Skip to content
2000
image of Medicinal Benefits of Frankincense: Future Approach to Effective Drug Design

Abstract

Frankincense is obtained from the tree, which belongs to the Bowellia family. Frankincense is found in China, India, Middle-East Asia, the Arabian Peninsula, and different parts of Africa. Incisions are given on the tree trunk to obtain the gum, which hardens to form frankincense. It has been used as a traditional medicine to treat diarrhea, infection, tuberculosis, asthma, arthritis, cancer, wounds, gingivitis, psoriasis, and other inflammatory conditions. Frankincense gum is used for its aromatic properties and fragrance. Frankincense contains essential oils, gum resins, alcohol, and water-soluble resins. The chemical compounds present in the natural product and their yield depend on various factors such as geographical location, the surface area of the wood, climatic conditions in which it is grown, the age of the tree, and the methods of collection. Among the active compounds, unique pentacyclic triterpene acids such as boswellic acid (BA) are present. The phytochemicals include β-boswellic acid, acetyl-β-boswellic acid (ABA), 11-keto-β-boswellic acid (KBA), and 3-acetyl-11-keto-β-boswellic acid (AKBA) form the major components. BA possesses anti-inflammatory action due to its control of cytokine production. The active compounds in frankincense act on 5-lipooxygenase and cyclooxygenase, thereby producing an anti-inflammatory effect. We discuss the role of frankincense on the integumentary, nervous, cardiovascular, respiratory, digestive, endocrine, musculoskeletal, and immune systems with special emphasis on the molecular basis of action and signaling pathways. Recent approaches in therapeutics by designing new nanoformulations of frankincense may be beneficial for better drug delivery to the desired site, help in controlled release, increase solubility and bioavailability, and reduce toxicity.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155347241241217042413
2025-01-21
2025-06-26
Loading full text...

Full text loading...

References

  1. Efferth T. Oesch F. Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. Semin Cancer Biol 2022 80 39 57 10.1016/j.semcancer.2020.01. 32027979
    [Google Scholar]
  2. Hamidpour R. Hamidpour S. Hamidpour M. Shahlari M. Frankincense ( rǔ xiāng; boswellia species): From the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. J. Tradit. Complement. Med. 2013 3 4 221 226 10.4103/2225‑4110.119723 24716181
    [Google Scholar]
  3. Hussain H. Rashan L. Hassan U. Abbas M. Hakkim F.L. Green I.R. Frankincense diterpenes as a bio-source for drug discovery. Expert Opin. Drug Discov. 2022 17 5 513 529 10.1080/17460441.2022.2044782 35243948
    [Google Scholar]
  4. Van Wyk B.E. A review of commercially important African medicinal plants. J. Ethnopharmacol. 2015 176 118 134 10.1016/j.jep.2015.10.031 26498493
    [Google Scholar]
  5. Ernst E. Frankincense: Systematic review. BMJ 2008 337 dec17 2 a2813 10.1136/bmj.a2813 19091760
    [Google Scholar]
  6. Al-Yasiry A.R.M. Kiczorowska B. Frankincense – therapeutic properties. Postepy Hig. Med. Dosw. 2016 70 380 391 10.5604/17322693.1200553 27117114
    [Google Scholar]
  7. Thulin M. 2020
  8. Csuk R. Al-Harrasi A. Editorial for the special issue on frankincense. Phytochemistry 2020 173 112299 10.1016/j.phytochem.2020.112299 32113066
    [Google Scholar]
  9. Siddiqui M.Z. Boswellia serrata, a potential antiinflammatory agent: An overview. Indian J. Pharm. Sci. 2011 73 3 255 261 10.4103/0250‑474X.93507 22457547
    [Google Scholar]
  10. Cunningham A.B. DeCarlo A. Boswellia species in international trade: Identification, supply chains, & practical management considerations. Fore. Poli. Econ. 2022 163 103207 10.1016/j.forpol.2024.103207
    [Google Scholar]
  11. DeCarlo A. Ali S. Ceroni M. Ecological and economic sustainability of non-timber forest products in post-conflict recovery: a case study of the frankincense (boswellia spp.) resin harvesting in somaliland (Somalia). Sustainability 2020 12 9 3578 10.3390/su12093578
    [Google Scholar]
  12. Lvončík S. Vahalík P. Bongers F. Peijnenburg J. Hušková K. van Rensburg J.J. Hamdiah S. Maděra P. Development of a population of Boswellia elongata Balf. F. in Homhil nature sanctuary, Socotra island (Yemen). Rend. Lincei Sci. Fis. Nat. 2020 31 3 747 759 10.1007/s12210‑020‑00936‑4
    [Google Scholar]
  13. WFO. Boswellia Roxb. 2024 Available from: http://www.worldfloraonline.org/taxon/wfo-4000005070
  14. Almeida-da-Silva C.L.C. Sivakumar N. Asadi H. Chang-Chien A. Qoronfleh M.W. Ojcius D.M. Essa M.M. Effects of frankincense compounds on infection, inflammation, and oral health. Molecules 2022 27 13 4174 10.3390/molecules27134174 35807419
    [Google Scholar]
  15. Birhan M. Kebede F. Mekonnen L. Myrrh, frankincense, and grape supply chain practices and challenges. Supply Chain Research 2023 1 1 114 10.59429/scr.v1i1.114
    [Google Scholar]
  16. Xiao W. Lei F. Hengqiang Z. Xiaojing L. Natural Product Extraction: Principles and Applications. Rostagno M.A. Prado J.M. The Royal Society of Chemistry 2013 314 362 10.1039/9781849737579‑00314
    [Google Scholar]
  17. Howes F.N. Vegetable Gums and Resins. Waltham, MA The Chronica Botanica Company 1949
    [Google Scholar]
  18. Anderson D.M.W. Cree G.M. Marshall J.J. Rahman S. Studies on uronic acid materials. Carbohydr. Res. 1965 1 4 320 323 10.1016/S0008‑6215(00)81763‑2
    [Google Scholar]
  19. Tucker A.O. Frankincense and myrrh. Econ. Bot. 1986 40 4 425 433 10.1007/BF02859654
    [Google Scholar]
  20. Başer K.H.C. Demirci B. Dekebo A. Dagne E. Essential oils of some Boswellia spp., Myrrh and Opopanax. Flavour Fragrance J. 2003 18 2 153 156 10.1002/ffj.1166
    [Google Scholar]
  21. Sasidharan S. Chen Y. Saravanan D. Sundram K.M. Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011 8 1 1 10 10.4314/ajtcam.v8i1.1 22238476
    [Google Scholar]
  22. Reverchon E. Senatore F. Isolation of rosemary oil: Comparison between hydrodistillation and supercritical CO 2 extraction. Flavour Fragrance J. 1992 7 4 227 230 10.1002/ffj.2730070411
    [Google Scholar]
  23. Masango P. Cleaner production of essential oils by steam distillation. J. Clean. Prod. 2005 13 8 833 839 10.1016/j.jclepro.2004.02.039
    [Google Scholar]
  24. Chemat F. Vian M.A. Cravotto G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012 13 7 8615 8627 10.3390/ijms13078615 22942724
    [Google Scholar]
  25. Popova M. Bankova V. Contemporary methods for the extraction and isolation of natural products. BMC Chem. 2023 17 1 68 10.1186/s13065‑023‑00960‑z 37391736
    [Google Scholar]
  26. Carreira-Casais A. Carpena M. Pereira A.G. Chamorro F. Soria-Lopez A. Perez P.G. Otero P. Cao H. Xiao J. Simal-Gandara J. Prieto M.A. Critical variables influencing the ultrasound-assisted extraction of bioactive compounds: A review. Chem. Proc. 2021 5 50 10.3390/CSAC2021‑10562
    [Google Scholar]
  27. Chemat F. Rombaut N. Sicaire A.G. Meullemiestre A. Fabiano-Tixier A.S. Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017 34 540 560 10.1016/j.ultsonch.2016.06.035 27773280
    [Google Scholar]
  28. Ragab E.A. Abd El-Wahab M.F. Doghish A.S. Salama R.M. Eissa N. Darwish S.F. The journey of boswellic acids from synthesis to pharmacological activities. Naunyn Schmie. Arch. Pharmacol. 2023 397 3 1477 1504 10.1007/s00210‑023‑02725‑w 37740772
    [Google Scholar]
  29. Li X.J. Yang Y.J. Li Y.S. Zhang W.K. Tang H.B. α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J. Ethnopharmacol. 2016 179 22 26 10.1016/j.jep.2015.12.039 26721216
    [Google Scholar]
  30. Maramaldi G. Togni S. Di Pierro F. Biondi M. A cosmeceutical formulation based on boswellic acids for the treatment of erythematous eczema and psoriasis. Clin. Cosmet. Investig. Dermatol. 2014 7 321 327 10.2147/CCID.S69240 25419153
    [Google Scholar]
  31. Bieber T. Atopic dermatitis: An expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 2022 21 1 21 40 10.1038/s41573‑021‑00266‑6 34417579
    [Google Scholar]
  32. Tsai Y.C. Chang H.H. Chou S.C. Chu T.W. Hsu Y.J. Hsiao C.Y. Lo Y.H. Wu N.L. Chang D.C. Hung C.F. Evaluation of the anti-atopic dermatitis effects of α-boswellic acid on TNF-α/IFN-γ-stimulated HaCaT cells and DNCB-induced BALB/c mice. Int. J. Mol. Sci. 2022 23 17 9863 10.3390/ijms23179863 36077254
    [Google Scholar]
  33. Kotb E.A. El-Shiekh R.A. Abd-Elsalam W.H. El Sayed N.S.E.D. El Tanbouly N. El Senousy A.S. Protective potential of frankincense essential oil and its loaded solid lipid nanoparticles against UVB-induced photodamage in rats via MAPK and PI3K/AKT signaling pathways; A promising anti-aging therapy. PLoS One 2023 18 12 e0294067 10.1371/journal.pone.0294067 38127865
    [Google Scholar]
  34. Jenkins G. Molecular mechanisms of skin ageing. Mech. Ageing Dev. 2002 123 7 801 810 10.1016/S0047‑6374(01)00425‑0 11869737
    [Google Scholar]
  35. Togni S. Maramaldi G. Bonetta A. Giacomelli L. Di Pierro F. Clinical evaluation of safety and efficacy of Boswellia-based cream for prevention of adjuvant radiotherapy skin damage in mammary carcinoma: A randomized placebo controlled trial. Eur. Rev. Med. Pharmacol. Sci. 2015 19 8 1338 1344 10.2174/1875533XMTA5rMDYp5 25967706
    [Google Scholar]
  36. Han X. Rodriguez D. Parker T.L. Biological activities of frankincense essential oil in human dermal fibroblasts. Biochim. Open 2017 4 31 35 10.1016/j.biopen.2017.01.003 29450138
    [Google Scholar]
  37. Sadhasivam S. Palanivel S. Ghosh S. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections. Lett. Appl. Microbiol. 2016 63 6 495 501 10.1111/lam.12683 27730658
    [Google Scholar]
  38. Burlando B. Parodi A. Volante A. Bassi A.M. Comparison of the irritation potentials of Boswellia serrata gum resin and of acetyl-11-keto-β-boswellic acid by in vitro cytotoxicity tests on human skin-derived cell lines. Toxicol. Lett. 2008 177 2 144 149 10.1016/j.toxlet.2008.01.008 18304763
    [Google Scholar]
  39. Moazzam F. Hatamian-Zarmi A. Ebrahimi Hosseinzadeh B. Khodagholi F. Rooki M. Rashidi F. Preparation and characterization of brain-targeted polymeric nanocarriers (Frankincense-PMBN-lactoferrin) and in-vivo evaluation on an Alzheimer’s disease-like rat model induced by scopolamine. Brain Res. 2024 1822 148622 10.1016/j.brainres.2023.148622 37832760
    [Google Scholar]
  40. Gomaa A.A. Makboul R.M. Al-Mokhtar M.A. Nicola M.A. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Biomed. Pharmacother. 2019 109 281 292 10.1016/j.biopha.2018.10.056 30396086
    [Google Scholar]
  41. Koeberle A. Henkel A. Verhoff M. Tausch L. König S. Fischer D. Kather N. Seitz S. Paul M. Jauch J. Werz O. Triterpene acids from frankincense and semi-synthetic derivatives that inhibit 5-lipoxygenase and cathepsin G. Molecules 2018 23 2 506 10.3390/molecules23020506 29495286
    [Google Scholar]
  42. Gong Y. Jiang X. Yang S. Huang Y. Hong J. Ma Y. Fang X. Fang Y. Wu J. The biological activity of 3-o-acetyl-11-keto-β-boswellic acid in nervous system diseases. Neuromolecular Med. 2022 24 4 374 384 10.1007/s12017‑022‑08707‑0 35303275
    [Google Scholar]
  43. Marefati N. Beheshti F. Memarpour S. Bayat R. Naser Shafei M. Sadeghnia H.R. Ghazavi H. Hosseini M. The effects of acetyl-11-keto-β-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine 2020 131 155107 10.1016/j.cyto.2020.155107 32380425
    [Google Scholar]
  44. Shao A. Lin D. Wang L. Tu S. Lenahan C. Zhang J. Oxidative stress at the crossroads of aging, stroke and depression. Aging Dis. 2020 11 6 1537 1566 10.14336/AD.2020.0225 33269106
    [Google Scholar]
  45. Bathina S. Das U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015 6 6 1164 1178 10.5114/aoms.2015.56342 26788077
    [Google Scholar]
  46. Asadi E. Shahabi Kaseb M.R. Zeidabadi R. Hamedinia M.R. Effect of 4 weeks of frankincense consumption on explicit motor memory and serum BDNF in elderly men. Turk. J. Med. Sci. 2019 49 4 1033 1040 10.3906/sag‑1810‑204 31317694
    [Google Scholar]
  47. Stürner K.H. Stellmann J.P. Dörr J. Paul F. Friede T. Schammler S. Reinhardt S. Gellissen S. Weissflog G. Faizy T.D. Werz O. Fleischer S. Vaas L.A.I. Herrmann F. Pless O. Martin R. Heesen C. A standardised frankincense extract reduces disease activity in relapsing-remitting multiple sclerosis (the SABA phase IIa trial). J. Neurol. Neurosurg. Psychiatry 2018 89 4 330 338 10.1136/jnnp‑2017‑317101 29248894
    [Google Scholar]
  48. Kirste S. Treier M. Wehrle S.J. Becker G. Abdel-Tawab M. Gerbeth K. Hug M.J. Lubrich B. Grosu A.L. Momm F. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors. Cancer 2011 117 16 3788 3795 10.1002/cncr.25945 21287538
    [Google Scholar]
  49. Panahishokouh M. Noroozian M. Mohammadian F. Khanavi M. Mirimoghaddam M. Savar S.M. Nikoosokhan M. Honarmand H. Mohebbi N. Evaluation of the effectiveness of an herbal formulation of boswellia sacra flueck. in improving cognitive and behavioral symptoms in patients with cognitive impairment and alzheimer’s disease. J. Res. Pharm. Pract. 2022 11 3 91 98 10.4103/jrpp.jrpp_73_22 37304222
    [Google Scholar]
  50. Al-Harrasi A. Csuk R. Khan A. Hussain J. Distribution of the anti-inflammatory and anti-depressant compounds: Incensole and incensole acetate in genus Boswellia. Phytochemistry 2019 161 28 40 10.1016/j.phytochem.2019.01.007 30802641
    [Google Scholar]
  51. Siddiqui A. Shah Z. Jahan R.N. Othman I. Kumari Y. Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties. Biomed. Pharmacother. 2021 144 112250 10.1016/j.biopha.2021.112250 34607104
    [Google Scholar]
  52. Mohamed E.A. Ahmed H.I. Zaky H.S. Badr A.M. Boswellic acids ameliorate neurodegeneration induced by AlCl3: The implication of Wnt/β-catenin pathway. Environ. Sci. Pollut. Res. Int. 2022 29 50 76135 76143 10.1007/s11356‑022‑20611‑5 35668264
    [Google Scholar]
  53. Ghorat F. Sepidarkish M. Saadattalab F. Rezghi M. Shahrestani S. Gholamalizadeh M. Doaei S. The clinical efficacy of Olibanum gum chewing in patients with Mild‐to‐Moderate Alzheimer disease: A randomized parallel‐design controlled trial. Neuropsychopharmacol. Rep. 2024 44 1 109 114 10.1002/npr2.12398 38069542
    [Google Scholar]
  54. Kalinovskii A.P. Utkina L.L. Korolkova Y.V. Andreev Y.A. TRPV3 Ion channel: From gene to pharmacology. Int. J. Mol. Sci. 2023 24 10 8601 10.3390/ijms24108601 37239947
    [Google Scholar]
  55. Moussaieff A. Rimmerman N. Bregman T. Straiker A. Felder C.C. Shoham S. Kashman Y. Huang S.M. Lee H. Shohami E. Mackie K. Caterina M.J. Walker J.M. Fride E. Mechoulam R. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J. 2008 22 8 3024 3034 10.1096/fj.07‑101865 18492727
    [Google Scholar]
  56. Moussaieff A. Shein N.A. Tsenter J. Grigoriadis S. Simeonidou C. Alexandrovich A.G. Trembovler V. Ben-Neriah Y. Schmitz M.L. Fiebich B.L. Munoz E. Mechoulam R. Shohami E. Incensole acetate: A novel neuroprotective agent isolated from Boswellia carterii. J. Cereb. Blood Flow Metab. 2008 28 7 1341 1352 10.1038/jcbfm.2008.28 18414499
    [Google Scholar]
  57. Zaki A.A. Hashish N.E. Amer M.A. Lahloub M.F. Cardioprotective and antioxidant effects of oleogum resin “Olibanum” from Bos Boswellia carteri Birdw. (Bursearceae). Chin. J. Nat. Med. 2014 12 5 345 350 10.1016/S1875‑5364(14)60042‑X 24856757
    [Google Scholar]
  58. Roy N.K. Parama D. Banik K. Bordoloi D. Devi A.K. Thakur K.K. Padmavathi G. Shakibaei M. Fan L. Sethi G. Kunnumakkara A.B. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci. 2019 20 17 4101 10.3390/ijms20174101 31443458
    [Google Scholar]
  59. Kokkiripati P.K. Bhakshu L.M. Marri S. Padmasree K. Row A.T. Raghavendra A.S. Tetali S.D. Gum resin of Boswellia serrata inhibited human monocytic (THP-1) cell activation and platelet aggregation. J. Ethnopharmacol. 2011 137 1 893 901 10.1016/j.jep.2011.07.004 21771654
    [Google Scholar]
  60. Panda P. Verma H.K. Lakkakula S. Merchant N. Kadir F. Rahman S. Jeffree M.S. Lakkakula B.V.K.S. Rao P.V. Biomarkers of oxidative stress tethered to cardiovascular diseases. Oxid. Med. Cell. Longev. 2022 2022 1 15 10.1155/2022/9154295 35783193
    [Google Scholar]
  61. Uma Mahesh B. Shrivastava S. Kuncha M. Sahu B.D. Swamy C.V. Pragada R.R. Naidu V.G.M. Sistla R. Ethanolic extract of Boswellia ovalifoliolata bark and leaf attenuates doxorubicin-induced cardiotoxicity in mice. Environ. Toxicol. Pharmacol. 2013 36 3 840 849 10.1016/j.etap.2013.07.016 23981374
    [Google Scholar]
  62. Cuaz-Pérolin C. Billiet L. Baugé E. Copin C. Scott-Algara D. Genze F. Büchele B. Syrovets T. Simmet T. Rouis M. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice. Arterioscler. Thromb. Vasc. Biol. 2008 28 2 272 277 10.1161/ATVBAHA.107.155606 18032778
    [Google Scholar]
  63. Pamukcu B. Lip G.Y.H. Shantsila E. The nuclear factor – kappa B pathway in atherosclerosis: A potential therapeutic target for atherothrombotic vascular disease. Thromb. Res. 2011 128 2 117 123 10.1016/j.thromres.2011.03.025 21636112
    [Google Scholar]
  64. Pandey R.S. Singh B.K. Tripathi Y.B. Extract of gum resins of Boswellia serrata L. inhibits lipopolysaccharide induced nitric oxide production in rat macrophages along with hypolipidemic property. Indian J. Exp. Biol. 2005 43 6 509 516 15991575
    [Google Scholar]
  65. Ahangarpour A. Heidari H. Fatemeh R.A.A. Pakmehr M. Shahbazian H. Ahmadi I. Mombeini Z. Mehrangiz B.H. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type2 diabetic patients. J. Diabetes Metab. Disord. 2014 13 1 29 10.1186/2251‑6581‑13‑29 24495344
    [Google Scholar]
  66. D’Amico R. Fusco R. Cordaro M. Interdonato L. Crupi R. Gugliandolo E. Di Paola D. Peritore A.F. Siracusa R. Impellizzeri D. Cuzzocrea S. Di Paola R. Modulation of NRF-2 pathway contributes to the therapeutic effects of boswellia serrata gum resin extract in a model of experimental autoimmune myocarditis. Antioxidants 2022 11 11 2129 10.3390/antiox11112129 36358503
    [Google Scholar]
  67. Moris D. Spartalis M. Spartalis E. Karachaliou G.S. Karaolanis G.I. Tsourouflis G. Tsilimigras D.I. Tzatzaki E. Theocharis S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med. 2017 5 16 326 10.21037/atm.2017.06.27 28861423
    [Google Scholar]
  68. Mohammadi A. Arabshahi-Delouee S. Zinoviadou K. Galanakis C. Antioxidant properties of various solvent extracts of indian frankincense (Boswellia serrata) oleogum resin. Majallah-i Pizhuhishha-Yi Ulum va Sanayi-i Ghazayi-i Iran 2017 13 3 28 38 10.22067/ifstrj.v1396i3.61520
    [Google Scholar]
  69. Pawankar R. Canonica G.W. Holgate S.T. Lockey R.F. Allergic diseases and asthma. Curr. Opin. Allergy Clin. Immunol. 2012 12 1 39 41 10.1097/ACI.0b013e32834ec13b 22157151
    [Google Scholar]
  70. Xia Y. Kelton C.M.L. Xue L. Guo J.J. Bian B. Wigle P.R. Safety of long-acting beta agonists and inhaled corticosteroids in children and adolescents with asthma. Ther. Adv. Drug Saf. 2013 4 6 254 263 10.1177/2042098613504124 25114786
    [Google Scholar]
  71. Ferrara T. De Vincentiis G. Di Pierro F. Functional study on Boswellia phytosome as complementary intervention in asthmatic patients. Eur. Rev. Med. Pharmacol. Sci. 2015 19 19 3757 3762 26502867
    [Google Scholar]
  72. Chacko K.M. Bhat B. Khandal R.K. Sultana S. Kuruvilla B.T. Singh P. Aggarwal M.L. A-90 day gavage safety assessment of Boswellia serrata in rats. Toxicol. Int. 2012 19 3 273 278 10.4103/0971‑6580.103668 23293466
    [Google Scholar]
  73. Houssen M.E. Ragab A. Mesbah A. El-Samanoudy A.Z. Othman G. Moustafa A.F. Badria F.A. Natural anti-inflammatory products and leukotriene inhibitors as complementary therapy for bronchial asthma. Clin. Biochem. 2010 43 10-11 887 890 10.1016/j.clinbiochem.2010.04.061 20430018
    [Google Scholar]
  74. Wenzel S.E. The role of leukotrienes in asthma. Prostaglandins Leukot. Essent. Fatty Acids 2003 69 2-3 145 155 10.1016/S0952‑3278(03)00075‑9 12895597
    [Google Scholar]
  75. Alotaibi B. Negm W.A. Elekhnawy E. El-Masry T.A. Elseady W.S. Saleh A. Alotaibi K.N. El-Sherbeni S.A. Antibacterial, immunomodulatory, and lung protective effects of boswelliadalzielii oleoresin ethanol extract in pulmonary diseases: In vitro and in vivo studies. Antibiotics (Basel) 2021 10 12 1444 10.3390/antibiotics10121444 34943656
    [Google Scholar]
  76. Gomaa A.A. Mohamed H.S. Abd-ellatief R.B. Gomaa M.A. Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology 2021 29 4 1033 1048 10.1007/s10787‑021‑00841‑8 34224069
    [Google Scholar]
  77. American Thoracic Society. Idiopathic pulmonary fibrosis: Diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am. J. Respir. Crit. Care Med. 2000 161 2 646 664 10.1164/ajrccm.161.2.ats3‑00 10673212
    [Google Scholar]
  78. Piguet P.F. Ribaux C. Karpuz V. Grau G.E. Kapanci Y. Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis. Am. J. Pathol. 1993 143 3 651 655 8362967
    [Google Scholar]
  79. Ali E.N. Mansour S.Z. Boswellic acids extract attenuates pulmonary fibrosis induced by bleomycin and oxidative stress from gamma irradiation in rats. Chin Med. 2011 30 6 36 10.1186/1749‑8546‑6‑36 21961991
    [Google Scholar]
  80. Wang Y. Wang X. Tang T. Xie Y. Li J. Wang W. Li T. Liu D. Yang K. Shi Y. Sun J. Guo D. Zou J. Bai F. Sun Y. Zhang X. Wang C. Basis with RNA-Seq and WGCNA to explore the effect of Frankincense essential oil on dextran sodium sulfate-induced ulcerative colitis through MAPK/NF-κB signaling. Fitoterapia 2024 172 105744 10.1016/j.fitote.2023.105744 37952762
    [Google Scholar]
  81. Monir N. Saber M.M. Awad A.S. Elsherbiny M.E. Zaki H.F. Repression of inflammatory pathways with Boswellia for alleviation of liver injury after renal ischemia reperfusion. Life Sci. 2022 306 120799 10.1016/j.lfs.2022.120799 35863426
    [Google Scholar]
  82. Kachouei R.A. Doagoo A. Jalilzadeh M. Khatami S.H. Rajaei S. Jahan-Abad A.J. Salmani F. Pakrad R. Baram S.M. Nourbakhsh M. Abdollahifar M.A. Abbaszadeh H.A. Noori S. Rezaei M. Mahdavi M. Shahmohammadi M.R. Karima S. Acetyl-11-keto-beta-boswellic acid has therapeutic benefits for nafld rat models that were given a high fructose diet by ameliorating hepatic inflammation and lipid metabolism. Inflammation 2023 46 5 1966 1980 10.1007/s10753‑023‑01853‑y 37310644
    [Google Scholar]
  83. Catanzaro D. Rancan S. Orso G. Dall’Acqua S. Brun P. Giron M.C. Carrara M. Castagliuolo I. Ragazzi E. Caparrotta L. Montopoli M. Boswellia serrata preserves intestinal epithelial barrier from oxidative and inflammatory damage. PLoS One 2015 10 5 e0125375 10.1371/journal.pone.0125375 25955295
    [Google Scholar]
  84. Wang Y. Ren J. Wang A. Yang J. Ji T. Ma Q.G. Tian J. Su Y. Hepatoprotective prenylaromadendrane-type diterpenes from the gum resin of Boswellia carterii. J. Nat. Prod. 2013 76 11 2074 2079 10.1021/np400526b 24195447
    [Google Scholar]
  85. Madisch A. Miehlke S. Eichele O. Mrwa J. Bethke B. Kuhlisch E. Bästlein E. Wilhelms G. Morgner A. Wigginghaus B. Stolte M. Boswellia serrata extract for the treatment of collagenous colitis. A double-blind, randomized, placebo-controlled, multicenter trial. Int. J. Colorectal Dis. 2007 22 12 1445 1451 10.1007/s00384‑007‑0364‑1 17764013
    [Google Scholar]
  86. Kumar M. Singh G. Bhardwaj P. Dhatwalia S.K. Dhawan D.K. Understanding the role of 3-O-Acetyl-11-keto-β-boswellic acid in conditions of oxidative-stress mediated hepatic dysfunction during benzo(a)pyrene induced toxicity. Food Chem. Toxicol. 2017 109 Pt 2 871 878 10.1016/j.fct.2017.03.058 28363852
    [Google Scholar]
  87. Alharbi S.A. Asad M. Abdelsalam K.E.A. Ibrahim M.A. Chandy S. Beneficial effect of methanolic extract of frankincense (boswellia sacra) on testis mediated through suppression of oxidative stress and apoptosis. Molecules 2022 27 15 4699 10.3390/molecules27154699 35897864
    [Google Scholar]
  88. Ammon H.P.T. Boswellic extracts and 11-keto-ß-boswellic acids prevent type 1 and type 2 diabetes mellitus by suppressing the expression of proinflammatory cytokines. Phytomedicine 2019 63 153002 10.1016/j.phymed.2019.153002 31301539
    [Google Scholar]
  89. Shehata A.M. Quintanilla-Fend L. Bettio S. Singh C.B. Ammon H.P.T. Prevention of multiple low-dose streptozotocin (MLD-STZ) diabetes in mice by an extract from gum resin of Boswellia serrata (BE). Phytomedicine 2011 18 12 1037 1044 10.1016/j.phymed.2011.06.035 21831620
    [Google Scholar]
  90. Singh A. Arvinda S. Singh S. Suri J. Koul S. Mondhe D.M. Singh G. Vishwakarma R. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity. Toxicol. Appl. Pharmacol. 2017 318 8 15 10.1016/j.taap.2017.01.011 28122196
    [Google Scholar]
  91. Stancioiu F. Mihai D. Papadakis G. Tsatsakis A. Spandidos D. Badiu C. Treatment for benign thyroid nodules with a combination of natural extracts. Mol. Med. Rep. 2019 20 3 2332 2338 10.3892/mmr.2019.10453 31322200
    [Google Scholar]
  92. Ahmed M.A.E. Ahmed A.A.E. El Morsy E.M. Acetyl-11-keto-β-boswellic acid prevents testicular torsion/detorsion injury in rats by modulating 5-LOX/LTB4 and p38-MAPK/JNK/Bax/Caspase-3 pathways. Life Sci. 2020 260 118472 10.1016/j.lfs.2020.118472 32971106
    [Google Scholar]
  93. Chen Y.H. Chen W.C. Tsai K.S. Liu P.L. Tsai M.Y. Lin T.C. Yu S.C. Chen H.Y. Efficacy of frankincense and myrrha in treatment of acute interstitial cystitis/painful bladder syndrome. Chin. J. Integr. Med. 2020 26 7 519 526 10.1007/s11655‑020‑3216‑2 32279153
    [Google Scholar]
  94. Dozmorov M.G. Yang Q. Wu W. Wren J. Suhail M.M. Woolley C.L. Young D.G. Fung K.M. Lin H.K. Differential effects of selective frankincense (Ru Xiang) essential oil versus non-selective sandalwood (Tan Xiang) essential oil on cultured bladder cancer cells: A microarray and bioinformatics study. Chin. Med. 2014 9 1 18 10.1186/1749‑8546‑9‑18 25006348
    [Google Scholar]
  95. Suhail M.M. Wu W. Cao A. Mondalek F.G. Fung K.M. Shih P.T. Fang Y.T. Woolley C. Young G. Lin H.K. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement. Altern. Med. 2011 11 1 129 10.1186/1472‑6882‑11‑129 22171782
    [Google Scholar]
  96. Fatima M. Anjum I. Abdullah A. Abid S.Z. Malik M.N.H. Boswellic acids, pentacyclic triterpenes, attenuate oxidative stress, and bladder tissue damage in cyclophosphamide-induced cystitis. ACS Omega 2022 7 16 13697 13703 10.1021/acsomega.1c07292 35559194
    [Google Scholar]
  97. Karbalaiee M. Daneshpajooh A. Khanjani N. Sohbati S. Mehrabani M. Mehrbani M. Mehrabani M. Efficacy of frankincense‐based herbal product in urinary incontinence: A randomized, double‐blind, placebo‐ and active‐controlled clinical trial. Phytother. Res. 2023 37 5 1754 1770 10.1002/ptr.7691 36442480
    [Google Scholar]
  98. Liu M. Liu T. Shang P. Zhang Y. Liu L. Liu T. Sun S. Acetyl‐11‐keto‐β‐boswellic acid ameliorates renal interstitial fibrosis via Klotho/TGF‐β/Smad signalling pathway. J. Cell. Mol. Med. 2018 22 10 4997 5007 10.1111/jcmm.13766 30054990
    [Google Scholar]
  99. Al-Marhoon M.S. Al-Harrasi A. Siddiqui K. Ashique M. Ali H. Ali B.H. Effects of frankincense on experimentally induced renal stones in rats. BJUI Compass 2023 4 4 437 445 10.1002/bco2.227 37334022
    [Google Scholar]
  100. Mohsenzadeh A. Karimifar M. Soltani R. Hajhashemi V. Evaluation of the effectiveness of topical oily solution containing frankincense extract in the treatment of knee osteoarthritis: A randomized, double-blind, placebo-controlled clinical trial. BMC Res. Notes 2023 16 1 28 10.1186/s13104‑023‑06291‑5 36869332
    [Google Scholar]
  101. Blain E.J. Ali A.Y. Duance V.C. Boswellia frereana (frankincense) suppresses cytokine‐induced matrix metalloproteinase expression and production of pro‐inflammatory molecules in articular cartilage. Phytother. Res. 2010 24 6 905 912 10.1002/ptr.3055 19943332
    [Google Scholar]
  102. Sengupta K. Alluri K.V. Satish A.R. Mishra S. Golakoti T. Sarma K.V.S. Dey D. Raychaudhuri S.P. A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin®for treatment of osteoarthritis of the knee. Arthritis Res. Ther. 2008 10 4 R85 10.1186/ar2461 18667054
    [Google Scholar]
  103. Xiong L. Liu Y. Zhu F. Lin J. Wen D. Wang Z. Bai J. Ge G. Xu C. Gu Y. Xu Y. Zhou J. Geng D. Acetyl-11-keto-β-boswellic acid attenuates titanium particle-induced osteogenic inhibition via activation of the GSK-3β/β-catenin signaling pathway. Theranostics 2019 9 24 7140 7155 10.7150/thno.35988 31695758
    [Google Scholar]
  104. Al-Dhubiab B.E. Patel S.S. Morsy M.A. Duvva H. Nair A.B. Deb P.K. Shah J. The beneficial effect of boswellic acid on bone metabolism and possible mechanisms of action in experimental osteoporosis. Nutrients 2020 12 10 3186 10.3390/nu12103186 33081068
    [Google Scholar]
  105. Etzel R. Special extract of Boswellia serrata (H 15) in the treatment of rheumatoid arthritis. Phytomedicine 1996 3 1 91 94 10.1016/S0944‑7113(96)80019‑5 23194870
    [Google Scholar]
  106. Umar S. Umar K. Sarwar A.H.M.G. Khan A. Ahmad N. Ahmad S. Katiyar C.K. Husain S.A. Khan H.A. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine 2014 21 6 847 856 10.1016/j.phymed.2014.02.001 24667331
    [Google Scholar]
  107. Alluri V.K. Kundimi S. Sengupta K. Golakoti T. Kilari E.K. An anti‐inflammatory composition of boswellia serrata resin extracts alleviates pain and protects cartilage in monoiodoacetate‐induced osteoarthritis in rats. Evid. Based Complement. Alternat. Med. 2020 2020 1 7381625 10.1155/2020/7381625 32565872
    [Google Scholar]
  108. Sanchez C. Zappia J. Lambert C. Foguenne J. Dierckxsens Y. Dubuc J.E. Delcour J.P. Gothot A. Henrotin Y. Curcuma longa and boswellia serrata extracts modulate different and complementary pathways on human chondrocytes in vitro: deciphering of a transcriptomic study. Front. Pharmacol. 2022 13 931914 10.3389/fphar.2022.931914 36034822
    [Google Scholar]
  109. Alipanah H. Zareian P. Anti-cancer properties of the methanol extract of Boswellia serrata gum resin: Cell proliferation arrest and inhibition of angiogenesis and metastasis in BALB/c mice breast cancer model. Physiol. Pharmacol. 2018 22 3 183 194
    [Google Scholar]
  110. Siemoneit U. Koeberle A. Rossi A. Dehm F. Verhoff M. Reckel S. Maier T.J. Jauch J. Northoff H. Bernhard F. Doetsch V. Sautebin L. Werz O. Inhibition of microsomal prostaglandin E 2 synthase‐1 as a molecular basis for the anti‐inflammatory actions of boswellic acids from frankincense. Br. J. Pharmacol. 2011 162 1 147 162 10.1111/j.1476‑5381.2010.01020.x 20840544
    [Google Scholar]
  111. Trivedi V.L. Soni R. Dhyani P. Sati P. Tejada S. Sureda A. Setzer W.N. Faizal Abdull Razis A. Modu B. Butnariu M. Sharifi-Rad J. Anti-cancer properties of boswellic acids: Mechanism of action as anti-cancerous agent. Front. Pharmacol. 2023 14 1187181 10.3389/fphar.2023.1187181 37601048
    [Google Scholar]
  112. Xia L. Chen D. Han R. Fang Q. Waxman S. Jing Y. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol. Cancer Ther. 2005 4 3 381 388 10.1158/1535‑7163.MCT‑03‑0266 15767547
    [Google Scholar]
  113. Farahani M.K. Bitaraf F.S. Atashi A. Jabbarpour Z. Evaluation of anticancer effects of frankincense on breast cancer stem‐like cells. Cancer Rep. 2023 6 2 e1693 10.1002/cnr2.1693 36806721
    [Google Scholar]
  114. Zheng P. Huang Z. Tong D.C. Zhou Q. Tian S. Chen B.W. Ning D.M. Guo Y.M. Zhu W.H. Long Y. Xiao W. Deng Z. Lei Y.C. Tian X.F. Frankincense myrrh attenuates hepatocellular carcinoma by regulating tumor blood vessel development through multiple epidermal growth factor receptor-mediated signaling pathways. World J. Gastrointest. Oncol. 2022 14 2 450 477 10.4251/wjgo.v14.i2.450 35317323
    [Google Scholar]
  115. Aldahlawi A.M. Alzahrani A.T. Elshal M.F. Evaluation of immunomodulatory effects of Boswellia sacra essential oil on T-cells and dendritic cells. BMC Complement. Med. Ther. 2020 20 1 352 10.1186/s12906‑020‑03146‑5 33213426
    [Google Scholar]
  116. Zimmermann-Klemd A.M. Reinhardt J.K. Nilsu T. Morath A. Falanga C.M. Schamel W.W. Huber R. Hamburger M. Gründemann C. Boswellia carteri extract and 3-O-acetyl-alpha-boswellic acid suppress T cell function. Fitoterapia 2020 146 104694 10.1016/j.fitote.2020.104694 32712132
    [Google Scholar]
  117. Majeed M. Majeed S. Narayanan N.K. Nagabhushanam K. A pilot, randomized, double‐blind, placebo‐controlled trial to assess the safety and efficacy of a novel Boswellia serrata extract in the management of osteoarthritis of the knee. Phytother. Res. 2019 33 5 1457 1468 10.1002/ptr.6338 30838706
    [Google Scholar]
  118. Wang M.X. Zhao J.X. Meng Y.J. Di T. Xu X. Xie X.J. Lin Y. Zhang L. Wang N. Li P. Wang Y. Acetyl-11-keto-β-boswellic acid inhibits the secretion of cytokines by dendritic cells via the TLR7/8 pathway in an imiquimod-induced psoriasis mouse model and in vitro. Life Sci. 2018 207 90 104 10.1016/j.lfs.2018.05.044 29859222
    [Google Scholar]
  119. Alkanat H.Ö. Özdemir Ü. Kulaklı F. The effects of massage with frankincense and myrrh oil in chronic low back pain: A three-arm randomised controlled trial. Explore (NY) 2023 19 5 761 767 10.1016/j.explore.2023.04.004 37121835
    [Google Scholar]
  120. Valente I.V.B. Garcia D. Abbott A. Spruill L. Siegel J. Forcucci J. Hanna G. Mukherjee R. Hamann M. Hilliard E. Lockett M. Cole D.J. Klauber-DeMore N. The anti-proliferative effects of a frankincense extract in a window of opportunity phase ia clinical trial for patients with breast cancer. Breast Cancer Res. Treat. 2024 204 3 521 530 10.1007/s10549‑023‑07215‑4 38194131
    [Google Scholar]
  121. Khosravi Samani M. Mahmoodian H. Moghadamnia A. Poorsattar Bejeh Mir A. Chitsazan M. The effect of Frankincense in the treatment of moderate plaque-induced gingivitis: A double blinded randomized clinical trial. Daru 2011 19 4 288 294 10.1007/BF03367806 22615671
    [Google Scholar]
  122. Eshaghian R. Mazaheri M. Ghanadian M. Rouholamin S. Feizi A. Babaeian M. The effect of frankincense (Boswellia serrata, oleoresin) and ginger (Zingiber officinale, rhizoma) on heavy menstrual bleeding: A randomized, placebo-controlled, clinical trial. Complement. Ther. Med. 2019 42 42 47 10.1016/j.ctim.2018.09.022 30670277
    [Google Scholar]
  123. Hawkins J. Hires C. Keenan L. Dunne E. Aromatherapy blend of thyme, orange, clove bud, and frankincense boosts energy levels in post-COVID-19 female patients: A randomized, double-blinded, placebo controlled clinical trial. Complement. Ther. Med. 2022 67 102823 10.1016/j.ctim.2022.102823 35341944
    [Google Scholar]
  124. Gupta I. Parihar A. Malhotra P. Gupta S. Lüdtke R. Safayhi H. Ammon H.P.T. Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med. 2001 67 5 391 395 10.1055/s‑2001‑15802 11488449
    [Google Scholar]
  125. Hasson S.O. Jasim A.M. Salman S.A.K. Akrami S. Saki M. Hassan M.A. Evaluation of antibacterial and wound‐healing activities of alcoholic extract of Boswellia carterii, in vitro and in vivo study. J. Cosmet. Dermatol. 2022 21 11 6199 6208 10.1111/jocd.15206 35778893
    [Google Scholar]
  126. Lestari K. Babikian H. Babikyan Y. Megantara I. Kumar Jha R. Kusuma A.S.W. Prayudhi N M. Xaverius S F. Deactivation of avian infectious bronchitis virus H120 using natural oil blend on in vitro medium. Asian J. Polit. Sci. 2020 15 1 24 30 10.3923/ajpsaj.2021.24.30
    [Google Scholar]
  127. Goswami D. Mahapatra A.D. Banerjee S. Kar A. Ojha D. Mukherjee P.K. Chattopadhyay D. Boswellia serrata oleo-gum-resin and β-boswellic acid inhibits HSV-1 infection in vitro through modulation of NF-кB and p38 MAP kinase signaling. Phytomedicine 2018 51 94 103 10.1016/j.phymed.2018.10.016 30466633
    [Google Scholar]
  128. Ali W.J.A. Hashim H.R. Inhibit of the virus infections by using aromatic oils, Saccharomyces cerevisiae, Boswellia carterii and zinc. Syst. Rev. Pharm. 2020 11 561 569
    [Google Scholar]
  129. Azeemuddin M.M. Rao C.M. Rafiq M. Babu U.V. Rangesh P. Pharmacological investigation of ‘HIM-CHX’: A herbal combination in the experimental muscle wasting condition. Exp. Gerontol. 2019 125 110663 10.1016/j.exger.2019.110663 31319130
    [Google Scholar]
  130. Mumin F.I. Emikpe B.O. Odeniyi M.A. Evaluation of mucoadhesive property and the effect of Boswellia carteri gum on intranasal vaccination against small ruminant morbillivirus infection (PPR). J. Immunoassay Immunochem. 2020 41 3 311 321 10.1080/15321819.2020.1734935 32119592
    [Google Scholar]
  131. Ola O. Jarikre T.A. Adeniran G. Odeniyi M.I. Emikpe B. Evaluation of oral phytogenic microbeaded Newcastle Disease vaccine delivery in indigenous chicken. J. Immunoassay Immunochem. 2021 42 4 359 369 10.1080/15321819.2020.1868001 33560901
    [Google Scholar]
  132. Ilyas K. Singer L. Akhtar M. Bourauel C. Boccaccini A. Boswellia sacra extract-loaded mesoporous bioactive glass nanoparticles: Synthesis and biological effects. Pharmaceutics 2022 14 1 126 10.3390/pharmaceutics14010126 35057022
    [Google Scholar]
  133. Liu T. Bai M. Liu M. Li T. Liao Y. Zhao C. Yao M. Wang J. Wen A. Ding Y. Novel synergistic mechanism of 11-keto-β-boswellic acid and Z-Guggulsterone on ischemic stroke revealed by single-cell transcriptomics. Pharmacol. Res. 2023 193 106803 10.1016/j.phrs.2023.106803 37230158
    [Google Scholar]
  134. Lu Y. Luan H. Peng C. Ma J. Li Z. Hu Y. Song X. Application of network pharmacology and dock of molecules on the exploration of the mechanism of frankincense-myrrh for lumbar intervertebral disc degeneration: A review. Medicine 2024 103 29 e38953 10.1097/MD.0000000000038953 39029064
    [Google Scholar]
  135. Roy A. Menon T. Evaluation of bioactive compounds from Boswellia serrata against SARS-CoV-2. Vegetos 2022 35 2 404 414 10.1007/s42535‑021‑00318‑7 34803247
    [Google Scholar]
  136. Ullah N. Hasnain S.Z.U. Baloch R. Amin A. Nasibova A. Selakovic D. Rosic G.L. Islamov S. Naraliyeva N. Jaradat N. Mammadova A.O. Exploring essential oil-based bio-composites: Molecular docking and in vitro analysis for oral bacterial biofilm inhibition. Front Chem. 2024 12 1383620 10.3389/fchem.2024.1383620 39086984
    [Google Scholar]
/content/journals/npj/10.2174/0122103155347241241217042413
Loading
/content/journals/npj/10.2174/0122103155347241241217042413
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: natural product ; frankincense ; drug ; Complementary medicine ; drug delivery ; design
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test