Skip to content
2000
image of Recent Advances in the Microbial Oxidation and Ring Rearrangement of Terpenoidal Compounds by Aspergillus niger

Abstract

In this review, recent advances in the microbial oxidation and ring rearrangement of various terpenoidal compounds by are reviewed. Studies on hydroxylation, acid and keto formations, Baeyer-Villiger oxidation, and ring rearrangements are also explored. Moreover, various terpenoidal compound substrates and their metabolites used for fungal biotransformations are compiled. This review attempts to cover the latest developments in the scientific literature from 2018 to 2023.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155343772241210074327
2024-12-24
2025-07-11
Loading full text...

Full text loading...

References

  1. González-Hernández R.A. Valdez-Cruz N.A. Macías-Rubalcava M.L. Trujillo-Roldán M.A. Overview of fungal terpene synthases and their regulation. World J. Microbiol. Biotechnol. 2023 39 7 194 10.1007/s11274‑023‑03635‑y 37169980
    [Google Scholar]
  2. Topçu G. Erenler R. Çakmak O. Johansson C.B. Çelik C. Chai H.B. Pezzuto J.M. Diterpenes from the berries of Juniperus excelsa. Phytochemistry 1999 50 7 1195 1199 10.1016/S0031‑9422(98)00675‑X 10234860
    [Google Scholar]
  3. Erenler R. Sen O. Sahin Yaglioglu A. Demirtas I. Bioactivity-guided isolation of antiproliferative sesquiterpene lactones from Centaurea solstitialis L. ssp. solstitialis. Comb. Chem. High Throughput Screen. 2016 19 1 66 72 10.2174/1386207319666151203002117 26632440
    [Google Scholar]
  4. Haniffa H.M. Ranjith H. Dharmaratne W. Allelopathic activity of some Sri Lankan seaweed extracts and the isolation of a new brominated nonaromatic isolaurene sesquiterpene from red alga Laurencia heterooclada Harvey. Nat. Prod. Res. 2019 35 12 2020 2027 10.1080/14786419.2019.1655023 31429321
    [Google Scholar]
  5. Fu Z. Gong X. Hu Z. Zhao Y. Zhang H. Phenolic bisabolane sesquiterpene derivatives from an arctic marine-derived fungus Aspergillus sydowii MNP-2. Nat. Prod. J. 2024 14 7 e260124226350 10.2174/0122103155279752240104050411
    [Google Scholar]
  6. Masyita A. Mustika Sari R. Dwi Astuti A. Yasir B. Rahma Rumata N. Emran T.B. Nainu F. Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022 13 100217 10.1016/j.fochx.2022.100217 35498985
    [Google Scholar]
  7. Mohammad M.Y. Haniffa H.M. Choudhary M.I. Antibacterial activity of thymoquinone derivative. BMC Res. Notes 2023 16 1 260 10.1186/s13104‑023‑06523‑8 37798782
    [Google Scholar]
  8. Mohammad M.Y. Shakya A. Al-Bakain R. Haroon M.H. Choudhary M.I. New monoterpenoid by biotransformation of thymoquinone using Aspergillus niger. Bioorg. Chem. 2018 80 212 215 10.1016/j.bioorg.2018.06.019 29957489
    [Google Scholar]
  9. Al-Dulaimi Q. Mohammad M.Y. Al-Najdawi M. Al-Hiari Y.M. Haniffa H.M. Choudhary M.I. New bicyclic lactone by biotransformation of β-caryophyllene using Aspergillus niger. Lett. Org. Chem. 2022 19 12 1132 1135 10.2174/1570178619666220615094240
    [Google Scholar]
  10. Choudhary M.I. Mohammad M.Y. Musharraf S.G. Atta-ur-Rahman Epoxidation of ferutinin by different fungi and antibacterial activity of its metabolite. Jordan J. Pharm. Sci. 2013 6 1 23 29 10.12816/0000359
    [Google Scholar]
  11. Ademark P. Varga A. Medve J. Harjunpää V. Torbjörn Drakenberg Tjerneld F. Stålbrand H. Softwood hemicellulose-degrading enzymes from Aspergillus niger: Purification and properties of a β-mannanase. J. Biotechnol. 1998 63 3 199 210 10.1016/S0168‑1656(98)00086‑8 9803534
    [Google Scholar]
  12. Asakawa Y. Sekita M. Hashimoto T. Biotransformation of bicyclic sesqui- and diterpene 1,2-dials and their derivatives by the fungus, Aspergillus niger. Nat. Prod. Commun. 2018 13 8 1934578X1801300802 10.1177/1934578X1801300802
    [Google Scholar]
  13. Luo J. Mobley R. Woodfine S. Drijfhout F. Horrocks P. Ren X.D. Li W.W. Biotransformation of artemisinin to a novel derivative >via ring rearrangement by Aspergillus niger. Appl. Microbiol. Biotechnol. 2022 106 7 2433 2444 10.1007/s00253‑022‑11888‑0 35355096
    [Google Scholar]
  14. Huang M. Lu J.J. Huang M.Q. Bao J.L. Chen X.P. Wang Y.T. Terpenoids: natural products for cancer therapy. Expert Opin. Investig. Drugs 2012 21 12 1801 1818 10.1517/13543784.2012.727395 23092199
    [Google Scholar]
  15. Sahidin I. Sabandar C.W. Investigation of compounds and biological activity of selected indonesian marine sponges. Nat. Prod. J. 2019 9 1 10
    [Google Scholar]
  16. Jaeger R. Cuny E. Terpenoids with special pharmacological significance: A review. Nat. Prod. Commun. 2016 11 9 1934578X1601100946 10.1177/1934578X1601100946 30807045
    [Google Scholar]
  17. Mirzania F. Ghasemian Yadegari J. Salimikia I. Antileishmanial activity of natural diterpenoids: A comprehensive review. Curr. Org. Chem. 2023 27 9 772 781 10.2174/1385272827666230731112423
    [Google Scholar]
  18. Li Z-X. Huang D-Y. Li Y. Xian Y-Y. Zheng H. Tian Y-C. Tian Y. Zhang W-H. Lin L-G. Gan L-S. Terpenoid components from branches and leaves of Aglaia lawii and their biological properties. Nat. Prod. J. 2024 14 9 e060324227744 10.2174/0122103155287599240226061517
    [Google Scholar]
  19. Kurti L. Czako B. Strategic Applications of Named Reactions in Organic Synthesis. Burlington, San Diego, London Elsevier Academic Press 2005
    [Google Scholar]
  20. Al-Aboudi A. Yasin Mohammad M. Ghulam Musharraf S. Iqbal Choudhary M. Atta-ur-Rahman Microbial transformation of testosterone by Rhizopus stolonifer and Fusarium lini. Nat. Prod. Res. 2008 22 17 1498 1509 10.1080/14786410802234528 19023814
    [Google Scholar]
  21. Iqbal Choudhary M. Mohammad M.Y. Musharraf S.G. Onajobi I. Mohammad A. Anis I. Shah M.R. Atta-ur-Rahman Biotransformation of clerodane diterpenoids by Rhizopus stolonifer and antibacterial activity of resulting metabolites. Phytochemistry 2013 90 56 61 10.1016/j.phytochem.2013.02.007 23535269
    [Google Scholar]
  22. Pandey P. Singh S. Tewari N. Srinivas K.V.N.S. Shukla A. Gupta N. Vasudev P.G. Khan F. Pal A. Bhakuni R.S. Tandon S. Kumar J.K. Banerjee S. Hairy root mediated functional derivatization of artemisinin and their bioactivity analysis. J. Mol. Catal., B Enzym. 2015 113 95 103 10.1016/j.molcatb.2015.01.007
    [Google Scholar]
  23. Zhan Y. Liu H. Wu Y. Wei P. Chen Z. Williamson J.S. Biotransformation of artemisinin by Aspergillus niger. Appl. Microbiol. Biotechnol. 2015 99 8 3443 3446 10.1007/s00253‑015‑6464‑x 25712678
    [Google Scholar]
  24. Tu Y. Artemisinin—A gift from Traditional Chinese Medicine to the world (Nobel Lecture). Angew. Chem. Int. Ed. 2016 55 35 10210 10226 10.1002/anie.201601967 27488942
    [Google Scholar]
  25. Balikagala B. Fukuda N. Ikeda M. Katuro O.T. Tachibana S.I. Yamauchi M. Opio W. Emoto S. Anywar D.A. Kimura E. Palacpac N.M.Q. Odongo-Aginya E.I. Ogwang M. Horii T. Mita T. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 2021 385 13 1163 1171 10.1056/NEJMoa2101746 34551228
    [Google Scholar]
  26. Mohammad M.Y. Understanding biotransformation. Nova 2024 10.52305/XQCV8850
    [Google Scholar]
  27. Mohammad M.Y. Musharraf S.G. Al-Majid A.M. ur-Rahman A. Choudhary M.I. Biotransformation of mestanolone and 17-methyl-1-testosterone by Rhizopus stolonifer. Biocatal. Biotransform. 2013 31 4 153 159 10.3109/10242422.2013.801017
    [Google Scholar]
  28. Demirtas I. Erenler R. Elmastas M. Goktasoglu A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem. 2013 136 1 34 40 10.1016/j.foodchem.2012.07.086 23017389
    [Google Scholar]
  29. Al-Qaisi T. Al-Rawadeih S. Alsarayreh A. Qaisi Y.A. Al-limoun M. Alqaraleh M. Khleifat K. The effects of Anchusa azurea methanolic extract on burn wound healing: Histological, antioxidant, and anti-inflammatory evaluation. Burns 2024 50 7 1812 1822 10.1016/j.burns.2024.05.001 38760186
    [Google Scholar]
  30. Al-Khateeb E. Al-Ani H. Al-Kadi K. Al-Obaidi E.D. Shalan N. al-Rawi N.Y. Investigation of the alkaloids of two Ephedra spp.: Wildly grown in Iraq. Jordan J. Pharm. Sci. 2014 7 3 191 198 10.12816/0027042
    [Google Scholar]
/content/journals/npj/10.2174/0122103155343772241210074327
Loading
/content/journals/npj/10.2174/0122103155343772241210074327
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test