Skip to content
2000
image of Potential Plant-based Remedies for Gouty Arthritis: A Comprehensive Review on Counterweighing the Inflammatory Pathways

Abstract

The complex etiology of Gouty Arthritis (GA) makes it a multidimensional illness for which there are now no effective therapeutic therapies that can stop its development entirely. This review examines how effectively different plants and their constituents reduce blood uric acid levels and lessen the predisposition to gout. Research has looked at the possible roles of oxidative stress markers, inflammatory pathways, important transport and signaling proteins, and the health benefits of different plants and their components in the development of GA. Plant remedies have been used for a long time to treat human and animal ailments. Most people in developing countries use traditional plant-based medicine for basic care due to its affordability, availability, and cultural acceptability. This review aims to gather comprehensive information on plants and their compounds that exhibit anti-gout activities, focusing on and investigations. The scientific database was searched by using different keywords, and papers published between March 2008 and December 2023 were considered. The inclusion criteria were publications on inflammatory mediators, free radicals, oxidative stress, or proteins in gout etiology or evolution, along with plant-based remedies. Finally, 27 publications based on inclusion and exclusion criteria reported the active compounds and analyzed parameters and outcomes of research carried out with these medicinal plants. This paper extensively explores the potential mechanism of employing medicinal herbs for the management of gout. However, more investigation is needed to fully comprehend the role that various biomarkers play in the development of GA, as well as to investigate the possible functions of different plants and the substances found in them.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155341864250108062025
2025-01-24
2025-04-06
Loading full text...

Full text loading...

References

  1. Cabău G. Crișan T.O. Klück V. Popp R.A. Joosten L.A.B. Urate‐induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 2020 294 1 92 105 10.1111/imr.12833 31853991
    [Google Scholar]
  2. Zhao X. Chen L. Xin P. Zhao Z. Gong R. Zhai W. Research progress of heat-clearing and dampness-removing method to improve the inflammatory microenvironment of gout. MMR 2022 4 1 1 10.53388/MMR2022001
    [Google Scholar]
  3. Wu ZC Xue Q Zhao ZL Zhou PJ Zhou Q Zhang Z Suppressive effect of huzhentongfeng on experimental gouty arthritis: An in vivo and in vitro study. Evid. Based Complementary Altern. Med 2019 2019 2969364
    [Google Scholar]
  4. Ashiq K. Latif A. Ashiq S. Sundus A. A systematic review on the prevalence, pathophysiology, diagnosis, management and treatment of gout (2007-2018). GSC Biol. Pharm. Sci. 2018 5 1 050 055 10.30574/gscbps.2018.5.1.0077
    [Google Scholar]
  5. Liu N. Xu H. Sun Q. Yu X. Chen W. Wei H. Jiang J. Xu Y. Lu W. The role of oxidative stress in hyperuricemia and xanthine oxidoreductase (XOR) inhibitors. Oxid. Med. Cell. Longev. 2021 2021 1 1470380 10.1155/2021/1470380 33854690
    [Google Scholar]
  6. Furuhashi M. New insights into purine metabolism in metabolic diseases: Role of xanthine oxidoreductase activity. Am. J. Physiol. Endocrinol. Metab. 2020 319 5 E827 E834 10.1152/ajpendo.00378.2020 32893671
    [Google Scholar]
  7. So A.K. Martinon F. Inflammation in gout: mechanisms and therapeutic targets. Nat. Rev. Rheumatol. 2017 13 11 639 647 10.1038/nrrheum.2017.155 28959043
    [Google Scholar]
  8. Wu M. Tian Y. Wang Q. Guo C. Gout: A disease involved with complicated immunoinflammatory responses: A narrative review. Clin. Rheumatol. 2020 39 10 2849 2859 10.1007/s10067‑020‑05090‑8 32382830
    [Google Scholar]
  9. Wang B. Chen S. Qian H. Zheng Q. Chen R. Liu Y. Shi G. Role of T cells in the pathogenesis and treatment of gout. Int. Immunopharmacol. 2020 88 106877 10.1016/j.intimp.2020.106877 32805695
    [Google Scholar]
  10. Kim SK The mechanism of the NLRP3 inflammasome activation and pathogenic implication in the pathogenesis of gout. Int J Rheum Dis 2022 29 3 140 153
    [Google Scholar]
  11. Sethi S. Chakraborty T. Role of TLR- / NLR-signaling and the associated cytokines involved in recruitment of neutrophils in murine models of Staphylococcus aureus infection. Virulence 2011 2 4 316 328 10.4161/viru.2.4.16142 21758006
    [Google Scholar]
  12. Chen J. Wu M. Yang J. Wang J. Qiao Y. Li X. The immunological basis in the pathogenesis of gout. Iran. J. Immunol. 2017 14 2 90 98 28630380
    [Google Scholar]
  13. Ekpenyong C.E. Daniel N. Roles of diets and dietary factors in the pathogenesis, management and prevention of abnormal serum uric acid levels. PharmaNutrition 2015 3 2 29 45 10.1016/j.phanu.2014.12.001
    [Google Scholar]
  14. Nieradko-Iwanicka B. The role of alcohol consumption in pathogenesis of gout. Crit. Rev. Food Sci. Nutr. 2022 62 25 7129 7137 10.1080/10408398.2021.1911928 33866874
    [Google Scholar]
  15. Kumar N. Kaur K. Kaur N. Singh E. Bedi P.M.S. Pathology, target discovery, and the evolution of XO inhibitors from the first discovery to recent advances (2020–2023). Bioorg. Chem. 2024 143 107042 10.1016/j.bioorg.2023.107042 38118298
    [Google Scholar]
  16. Cicero A.F.G. Fogacci F. Kuwabara M. Borghi C. Therapeutic strategies for the treatment of chronic hyperuricemia: An evidence-based update. Medicina 2021 57 1 58 10.3390/medicina57010058 33435164
    [Google Scholar]
  17. Frampton J.E. Febuxostat: a review of its use in the treatment of hyperuricaemia in patients with gout. Drugs 2015 75 4 427 438 10.1007/s40265‑015‑0360‑7 25724536
    [Google Scholar]
  18. Strilchuk L. Fogacci F. Cicero A.F. Safety and tolerability of available urate-lowering drugs: A critical review. Expert Opin. Drug Saf. 2019 18 4 261 271 10.1080/14740338.2019.1594771 30915866
    [Google Scholar]
  19. Alghamdi A.A. Althumali J.S. Almalki M.M.M. Almasoudi A.S. Almuntashiri A.H. Almuntashiri A.H. Mohammed A.I. Alkinani A.A. Almahdawi M.S. Mahzari M.A.H. An overview on the role of xanthine oxidase inhibitors in gout management. Arch. Pharm. Pract. 2021 12 3 94 99 10.51847/RkCPaycprc
    [Google Scholar]
  20. Ponticelli C. Podestà M.A. Moroni G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int. 2020 98 5 1149 1159 10.1016/j.kint.2020.05.056 32650020
    [Google Scholar]
  21. Felser A. Lindinger P.W. Schnell D. Kratschmar D.V. Odermatt A. Mies S. Jenö P. Krähenbühl S. Hepatocellular toxicity of benzbromarone: Effects on mitochondrial function and structure. Toxicology 2014 324 136 146 10.1016/j.tox.2014.08.002 25108121
    [Google Scholar]
  22. Bardin T. Richette P. Impact of comorbidities on gout and hyperuricaemia: An update on prevalence and treatment options. BMC Med. 2017 15 1 123 10.1186/s12916‑017‑0890‑9 28669352
    [Google Scholar]
  23. Kapoor B. Kaur G. Gupta M. Gupta R. Indian medicinal plants useful in treatment of gout: A review for current status and future prospective. Asian J. Pharm. Clin. Res. 2017 10 11 407 416 10.22159/ajpcr.2017.v10i11.20170
    [Google Scholar]
  24. van Wyk A.S. Prinsloo G. Health, safety and quality concerns of plant-based traditional medicines and herbal remedies. S. Afr. J. Bot. 2020 133 54 62 10.1016/j.sajb.2020.06.031
    [Google Scholar]
  25. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014 4 177 10.3389/fphar.2013.00177 24454289
    [Google Scholar]
  26. Yao R. Geng Z. Mao X. Bao Y. Guo S. Bao L. Sun J. Gao Y. Xu Y. Guo B. Meng F. Cui X. Tu-Teng-Cao extract alleviates monosodium urate‐induced acute gouty arthritis in rats by inhibiting uric acid and inflammation. Evid. Based Complement. Alternat. Med. 2020 2020 1 3095624 10.1155/2020/3095624 32382282
    [Google Scholar]
  27. Han J. Xie Y. Sui F. Liu C. Du X. Liu C. Feng X. Jiang D. Zisheng Shenqi decoction ameliorates monosodium urate crystal-induced gouty arthritis in rats through anti-inflammatory and anti-oxidative effects. Mol. Med. Rep. 2016 14 3 2589 2597 10.3892/mmr.2016.5526 27432278
    [Google Scholar]
  28. Xu H.L. Li S.K. Xue X.A. Chen Z.Y. Hua Y.H. Minimally invasive embedding of saturated msu induces persistent gouty arthritis in modified rat model. BioMed Res. Int. 2021 2021 1 9 10.1155/2021/6641701 34212036
    [Google Scholar]
  29. Tseuguem P.P. Nguelefack T.B. Piégang B.N. Mbankou Ngassam S. Aqueous and methanol extracts of paullinia pinnata (sapindaceae) improve monosodium urate-induced gouty arthritis in rat: Analgesic, anti-inflammatory, and antioxidant effects. Evid. Based Complement. Alternat. Med. 2019 2019 1 12 10.1155/2019/5946291 31885654
    [Google Scholar]
  30. Ahmad N.S. Farman M. Najmi M.H. Mian K.B. Hasan A. Pharmacological basis for use of Pistacia integerrima leaves in hyperuricemia and gout. J. Ethnopharmacol. 2008 117 3 478 482 10.1016/j.jep.2008.02.031 18420362
    [Google Scholar]
  31. Nile S.H. Khobragade C.N. In vitro anti-inflammatory and xanthine oxidase inhibitory activity of Tephrosia purpurea shoot extract. Nat. Prod. Commun. 2011 6 10 1934578X1100601006 10.1177/1934578X1100601006 22164776
    [Google Scholar]
  32. de Souza M.R. de Paula C.A. Pereira de Resende M.L. Grabe-Guimarães A. de Souza Filho J.D. Saúde-Guimarães D.A. Pharmacological basis for use of Lychnophora trichocarpha in gouty arthritis: Anti-hyperuricemic and anti-inflammatory effects of its extract, fraction and constituents. J. Ethnopharmacol. 2012 142 3 845 850 10.1016/j.jep.2012.06.012 22732730
    [Google Scholar]
  33. Jiang Y. You X.Y. Fu K.L. Yin W.L. Effects of extract from mangifera indica leaf on monosodium urate crystal-induced gouty arthritis in rats. Evid. Based Complement. Alternat. Med. 2012 2012 1 6 10.1155/2012/967573 23304232
    [Google Scholar]
  34. Kuo C-Y. Kao E-S. Chan K-C. Lee H-J. Huang T-F. Wang C-J. Hibiscus sabdariffa L. extracts reduce serum uric acid levels in oxonate-induced rats. J. Funct. Foods 2012 4 1 375 381 10.1016/j.jff.2012.01.007
    [Google Scholar]
  35. Silva C.R. Fröhlich J.K. Oliveira S.M. Cabreira T.N. Rossato M.F. Trevisan G. Froeder A.L. Bochi G.V. Moresco R.N. Athayde M.L. Ferreira J. The antinociceptive and anti-inflammatory effects of the crude extract of Jatropha isabellei in a rat gout model. J. Ethnopharmacol. 2013 145 1 205 213 10.1016/j.jep.2012.10.054 23127654
    [Google Scholar]
  36. Lin W-qing Xie J-xiang Wu X-mu Yang L Wang H-dong Inhibition of xanthine oxidase activity by gnaphalium affine extract. Chin. Med. Sci. J. 2014 29 4 225 230 10.1016/S1001‑9294(14)60075‑4 25429747
    [Google Scholar]
  37. Ferrari F.C. Lemos Lima R.C. Schimith Ferraz Filha Z. Barros C.H. de Paula Michel Araújo M.C. Antunes Saúde-Guimarães D. Effects of Pimenta pseudocaryophyllus extracts on gout: Anti-inflammatory activity and anti-hyperuricemic effect through xantine oxidase and uricosuric action. J. Ethnopharmacol. 2016 180 37 42 10.1016/j.jep.2016.01.007 26778678
    [Google Scholar]
  38. Irondi E. Agboola S. Oboh G. Boligon A. Athayde M. Shode F. Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro. J. Intercult. Ethnopharmacol. 2016 5 2 122 130 10.5455/jice.20160321115402 27104032
    [Google Scholar]
  39. Jiang Y. Lin Y. Hu Y.J. Song X.J. Pan H.H. Zhang H.J. Caffeoylquinic acid derivatives rich extract from Gnaphalium pensylvanicum willd. Ameliorates hyperuricemia and acute gouty arthritis in animal model. BMC Complement. Altern. Med. 2017 17 1 320 10.1186/s12906‑017‑1834‑9 28623927
    [Google Scholar]
  40. Li L. Teng M. Liu Y. Qu Y. Zhang Y. Lin F. Wang D. Anti-gouty arthritis and antihyperuricemia effects of sunflower (helianthus annuus) head extract in gouty and hyperuricemia animal models. BioMed Res. Int. 2017 2017 1 9 10.1155/2017/5852076 28929115
    [Google Scholar]
  41. Abu-Gharbieh E. Shehab N.G. Almasri I.M. Bustanji Y. Antihyperuricemic and xanthine oxidase inhibitory activities of Tribulus arabicus and its isolated compound, ursolic acid: In vitro and in vivo investigation and docking simulations. PLoS One 2018 13 8 e0202572 10.1371/journal.pone.0202572 30114281
    [Google Scholar]
  42. Dolati K. Rakhshandeh H. Golestani M. Forouzanfar F. Sadeghnia R. Sadeghnia H.R. Inhibitory effects of apium graveolens on xanthine oxidase activity and serum Uric acid levels in hyperuricemic mice. Prev. Nutr. Food Sci. 2018 23 2 127 133 10.3746/pnf.2018.23.2.127 30018891
    [Google Scholar]
  43. Napagoda M. Gerstmeier J. Butschek H. Lorenz S. Kanatiwela D. Qader M. Nagahawatte A. De Soyza S. Wijayaratne G.B. Svatoš A. Jayasinghe L. Koeberle A. Werz O. Lipophilic extracts of Leucas zeylanica, a multi-purpose medicinal plant in the tropics, inhibit key enzymes involved in inflammation and gout. J. Ethnopharmacol. 2018 224 474 481 10.1016/j.jep.2018.04.042 29727733
    [Google Scholar]
  44. Liang G. Nie Y. Chang Y. Zeng S. Liang C. Zheng X. Xiao D. Zhan S. Zheng Q. Protective effects of Rhizoma smilacis glabrae extracts on potassium oxonate- and monosodium urate-induced hyperuricemia and gout in mice. Phytomedicine 2019 59 152772 10.1016/j.phymed.2018.11.032 31005813
    [Google Scholar]
  45. Zhang G. Chen S. Zhou W. Meng J. Deng K. Zhou H. Hu N. Suo Y. Anthocyanin composition of fruit extracts from Lycium ruthenicum and their protective effect for gouty arthritis. Ind. Crops Prod. 2019 129 414 423 10.1016/j.indcrop.2018.12.026
    [Google Scholar]
  46. Rahmi E.P. Kumolosasi E. Jalil J. Husain K. Buang F. Abd Razak A.F. Jamal J.A. Anti-hyperuricemic and anti-inflammatory effects of marantodes pumilum as potential treatment for gout. Front. Pharmacol. 2020 11 289 10.3389/fphar.2020.00289 32256360
    [Google Scholar]
  47. Abu Bakar F.I. Abu Bakar M.F. Abdullah N. Endrini S. Fatmawati S. Endrini S. Optimization of extraction conditions of phytochemical compounds and anti‐gout activity of euphorbia hirta L. (Ara Tanah) using response surface methodology and liquid chromatography‐mass spectrometry (LC‐MS) analysis. Evid. Based Complement. Alternat. Med. 2020 2020 1 4501261 10.1155/2020/4501261 32047524
    [Google Scholar]
  48. Yin C. Liu B. Wang P. Li X. Li Y. Zheng X. Tai Y. Wang C. Liu B. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br. J. Pharmacol. 2020 177 9 2042 2057 10.1111/bph.14967 31883118
    [Google Scholar]
  49. Nazeih A. Hamid A. Ibrahim F.W. Jufri N.F. Protective effects of Zingiber zerumbet rhizome extract on monosodium urate crystal-induced gout rat model. J. Appl. Pharm. Sci. 2020 10 4 69 74 10.7324/JAPS.2020.104011
    [Google Scholar]
  50. He M. Hu C. Chen M. Gao Q. Li L. Tian W. Effects of Gentiopicroside on activation of NLRP3 inflammasome in acute gouty arthritis mice induced by MSU. J. Nat. Med. 2022 76 1 178 187 10.1007/s11418‑021‑01571‑5 34586567
    [Google Scholar]
  51. Li H. Zhang X. Gu L. Li Q. Ju Y. Zhou X. Hu M. Li Q. Anti-gout effects of the medicinal fungus Phellinus igniarius in hyperuricaemia and acute gouty arthritis rat models. Front. Pharmacol. 2022 12 801910 10.3389/fphar.2021.801910 35087407
    [Google Scholar]
  52. Dadaya E. Koubala B. Ndjonka D. Zingué S. Laya A. Atsang G. Hydromethanolic root extract of gnidia kraussiana demonstrates anti-inflammatory effect through anti-oxidant activity enhancement in a rodent model of gout. Dose Response 2023 21 1 15593258221148015 10.1177/15593258221148015 36743195
    [Google Scholar]
  53. Ashour RMS El-Shiekh RA Sobeh M Abdelfattah MAO Abdel-Aziz MM Okba MM Eucalyptus torquata L. flowers: A comprehensive study reporting their metabolites profiling and anti-gouty arthritis potential. Scientific Reports 2023 13 1 18682 2023
    [Google Scholar]
  54. Endrini S. Abu Bakar F.I. Abu Bakar M.F. Abdullah N. Marsiati H. Phytochemical profiling, in vitro and in vivo xanthine oxidase inhibition and antihyperuricemic activity of Christia vespertilionis leaf. Biocatal. Agric. Biotechnol. 2023 48 102645 10.1016/j.bcab.2023.102645
    [Google Scholar]
  55. Dong L. Zhang S. Chen L. Lu J. Zhao F. Long T. Wen J. Huang J. Mao Y. Qi Z. Zhang J. Li L. Dong Y. In vivo anti-hyperuricemia and anti-gouty arthritis effects of the ethanol extract from Amomumvillosum Lour. Biomed. Pharmacother. 2023 161 114532 10.1016/j.biopha.2023.114532 37002568
    [Google Scholar]
  56. Luo Y. Qian X. Jiang Y. Jiang Y. The anti-hyperuricemia and anti-inflammatory effects of atractylodes macrocephala in hyperuricemia and gouty arthritis rat models. Comb. Chem. High Throughput Screen. 2023 26 5 950 964 10.2174/1386207325666220603101540 35658881
    [Google Scholar]
  57. Alberts BM Bruce C Basnayake K Ghezzi P Davies KA Mullen LM Secretion of IL-1β from monocytes in gout is redox independent. Front. Immunol. 2019 10 1 12
    [Google Scholar]
  58. Gherghina M.E. Peride I. Tiglis M. Neagu T.P. Niculae A. Checherita I.A. Uric acid and oxidative stress—relationship with cardiovascular, metabolic, and renal impairment. Int. J. Mol. Sci. 2022 23 6 3188 10.3390/ijms23063188 35328614
    [Google Scholar]
  59. Chaudhary P. Janmeda P. Docea A.O. Yeskaliyeva B. Abdull Razis A.F. Modu B. Calina D. Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023 11 1158198 10.3389/fchem.2023.1158198 37234200
    [Google Scholar]
  60. Contreras-Zentella M.L. Villalobos-García D. Hernández-Muñoz R. Ethanol metabolism in the liver, the induction of oxidant stress, and the antioxidant defense system. Antioxidants 2022 11 7 1258 10.3390/antiox11071258 35883749
    [Google Scholar]
  61. Syed A.A.S. Fahira A. Yang Q. Chen J. Li Z. Chen H. Shi Y. The relationship between alcohol consumption and gout: A mendelian randomization study. Genes 2022 13 4 557 10.3390/genes13040557 35456363
    [Google Scholar]
  62. Packer M. Uric acid is a biomarker of oxidative stress in the failing heart: Lessons learned from trials with allopurinol and SGLT2 inhibitors. J. Card. Fail. 2020 26 11 977 984 10.1016/j.cardfail.2020.08.015 32890737
    [Google Scholar]
  63. Poprac P. Jomova K. Simunkova M. Kollar V. Rhodes C.J. Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017 38 7 592 607 10.1016/j.tips.2017.04.005 28551354
    [Google Scholar]
  64. Zhang J. Wang X. Vikash V. Ye Q. Wu D. Liu Y. Dong W. ROS and ROS‐mediated cellular signaling. Oxid. Med. Cell. Longev. 2016 2016 1 4350965 10.1155/2016/4350965 26998193
    [Google Scholar]
  65. Elsayed Azab A. Adwas A Almokhtar Ibrahim Elsayed AS Adwas A Ibrahim Elsayed Ata Sedik Quwaydir FA Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng. 2019 6 1 43 47
    [Google Scholar]
  66. Pandey K.B. Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009 2 5 270 278 10.4161/oxim.2.5.9498 20716914
    [Google Scholar]
  67. Pérez-Torres Israel Castrejón-Téllez Vicente Soto María Elena Rubio-Ruiz María Esther Manzano-Pech Linaloe Guarner-Lans Verónica Oxidative stress, plant natural antioxidants, and obesity. Int. J. Mol. Sci. 1786 2021 22 1 26
    [Google Scholar]
  68. Li S. Tan H.Y. Wang N. Zhang Z.J. Lao L. Wong C.W. Feng Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci. 2015 16 11 26087 26124 10.3390/ijms161125942 26540040
    [Google Scholar]
  69. Alkadi H. A Review on Free Radicals and Antioxidants. Infect. Disord. Drug Targets 2020 20 1 16 26 10.2174/22123989OTEznMzIwTcVY 29952268
    [Google Scholar]
  70. Akbari B. Baghaei-Yazdi N. Bahmaie M. Mahdavi Abhari F. The role of plant‐derived natural antioxidants in reduction of oxidative stress. Biofactors 2022 48 3 611 633 10.1002/biof.1831 35229925
    [Google Scholar]
  71. Bala A. Chetia P. Dolai N. Khandelwal B. Haldar P.K. Cat’s whiskers flavonoid attenuated oxidative DNA damage and acute inflammation: its importance in lymphocytes of patients with rheumatoid arthritis. Inflammopharmacology 2014 22 1 55 61 10.1007/s10787‑013‑0193‑5 24127126
    [Google Scholar]
  72. Teimoori-Boghsani Y. Bagher Bagherieh-Najjar M. Mianabadi M. Investigation of phytochemical and antioxidant capacity of fennel (Foeniculum vulgare Mill.) against gout. J Med Plants By-products. 2018 1 59 65
    [Google Scholar]
  73. Sato V.H. Sungthong B. Rinthong P.O. Nuamnaichati N. Mangmool S. Chewchida S. Sato H. Pharmacological effects of Chatuphalatika in hyperuricemia of gout. Pharm. Biol. 2018 56 1 76 85 10.1080/13880209.2017.1421235 29298537
    [Google Scholar]
  74. Somchit M.N. Zerumbone isolated from Zingiber zerumbet inhibits inflammation and pain in rats. J. Med. Plants Res. 2012 6 2 177 180 10.5897/JMPR10.492
    [Google Scholar]
  75. Gunny A.A.N. Carmen T. Mat M.H.C. Nordin A.A. Nasir A.M. Antioxidant and xanthine oxidase inhibitory activity of euphorbia hirta leaves crude extract. Malays. J. Anal. Sci. 2020 24 4 503 510
    [Google Scholar]
  76. Kumer A Hashem AK Biswas K Aa SS Antithrombotic and anti-inflammatory activities of leaf methanolic extract of Euphorbia hirta Lin. Int. J. Complement. Altern. Med 2019 12 4 154 162
    [Google Scholar]
  77. Wang S. Liu W. Wei B. Wang A. Wang Y. Wang W. Gao J. Jin Y. Lu H. Ka Y. Yue Q. Traditional herbal medicine: Therapeutic potential in acute gouty arthritis. J. Ethnopharmacol. 2024 330 118182 10.1016/j.jep.2024.118182 38621464
    [Google Scholar]
  78. Joosten L.A.B. Netea M.G. Dinarello C.A. Interleukin-1β in innate inflammation, autophagy and immunity. Semin. Immunol. 2013 25 6 416 424 10.1016/j.smim.2013.10.018 24275601
    [Google Scholar]
  79. Liu J-peng Liu S-cheng Hu S-qi Lu J-feng Wu C-lei Hu D-xia ATP ion channel P2X purinergic receptors in inflammation response. Biomedicine & Pharmacotherapy 2023 158 114205
    [Google Scholar]
  80. Mansour A.A. Raucci F. Saviano A. Tull S. Maione F. Iqbal A.J. Galectin-9 regulates monosodium urate crystal-induced gouty inflammation through the modulation of treg/th17 ratio. Front. Immunol. 2021 12 762016 10.3389/fimmu.2021.762016 34777378
    [Google Scholar]
  81. Sadhu S. Khaitan B.K. Joshi B. Sengupta U. Nautiyal A.K. Mitra D.K. Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy. PLoS Negl. Trop. Dis. 2016 10 1 e0004338 10.1371/journal.pntd.0004338 26751584
    [Google Scholar]
  82. Grayson P.C. Schauer C. Herrmann M. Kaplan M.J. Review: Neutrophils as invigorated targets in rheumatic diseases. Arthritis Rheumatol. 2016 68 9 2071 2082 10.1002/art.39745 27159737
    [Google Scholar]
  83. Jiang L. Zhang L. Kang K. Fei D. Gong R. Cao Y. Pan S. Zhao M. Zhao M. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation. Biomed. Pharmacother. 2016 84 130 138 10.1016/j.biopha.2016.09.020 27643555
    [Google Scholar]
  84. Zhu L. Zhang H. Zhang X. Xia L. Zhang J. Research progress on antisepsis effect of apigenin and its mechanism of action. Heliyon 2023 9 11 e22290 10.1016/j.heliyon.2023.e22290 38045180
    [Google Scholar]
  85. Wang Y. Xu Y. Tan J. Ye J. Cui W. Hou J. Anti-inflammation is an important way that recipe treats acute gouty arthritis. Front. Pharmacol. 2023 14 1268641 10.3389/fphar.2023.1268641 37881185
    [Google Scholar]
  86. Raucci F. Iqbal A.J. Saviano A. Minosi P. Piccolo M. Irace C. Caso F. Scarpa R. Pieretti S. Mascolo N. Maione F. IL-17A neutralizing antibody regulates monosodium urate crystal-induced gouty inflammation. Pharmacol. Res. 2019 147 104351 10.1016/j.phrs.2019.104351 31315067
    [Google Scholar]
  87. Jati G.A.K. Assihhah N. Wati A.A. Salasia S.I.O. Immunosuppression by piperine as a regulator of the NLRP3 inflammasome through MAPK/NF-κB in monosodium urate-induced rat gouty arthritis. Vet. World 2022 15 2 288 298 10.14202/vetworld.2022.288‑298 35400961
    [Google Scholar]
  88. Li X. Zhang Y. Xia M. Gulbins E. Boini K.M. Li P.L. Activation of Nlrp3 inflammasomes enhances macrophage lipid-deposition and migration: Implication of a novel role of inflammasome in atherogenesis. PLoS One 2014 9 1 e87552 10.1371/journal.pone.0087552 24475307
    [Google Scholar]
  89. Agard N.J. Maltby D. Wells J.A. Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell. Proteomics 2010 9 5 880 893 10.1074/mcp.M900528‑MCP200 20173201
    [Google Scholar]
  90. Rathinam V.A.K. Fitzgerald K.A. Inflammasome complexes: Emerging mechanisms and effector functions. Cell 2016 165 4 792 800 10.1016/j.cell.2016.03.046 27153493
    [Google Scholar]
  91. Garcia-Martinez I. Shaker M.E. Mehal W.Z. Therapeutic opportunities in damage-associated molecular pattern-driven metabolic diseases. Antioxid. Redox Signal. 2015 23 17 1305 1315 10.1089/ars.2015.6383 26055926
    [Google Scholar]
  92. Hu X. li J. Fu M. Zhao X. Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021 6 1 402 10.1038/s41392‑021‑00791‑1 34824210
    [Google Scholar]
  93. Owen K.L. Brockwell N.K. Parker B.S. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression. Cancers 2019 11 12 2002 10.3390/cancers11122002 31842362
    [Google Scholar]
  94. Chen C. Yin Y. Shi G. Zhou Y. Shao S. Wei Y. Wu L. Zhang D. Sun L. Zhang T. A highly selective JAK3 inhibitor is developed for treating rheumatoid arthritis by suppressing γc cytokine–related JAK-STAT signal. Sci. Adv. 2022 8 33 eabo4363 10.1126/sciadv.abo4363 35984890
    [Google Scholar]
  95. Peng J. Gu Y. Liu J. Yi H. Ruan D. Huang H. Shu Y. Zong Z. Wu R. Li H. Identification of SOCS3 and PTGS2 as new biomarkers for the diagnosis of gout by cross-species comprehensive analysis. Heliyon 2024 10 9 e30020 10.1016/j.heliyon.2024.e30020 38707281
    [Google Scholar]
  96. Ye T. Tao W. Chen X. Jiang C. Di B. Xu L. Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors. Cytokine Growth Factor Rev. 2023 74 1 13 10.1016/j.cytogfr.2023.09.007 37821254
    [Google Scholar]
  97. Qin S. Hou D.X. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol. Nutr. Food Res. 2016 60 8 1731 1755 10.1002/mnfr.201501017 27523917
    [Google Scholar]
  98. Stefanson A. Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 2014 6 9 3777 3801 10.3390/nu6093777 25244368
    [Google Scholar]
  99. Jahan S. Kumar D. Chaturvedi S. Rashid M. Wahajuddin M. Khan Y.A. Goyal S.N. Patil C.R. Mohanraj R. Subramanya S. Ojha S. Therapeutic targeting of NLRP3 inflammasomes by natural products and pharmaceuticals: A novel mechanistic approach for inflammatory diseases. Curr. Med. Chem. 2017 24 16 1645 1670 28245768
    [Google Scholar]
  100. Wu J. Luo Y. Deng D. Su S. Li S. Xiang L. Hu Y. Wang P. Meng X. Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review. J. Cell. Mol. Med. 2019 23 12 7946 7960 10.1111/jcmm.14725 31622015
    [Google Scholar]
  101. Sun X. Yang L. Sun H. Sun Y. Wei S. Han Y. Wang W. Kong L. Wang X. TCM and related active compounds in the treatment of gout: the regulation of signaling pathway and urate transporter. Front. Pharmacol. 2023 14 1275974 10.3389/fphar.2023.1275974 38094893
    [Google Scholar]
  102. Zhang Q.B. Zhu D. Dai F. Huang Y.Q. Zheng J.X. Tang Y.P. Dong Z-R. Liao X. Qing Y-F. MicroRNA-223 suppresses IL-1β and TNF-α production in gouty inflammation by targeting the NLRP3 inflammasome. Front. Pharmacol. 2021 12 637415 10.3389/fphar.2021.637415
    [Google Scholar]
  103. Qiu K. Zeng T. Liao Y. Min J. Zhang N. Peng M. Kong W. Chen L. Identification of inflammation-related biomarker pro-ADM for male patients with gout by comprehensive analysis. Front. Immunol. 2022 12 798719 10.3389/fimmu.2021.798719 35116032
    [Google Scholar]
  104. Cao L. Zhao T. Xue Y. Xue L. Chen Y. Quan F. Xiao Y. Wan W. Han M. Jiang Q. Lu L. Zou H. Zhu X. The anti-inflammatory and uric acid lowering effects of si-miao-san on gout. Front. Immunol. 2022 12 777522 10.3389/fimmu.2021.777522 35069549
    [Google Scholar]
  105. Cheng J.J. Ma X.D. Ai G.X. Yu Q.X. Chen X.Y. Yan F. Li Y.C. Xie J.H. Su Z.R. Xie Q.F. Palmatine protects against MSU-induced gouty arthritis via regulating the NF-κB/NLRP3 and Nrf2 pathways. Drug Des. Devel. Ther. 2022 16 2119 2132 10.2147/DDDT.S356307 35812134
    [Google Scholar]
  106. Li C. Wang C. Guo Y. Wen R. Yan L. Zhang F. Gong Q. Yu H. Research on the effect and underlying molecular mechanism of Cangzhu in the treatment of gouty arthritis. Eur. J. Pharmacol. 2022 927 175044 10.1016/j.ejphar.2022.175044 35643303
    [Google Scholar]
  107. Sari D.C.R. Nofrienis R. Romi M.M. Tranggono U. Desita E.A.N. Arfian N. Uric acid induces inflammation, hepatocyte apoptosis and deterioration of liver function. Malaysian J Med Heal Sci. 2020 16 49 55
    [Google Scholar]
  108. Killilea M. Kerr D.M. Mallard B.M. Roche M. Wheatley A.M. Exacerbated LPS/GalN-induced liver injury in the stress-sensitive wistar kyoto rat is associated with changes in the endocannabinoid system. Molecules 2020 25 17 3834 10.3390/molecules25173834 32842550
    [Google Scholar]
  109. Yan C.Y. Ouyang S.H. Wang X. Wu Y.P. Sun W.Y. Duan W.J. Liang L. Luo X. Kurihara H. Li Y.F. He R.R. Celastrol ameliorates Propionibacterium acnes/LPS-induced liver damage and MSU-induced gouty arthritis via inhibiting K63 deubiquitination of NLRP3. Phytomedicine 2021 80 153398 10.1016/j.phymed.2020.153398 33130474
    [Google Scholar]
  110. Zhang Y. Chen P. Liang X.F. Han J. Wu X.F. Yang Y.H. Xue M. Metabolic disorder induces fatty liver in Japanese seabass, Lateolabrax japonicas fed a full plant protein diet and regulated by cAMP-JNK/NF-kB-caspase signal pathway. Fish Shellfish Immunol. 2019 90 223 234 10.1016/j.fsi.2019.04.060 31029777
    [Google Scholar]
  111. Lodhi S. Vadnere G.P. Patil K.D. Patil T.P. Protective effects of luteolin on injury induced inflammation through reduction of tissue uric acid and pro-inflammatory cytokines in rats. J. Tradit. Complement. Med. 2020 10 1 60 69 10.1016/j.jtcme.2019.02.004 31956559
    [Google Scholar]
  112. Guo M.X. Zhang M.M. Yang H.Y. Zhang C.L. Cheng H.Y. Li N.Z. Yi L.T. Zhu J.X. Lagotis brachystachya maxim attenuates chronic alcoholic liver injury combined with gouty arthritis in rats via its anti-inflammatory activity. Front. Pharmacol. 2022 13 995777 10.3389/fphar.2022.995777 36176434
    [Google Scholar]
  113. Lin Y. Luo T. Weng A. Huang X. Yao Y. Fu Z. Li Y. Liu A. Li X. Chen D. Pan H. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front. Immunol. 2020 11 580593 10.3389/fimmu.2020.580593 33365024
    [Google Scholar]
  114. Sun Z.R. Liu H.R. Hu D. Fan M.S. Wang M.Y. An M.F. Zhao Y.L. Xiang Z.M. Sheng J. Ellagic acid exerts beneficial effects on hyperuricemia by inhibiting xanthine oxidase and NLRP3 inflammasome activation. J. Agric. Food Chem. 2021 69 43 12741 12752 10.1021/acs.jafc.1c05239 34672194
    [Google Scholar]
  115. Piao M.H. Wang H. Jiang Y.J. Wu Y.L. Nan J.X. Lian L.H. Taxifolin blocks monosodium urate crystal-induced gouty inflammation by regulating phagocytosis and autophagy. Inflammopharmacology 2022 30 4 1335 1349 10.1007/s10787‑022‑01014‑x 35708797
    [Google Scholar]
  116. Kaur J. Kaur R. p-coumaric acid: A naturally occurring chemical with potential therapeutic applications. Curr. Org. Chem. 2022 26 14 1333 1349 10.2174/1385272826666221012145959
    [Google Scholar]
  117. Zhao L. Li Y. Yao D. Sun R. Liu S. Chen X. Lin C. Huang J. Wang J. Li G. Pharmacological basis for use of a novel compound in hyperuricemia: anti-hyperuricemic and anti-inflammatory effects. Front. Pharmacol. 2021 12 772504 10.3389/fphar.2021.772504 34819865
    [Google Scholar]
  118. Li S. Sun Z. Zhang Y. Ruan Y. Chen Q. Gong W. Yu J. Xia W. He J.C.J. Huang S. Zhang A. Ding G. Jia Z. COX-2/mPGES-1/PGE2 cascade activation mediates uric acid-induced mesangial cell proliferation. Oncotarget 2017 8 6 10185 10198 10.18632/oncotarget.14363 28052039
    [Google Scholar]
  119. Tao J.H. Zhang Y. Li X.P. P2X7R: A potential key regulator of acute gouty arthritis. Semin. Arthritis Rheum. 2013 43 3 376 380 10.1016/j.semarthrit.2013.04.007 23786870
    [Google Scholar]
  120. Qing Y.F. Zhang Q.B. Zhou J.G. Jiang L. Changes in toll-like receptor (TLR)4–NFκB–IL1β signaling in male gout patients might be involved in the pathogenesis of primary gouty arthritis. Rheumatol. Int. 2014 34 2 213 220 10.1007/s00296‑013‑2856‑3 24036988
    [Google Scholar]
  121. Papanagnou P. Stivarou T. Tsironi M. The role of miRNAs in common inflammatory arthropathies: Osteoarthritis and gouty arthritis. Biomolecules 2016 6 4 44 10.3390/biom6040044 27845712
    [Google Scholar]
  122. Han J. Shi G. Li W. Xie Y. Li F. Jiang D. Preventive effect of dioscin against monosodium urate-mediated gouty arthritis through inhibiting inflammasome NLRP3 and TLR4/NF-κB signaling pathway activation: An in vivo and in vitro study. J. Nat. Med. 2021 75 1 37 47 10.1007/s11418‑020‑01440‑7 32761488
    [Google Scholar]
  123. Wang Q. Lin B. Li Z. Su J. Feng Y. Cichoric acid ameliorates monosodium urate-induced inflammatory response by reducing NLRP3 inflammasome activation via inhibition of NF-kB signaling pathway. Evid. Based Complement. Alternat. Med. 2021 2021 1 12 10.1155/2021/8868527 33505510
    [Google Scholar]
  124. Ouyang X. Li N.Z. Guo M.X. Zhang M.M. Cheng J. Yi L.T. Zhu J-X. Active flavonoids from lagotis brachystachya attenuate monosodium urate-induced gouty arthritis via inhibiting TLR4/MyD88/NF-κB pathway and NLRP3 expression. Front. Pharmacol. 2021 12 760331 10.3389/fphar.2021.760331
    [Google Scholar]
  125. Wu C. Li F. Zhang X. Xu W. Wang Y. Yao Y. Han Z. Xia D. (−)-Epicatechin ameliorates monosodium urate-induced acute gouty arthritis through inhibiting NLRP3 inflammasome and the NF-κB signaling pathway. Front. Pharmacol. 2022 13 799552 10.3389/fphar.2022.799552
    [Google Scholar]
  126. Ruiz-Miyazawa K.W. Pinho-Ribeiro F.A. Borghi S.M. Staurengo-Ferrari L. Fattori V. Amaral F.A. Teixeira M.M. Alves-Filho J.C. Cunha T.M. Cunha F.Q. Casagrande R. Verri W.A. Jr Hesperidin methylchalcone suppresses experimental gout arthritis in mice by inhibiting NF-κB activation. J. Agric. Food Chem. 2018 66 25 6269 6280 10.1021/acs.jafc.8b00959 29852732
    [Google Scholar]
  127. Li X. Xu D.Q. Sun D.Y. Zhang T. He X. Xiao D.M. Curcumin ameliorates monosodium urate‐induced gouty arthritis through Nod‐like receptor 3 inflammasome mediation via inhibiting nuclear factor‐kappa B signaling. J. Cell. Biochem. 2019 120 4 6718 6728 10.1002/jcb.27969 30592318
    [Google Scholar]
  128. Cheng S. Sun H. Li X. Yan J. Peng Z. You Y. Zhang L. Chen J. Effects of Alismatis Rhizoma and Rhizoma Smilacis Glabrae decoction on hyperuricemia in rats. Evid. Based Complement. Alternat. Med. 2019 2019 1 12 10.1155/2019/4541609 31511779
    [Google Scholar]
  129. Zou W. Zhou H. Hu J. Zhang L. Tang Q. Wen X. Xiao Z. Wang W. Rhizoma Smilacis Glabrae inhibits pathogen-induced upper genital tract inflammation in rats through suppression of NF-κB pathway. J. Ethnopharmacol. 2017 202 103 113 10.1016/j.jep.2017.02.034 28238827
    [Google Scholar]
  130. Chester K Zahiruddin S Ahmad A Khan W Paliwal S Ahmad S Bioautography-based identification of antioxidant metabolites of solanum nigrum L. and exploration its hepatoprotective potential against d-galactosamine-induced hepatic fibrosis in rats. Pharmacogn. Mag. 2017 13 62 179 188
    [Google Scholar]
  131. Aladdin N.A. Husain K. Jalil J. Sabandar C.W. Jamal J.A. Xanthine oxidase inhibitory activity of a new isocoumarin obtained from Marantodes pumilum var. pumila leaves. BMC Complement. Med. Ther. 2020 20 1 324 10.1186/s12906‑020‑03119‑8 33109178
    [Google Scholar]
  132. Chen S. Wang H. Hu N. Long-term dietary lycium ruthenicum murr. anthocyanins intake alleviated oxidative stress-mediated aging-related liver injury and abnormal amino acid metabolism. Foods 2022 11 21 3377 10.3390/foods11213377 36359989
    [Google Scholar]
  133. Li W.Y. Yang F. Chen J.H. Ren G.F. β-caryophyllene ameliorates MSU-induced gouty arthritis and inflammation through inhibiting NLRP3 and NF-κB signal pathway: In silico and in vivo. Front. Pharmacol. 2021 12 651305 10.3389/fphar.2021.651305 33967792
    [Google Scholar]
  134. Sun X. Li P. Qu X. Liu W. Isovitexin alleviates acute gouty arthritis in rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway. Pharm. Biol. 2021 59 1 1324 1331 10.1080/13880209.2021.1979595
    [Google Scholar]
  135. Ho S.C. Chang Y.H. Comparison of inhibitory capacities of 6-, 8- and 10-gingerols/shogaols on the canonical NLRP3 inflammasome-mediated IL-1β secretion. Molecules 2018 23 2 466 10.3390/molecules23020466 29466287
    [Google Scholar]
  136. Lee H.E. Yang G. Park Y.B. Kang H.C. Cho Y.Y. Lee H.S. Lee J.Y. Epigallocatechin-3-gallate prevents acute gout by suppressing NLRP3 inflammasome activation and mitochondrial DNA synthesis. Molecules 2019 24 11 2138 10.3390/molecules24112138 31174271
    [Google Scholar]
  137. Li Q. Lin H. Niu Y. Liu Y. Wang Z. Song L. Gao L. Li L. Mangiferin promotes intestinal elimination of uric acid by modulating intestinal transporters. Eur. J. Pharmacol. 2020 888 173490 10.1016/j.ejphar.2020.173490 32827538
    [Google Scholar]
  138. Edwards A. Auberson M. Ramakrishnan S.K. Bonny O. A model of uric acid transport in the rat proximal tubule. Am. J. Physiol. Renal Physiol. 2019 316 5 F934 F947 10.1152/ajprenal.00603.2018 30785349
    [Google Scholar]
  139. Adomako E.A. Moe O.W. Uric acid transport, transporters, and their pharmacological targeting. Acta Physiol. 2023 238 2 e13980 10.1111/apha.13980 37092855
    [Google Scholar]
  140. Chen D. Jiang C. Lu H. Study on the mechanism of Phellinus igniarius total flavonoids in reducing uric acid and protecting uric acid renal injury in vitro. Heliyon 2023 9 1 e12979 10.1016/j.heliyon.2023.e12979 36820194
    [Google Scholar]
  141. Wei X. Zhang M. Huang S. Lan X. Zheng J. Luo H. He Y. Lei W. Hyperuricemia: A key contributor to endothelial dysfunction in cardiovascular diseases. FASEB J. 2023 37 7 e23012 10.1096/fj.202300393R 37272854
    [Google Scholar]
  142. Masondo N.A. Stafford G.I. Aremu A.O. Makunga N.P. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S. Afr. J. Bot. 2019 120 39 64 10.1016/j.sajb.2018.09.011
    [Google Scholar]
  143. Lin Y. Liu P.G. Liang W.Q. Hu Y.J. Xu P. Zhou J. Pu J.B. Zhang H.J. Luteolin-4′- O -glucoside and its aglycone, two major flavones of Gnaphalium affine D. Don, resist hyperuricemia and acute gouty arthritis activity in animal models. Phytomedicine 2018 41 54 61 10.1016/j.phymed.2018.02.002 29519319
    [Google Scholar]
  144. Zhang H. Li L. Zhou J. Yang Q. Liu P. Xu P. Liang W. Cheng L. Zhang Y. Pu J. Hu Y. Effects of Gnaphalium affine D. Don on hyperuricemia and acute gouty arthritis. J. Ethnopharmacol. 2017 203 304 311 10.1016/j.jep.2017.03.057 28390941
    [Google Scholar]
  145. Li F. Zhu H. Chang Z. Li Y. Gentiopicroside alleviates acute myocardial infarction injury in rats by disrupting Nrf2/NLRP3 signaling. Exp. Biol. Med. 2023 248 14 1254 1266 10.1177/15353702231199076 37850391
    [Google Scholar]
  146. Karim A. Ali bhatti S. Johnson N. Akhtar M. Mona S. Safdar Z. Effect of apium graveolens (celery) seed extract on serum uric acid level of hyperuricemic rats and its comparison with allopurinol. JSHMDC 2021 2 2 85 91 10.53685/jshmdc.v2i2.5
    [Google Scholar]
  147. Soliman M.M. Nassan M.A. Aldhahrani A. Althobaiti F. Mohamed W.A. Molecular and histopathological study on the ameliorative impacts of petroselinum crispum and apium graveolens against experimental hyperuricemia. Sci. Rep. 2020 10 1 9512 10.1038/s41598‑020‑66205‑4 32528050
    [Google Scholar]
  148. Wan Y. Wang F. Zou B. Shen Y. Li Y. Zhang A. Fu G. Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats. J. Funct. Foods 2019 57 150 156 10.1016/j.jff.2019.03.038
    [Google Scholar]
  149. Akram M. Usmanghani K. Ahmed I. Azhar I. Hamid A. Comprehensive review on therapeutic strategies of gouty arthritis. Pak. J. Pharm. Sci. 2014 27 5 Spec no 1575 1582 25176253
    [Google Scholar]
  150. Ling X. Bochu W. A review of phytotherapy of gout: Perspective of new pharmacological treatments. Pharmazie 2014 69 4 243 256 24791587
    [Google Scholar]
  151. Tian-Liang Xi-Gu-Ri-Gan Yu J. Qu S. Xie Q. Shama R. Bao M. Su H. Liu B. Borjigidai A. Ardisia gigantifolia stapf (Primulaceae): A review of ethnobotany, phytochemistry, pharmacology, clinical application, and toxicity. J. Ethnopharmacol. 2023 305 116079 10.1016/j.jep.2022.116079 36603784
    [Google Scholar]
  152. Frazaei M.H. Nouri R. Arefnezhad R. Pour P.M. Naseri M. Assar S. A review of medicinal plants and phytochemicals for the management of gout. Curr. Rheumatol. Rev. 2024 20 3 223 240 10.2174/0115733971268037230920072503 37828678
    [Google Scholar]
  153. Cheng-yuan W. Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front. Nutr. 2023 10 1186161 10.3389/fnut.2023.1186161 37377486
    [Google Scholar]
/content/journals/npj/10.2174/0122103155341864250108062025
Loading
/content/journals/npj/10.2174/0122103155341864250108062025
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cytokines ; Gout ; medicinal plants ; gouty arthritis ; xanthine oxidase ; inflammatory cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test