage polarization through phytochemicals. Front. Immunol. 2023 14 1155077 10.3389/fimmu.2023.1155077 37197668
    [Google Scholar]
  142. Shapouri-Moghaddam A. Mohammadian S. Vazini H. Taghadosi M. Esmaeili S.A. Mardani F. Seifi B. Mohammadi A. Afshari J.T. Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018 233 9 6425 6440 10.1002/jcp.26429 29319160
    [Google Scholar]
  143. Wu M.M. Wang Q.M. Huang B.Y. Mai C.T. Wang C.L. Wang T.T. Zhang X.J. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharmacol. Res. 2021 172 105796 10.1016/j.phrs.2021.105796 34343656
    [Google Scholar]
  144. Long J. Liu X.K. Kang Z.P. Wang M.X. Zhao H.M. Huang J.Q. Xiao Q.P. Liu D.Y. Zhong Y.B. Ginsenoside Rg1 ameliorated experimental colitis by regulating the balance of M1/M2 macrophage polarization and the homeostasis of intestinal flora. Eur. J. Pharmacol. 2022 917 174742 10.1016/j.ejphar.2022.174742 34999087
    [Google Scholar]
  145. Guo R. Meng Q. Wang B. Li F. Anti-inflammatory effects of Platycodin D on dextran sulfate sodium (DSS) induced colitis and E. coli Lipopolysaccharide (LPS) induced inflammation. Int. Immunopharmacol. 2021 94 107474 10.1016/j.intimp.2021.107474 33611056
    [Google Scholar]
  146. Xiong K. Deng J. Yue T. Hu W. Zeng X. Yang T. Xiao T. Berberine promotes M2 macrophage polarisation through the IL-4-STAT6 signalling pathway in ulcerative colitis treatment. Heliyon 2023 9 3 e14176 10.1016/j.heliyon.2023.e14176 36923882
    [Google Scholar]
  147. Duewell P. Kono H. Rayner K.J. Sirois C.M. Vladimer G. Bauernfeind F.G. Abela G.S. Franchi L. Nuñez G. Schnurr M. Espevik T. Lien E. Fitzgerald K.A. Rock K.L. Moore K.J. Wright S.D. Hornung V. Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010 464 7293 1357 1361 10.1038/nature08938 20428172
    [Google Scholar]
  148. Lissner D. Siegmund B. The multifaceted role of the inflammasome in inflammatory bowel diseases. Sci. World J. 2011 11 1536 1547 10.1100/tsw.2011.139 21805022
    [Google Scholar]
  149. Tan X. Wen Y. Han Z. Su X. Peng J. Chen F. Wang Y. Wang T. Wang C. Ma K. Cinnamaldehyde Ameliorates dextran sulfate sodium‐induced colitis in mice by modulating TLR4/NF‐κB signaling pathway and NLRP3 inflammasome activation. Chem. Biodivers. 2023 20 2 e202200089 10.1002/cbdv.202200089 36653304
    [Google Scholar]
  150. Li H. Yang D.H. Zhang Y. Zheng F. Gao F. Sun J. Shi G. Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury. Chin. Med. 2022 17 1 73 10.1186/s13020‑022‑00616‑5 35715805
    [Google Scholar]
  151. Song M. Chen Z. Qiu R. Zhi T. Xie W. Zhou Y. Luo N. Fuqian Chen Liu F. Shen C. Lin S. Zhang F. Gao Y. Liu C. Inhibition of NLRP3-mediated crosstalk between hepatocytes and liver macrophages by geniposidic acid alleviates cholestatic liver inflammatory injury. Redox Biol. 2022 55 102404 10.1016/j.redox.2022.102404 35868156
    [Google Scholar]
  152. Pu Z. Liu Y. Li C. Xu M. Xie H. Zhao J. Using network pharmacology for systematic understanding of geniposide in ameliorating inflammatory responses in colitis through suppression of NLRP3 inflammasome in macrophage by AMPK/Sirt1 dependent signaling. Am. J. Chin. Med. 2020 48 7 1693 1713 10.1142/S0192415X20500846 33202149
    [Google Scholar]
  153. Fangxiao M. Yifan K. Jihong Z. Yan S. Yingchao L. Effect of Tripterygium wilfordii Polycoride on the NOXs-ROS-NLRP3 Inflammasome signaling pathway in mice with Ulcerative Colitis. Evid. Based Complement. Alternat. Med. 2019 2019 1 7 10.1155/2019/9306283 31531121
    [Google Scholar]
  154. Belkaid Y. Harrison O.J. Homeostatic immunity and the microbiota. Immunity 2017 46 4 562 576 10.1016/j.immuni.2017.04.008 28423337
    [Google Scholar]
  155. Vinolo M.A.R. Rodrigues H.G. Nachbar R.T. Curi R. Regulation of inflammation by short chain fatty acids. Nutrients 2011 3 10 858 876 10.3390/nu3100858 22254083
    [Google Scholar]
  156. Zhou Z. Yu S. Cui L. Shao K. Pang H. Wang Z. He N. Li S. Isomaltulose alleviates acute colitis via modulating gut microbiota and the Treg/Th17 balance in mice. Food Funct. 2022 13 16 8572 8584 10.1039/D2FO01157C 35894244
    [Google Scholar]
  157. Sun Z. Li J. Dai Y. Wang W. Shi R. Wang Z. Ding P. Lu Q. Jiang H. Pei W. Zhao X. Guo Y. Liu J. Tan X. Mao T. Indigo naturalis alleviates dextran sulfate sodium-induced colitis in rats via altering gut microbiota. Front. Microbiol. 2020 11 731 10.3389/fmicb.2020.00731 32425906
    [Google Scholar]
  158. Li Z. Song Y. Xu W. Chen J. Zhou R. Yang M. Zhu G. Luo X. Ai Z. Liu Y. Su D. Pulsatilla chinensis saponins improve SCFAs regulating GPR43-NLRP3 signaling pathway in the treatment of ulcerative colitis. J. Ethnopharmacol. 2023 308 116215 10.1016/j.jep.2023.116215 36806339
    [Google Scholar]
  159. Shao S. Wang D. Zheng W. Li X. Zhang H. Zhao D. Wang M. A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors. Int. Immunopharmacol. 2019 71 411 422 10.1016/j.intimp.2019.02.038 31059977
    [Google Scholar]
  160. Kaser A. Adolph T.E. Blumberg R.S. The unfolded protein response and gastrointestinal disease. Semin. Immunopathol. 2013 35 3 307 319 10.1007/s00281‑013‑0377‑5 23588234
    [Google Scholar]
  161. Mayer L. Shlien R. Evidence for function of Ia molecules on gut epithelial cells in man. J. Exp. Med. 1987 166 5 1471 1483 10.1084/jem.166.5.1471 2960770
    [Google Scholar]
  162. Dubuquoy L. Jansson E.Å. Deeb S. Rakotobe S. Karoui M. Colombel J.F. Auwerx J. Pettersson S. Desreumaux P. Impaired expression of peroxisome proliferator-activated receptor γ in ulcerative colitis. Gastroenterology 2003 124 5 1265 1276 10.1016/S0016‑5085(03)00271‑3 12730867
    [Google Scholar]
  163. Ran B. Guo C.E. Zhang Y. Han C. Cao T. Huang H. Geng Z. Li W. Preventive effect of Chinese dwarf cherry [ Cerasus humilis (Bge.) Sok.] fermentation juice on dextran sulfate sodium-induced ulcerative colitis rats through the regulation of IgA and the intestinal immune barrier. Food Funct. 2022 13 10 5766 5781 10.1039/D1FO04218A 35536119
    [Google Scholar]
  164. Danese S. Sans M. de la Motte C. Graziani C. West G. Phillips M.H. Pola R. Rutella S. Willis J. Gasbarrini A. Fiocchi C. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology 2006 130 7 2060 2073 10.1053/j.gastro.2006.03.054 16762629
    [Google Scholar]
  165. Mateescu R.B. Bastian A.E. Nichita L. Marinescu M. Rouhani F. Voiosu A.M. Benguş A. Tudoraşcu D.R. Popp C.G. Vascular endothelial growth factor - key mediator of angiogenesis and promising therapeutical target in ulcerative colitis. Rom. J. Morphol. Embryol. 2017 58 4 1339 1345 29556626
    [Google Scholar]
  166. Li D. Feng Y. Tian M. Ji J. Hu X. Chen F. Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation. Microbiome 2021 9 1 83 10.1186/s40168‑021‑01028‑7 33820558
    [Google Scholar]
  167. Zhou X. Lu Q. Kang X. Tian G. Ming D. Yang J. Protective role of a new polysaccharide extracted from Lonicera japonica Thunb in mice with ulcerative colitis induced by dextran sulphate sodium. BioMed Res. Int. 2021 2021 1 9 10.1155/2021/8878633 33490281
    [Google Scholar]
  168. Kim D.S. Kim S.H. Kee J.Y. Han Y.H. Park J. Mun J.G. Joo M.J. Jeon Y.D. Kim S.J. Park S.H. Park S.J. Um J.Y. Hong S.H. Eclipta prostrata improves DSS-induced colitis through regulation of inflammatory response in intestinal epithelial cells. Am. J. Chin. Med. 2017 45 5 1047 1060 10.1142/S0192415X17500562 28659027
    [Google Scholar]
  169. Yang Y. Vong C.T. Zeng S. Gao C. Chen Z. Fu C. Wang S. Zou L. Wang A. Wang Y. Tracking evidences of Coptis chinensis for the treatment of inflammatory bowel disease from pharmacological, pharmacokinetic to clinical studies. J. Ethnopharmacol. 2021 268 113573 10.1016/j.jep.2020.113573 33181286
    [Google Scholar]
  170. Weber L. Kuck K. Jürgenliemk G. Heilmann J. Lipowicz B. Vissiennon C. Anti-inflammatory and barrier-stabilising effects of Myrrh, coffee charcoal and chamomile flower extract in a co-culture cell model of the intestinal mucosa. Biomolecules 2020 10 7 1033 10.3390/biom10071033 32664498
    [Google Scholar]
  171. Garg S. K. Ahuja V. Sankar M. J. Kumar A. Moss A. C. Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev 2014 10 CD008424
    [Google Scholar]
  172. Davila M. M. Papada E. The role of plant-derived natural products in the management of inflammatory bowel disease-what is the clinical evidence so far? Life 2023 13 8 1703
    [Google Scholar]
  173. Triantafyllidi A. Xanthos T. Papalois A. Triantafillidis J. K. Herbal and plant therapy in patients with inflammatory bowel disease. Ann Gastroenterol. 2015 28 210 220
    [Google Scholar]
  174. Salehi B. Mnayer D. Özçelik B. Altin G. Kasapoğlu K. N. Daskaya-Dikmen C. Sharifi-Rad M. Selamoglu Z. Acharya K. Sen S. Matthews K. R. Fokou P. V. T. Sharopov F. Setzer W. N. Martorell M. Sharifi-Rad J. Plants of the genus Lavandula: From farm to pharmacy. Nat. Prod. Commun 2018 13 10 10.1177/1934578X1801301037
    [Google Scholar]
  175. Tahir M.M. Rasul A. Riaz A. Batool R. Nageen B. Adnan M. Sarfraz I. Adnan M. Sadiqa A. Selamoglu Z. <i>Ficus benghalensis</i> : A plant with potential pharmacological properties f rom tradition to pharmacy. Trop. J. Pharm. Res. 2024 22 11 2407 2413 10.4314/tjpr.v22i11.22
    [Google Scholar]
  176. Gogebakan A. Talas Z.S. Ozdemir I. Sahna E. Role of propolis on tyrosine hydroxylase activity and blood pressure in nitric oxide synthase-inhibited hypertensive rats. Clin. Exp. Hypertens. 2012 34 6 424 428 10.3109/10641963.2012.665542 22471835
    [Google Scholar]
  177. Selamoglu S.R. Anti-inflammatory influences of royal jelly and melittin and their effectiveness on wound healing. Cent. Asian J. Med. Pharm. Sci 2023 3 2 38 47 10.22034/CAJMPSI.2023.02.02
    [Google Scholar]
  178. Erdemli M.E. Ekhteiari Salmas R. Durdagi S. Akgul H. Demirkol M. Aksungur Z. Selamoglu Z. Biochemical changes induced by grape seed extract and low level laser therapy administration during intraoral wound healing in rat liver: An experimental and in silico study. J. Biomol. Struct. Dyn. 2018 36 4 993 1008 10.1080/07391102.2017.1305297 28279122
    [Google Scholar]
/content/journals/npj/10.2174/0122103155348415241119073736
Loading
/content/journals/npj/10.2174/0122103155348415241119073736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test