Skip to content
2000
Volume 16, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

Lour. is a plant belonging to the genus (Stemonaceae) that has been utilized in traditional Chinese medicine (TCM) for its antitussive and antiparasitic properties. Endophytic fungi have been shown to play an important role in the growth and metabolism of plants. Fermentation involving endophytic fungi tends to result in the production of new or more potent pharmacological compounds.

Objective

The study aims to enhance the antioxidant activity of by fermenting it with a symbiotic endophytic fungus.

Methods

Seven symbiotic endophytic fungi were used to screen and ferment to improve antioxidant activity estimated by 2,2’-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and ferric ion-reducing antioxidant power (FRAP). The chemical constituent changes were characterized by ultraviolet (UV) spectrum and high-performance liquid chromatography (HPLC) analysis.

Results and Discussion

STRB13, an endophytic fungus associated with , was screened for its ability to enhance antioxidant capacity through fermentation. The fermentation of using STRB13 significantly improved its DPPH radical scavenging activity, achieving an IC value of 24.2 μg/mL. Additionally, the ferric reducing antioxidant power (FRAP) of the fermented sample was fourteen times greater, measuring 388.1 ± 32.6 μmol/L compared to 27.5 ± 1.0 μmol/L in the blank sample. Differences observed between the blank and STRB13 fermented (FST) in UV spectra and HPLC analysis indicated the production of new aromatic phenolic compounds through fermentation, which contributed to the enhanced antioxidant activity.

Conclusion

This is the first time reporting on the fermentation processing of with symbiotic endophytic fungus. This study revealed that STRB13 FST will be an alternative natural antioxidant. Fermentation with symbiotic endophytic fungus is a new approach to processing TCM and discovering new compounds.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155340018241210065825
2026-01-13
2026-02-21
Loading full text...

Full text loading...

References

  1. Flora of China.BeijingScience Press1997256
    [Google Scholar]
  2. Chinese Pharmacopoeia (Part I).BeijingChina Medical Science and Technology Press2020138
    [Google Scholar]
  3. XuY. XiongL. YanY. SunD. DuanY. LiH. ChenL. Alkaloids from Stemona tuberosa and their anti-inflammatory activity.Front Chem.20221084759510.3389/fchem.2022.847595 35295975
    [Google Scholar]
  4. ShiZ.H. ZhouZ.B. QinW.N. WeiJ.J. XieS.S. JiangJ.M. XiaD. PanK. New Stemona alkaloids from the roots of Stemona tuberosa and structural revision of stemonatuberone B.Tetrahedron Lett.2020612215192510.1016/j.tetlet.2020.151925
    [Google Scholar]
  5. HuZ.X. AnQ. TangH.Y. YuanC.M. LiY.N. ZhangY. HaoX.J. Stemtuberolines A-G, new alkaloids from Stemona tuberosa and their anti-TMV activity.Fitoterapia202014310457210.1016/j.fitote.2020.104572 32224153
    [Google Scholar]
  6. HuZ.X. TangH.Y. GuoJ. AisaH.A. ZhangY. HaoX.J. Alkaloids from the roots of Stemona tuberosa and their anti-tobacco mosaic virus activities.Tetrahedron201975121711171610.1016/j.tet.2018.11.064
    [Google Scholar]
  7. WuY. OuL. HanD. TongY. ZhangM. XuX. ZhangC. Pharmacokinetics, biodistribution and excretion studies of neotuberostemonine, a major bioactive alkaloid of Stemona tuberosa.Fitoterapia2016112222910.1016/j.fitote.2016.05.003 27179627
    [Google Scholar]
  8. JungK.H. KilY.S. JungJ. ParkS. ShinD. LeeK. SeoE.K. BaeH. Tuberostemonine N, an active compound isolated from Stemona tuberosa, suppresses cigarette smoke-induced sub-acute lung inflammation in mice.Phytomedicine2016231798610.1016/j.phymed.2015.11.015 26902410
    [Google Scholar]
  9. HitotsuyanagiY. SekiyaY. FukayaH. ParkH.S. ZhuS. KomatsuK. Stemona-amines F and G, new alkaloids from Stemona tuberosa.Tetrahedron Lett.201657515746574910.1016/j.tetlet.2016.10.096
    [Google Scholar]
  10. ZhangR.R. TianH.Y. WuY. SunX.H. ZhangJ.L. MaZ.G. JiangR.W. Isolation and chemotaxonomic significance of stenine- and stemoninine-type alkaloids from the roots of Stemona tuberosa.Chin. Chem. Lett.20142591252125510.1016/j.cclet.2014.03.051
    [Google Scholar]
  11. LinL.G. LiK.M. TangC.P. KeC.Q. RuddJ.A. LinG. YeY. Antitussive stemoninine alkaloids from the roots of Stemona tuberosa.J. Nat. Prod.20087161107111010.1021/np070651+ 18452334
    [Google Scholar]
  12. LinL.G. ZhongQ.X. ChengT.Y. TangC.P. KeC.Q. LinG. YeY. Stemoninines from the roots of Stemona tuberosa.J. Nat. Prod.20066971051105410.1021/np0505317 16872143
    [Google Scholar]
  13. JiangR.W. HonP.M. ZhouY. ChanY.M. XuY.T. XuH.X. GregerH. ShawP.C. ButP.P.H. Alkaloids and chemical diversity of Stemona tuberosa.J. Nat. Prod.200669574975410.1021/np050539g 16724834
    [Google Scholar]
  14. JiangR.W. HonP.M. XuY.T. ChanY.M. XuH.X. ShawP.C. ButP.P.H. Isolation and chemotaxonomic significance of tuberostemospironine-type alkaloids from Stemona tuberosa.Phytochemistry2006671525710.1016/j.phytochem.2005.10.004 16300811
    [Google Scholar]
  15. FangL. SongX.Q. HeT.T. ZhuK.K. YuJ.H. SongJ.T. ZhouJ. ZhangH. Two new polyketides from the roots of Stemona tuberosa.Fitoterapia201812915015310.1016/j.fitote.2018.06.025 29964177
    [Google Scholar]
  16. LiH.M. HeT.T. ZhangM. LiuJ.N. ZhaoX. LiuJ. FangL. Stilbenoids from the roots of Stemona tuberosa.Nat. Prod. Res.202236369570010.1080/14786419.2020.1798662 32713205
    [Google Scholar]
  17. KhamkoV.A. QuangD.N. DienP.H. Three new phenanthrenes, a new stilbenoid isolated from the roots of Stemona tuberosa Lour. and their cytotoxicity.Nat. Prod. Res.201327242328233210.1080/14786419.2013.832677 24016220
    [Google Scholar]
  18. KilY.S. ParkJ. HanA.R. WooH. SeoE.K. A new 9,10-dihydrophenanthrene and cell proliferative 3,4-δ-dehydrotocopherols from Stemona tuberosa.Molecules20152045965597410.3390/molecules20045965 25854758
    [Google Scholar]
  19. LeeK.Y. SungS.H. KimY.C. Neuroprotective bibenzyl glycosides of Stemona tuberosa roots.J. Nat. Prod.200669467968110.1021/np0504154 16643052
    [Google Scholar]
  20. ZhaoW. QinG. YeY. XuR. LeX. Bibenzyls from Stemona tuberosa.Phytochemistry199538371171310.1016/0031‑9422(94)00655‑D 7766165
    [Google Scholar]
  21. PhuongN.T.M. CuongT.T. QuangD.N. Anti-inflammatory activity of methyl ferulate isolated from Stemona tuberosa Lour.Asian Pac. J. Trop. Med.20147S327S33110.1016/S1995‑7645(14)60254‑6 25312145
    [Google Scholar]
  22. JiangD. WuJ. LiH. Polysaccharides from Stemona tuberosa Lour: Extraction and antioxidant activity.Lishizhen Med. Mater. Med. Res.20122314671469
    [Google Scholar]
  23. LimD. LeeE. JeongE. JangY.P. KimJ. Stemona tuberosa prevented inflammation by suppressing the recruitment and the activation of macrophages in vivo and in vitro.J. Ethnopharmacol.2015160415110.1016/j.jep.2014.11.032 25476485
    [Google Scholar]
  24. BremB. SegerC. PacherT. HartlM. HadacekF. HoferO. VajrodayaS. GregerH. Antioxidant dehydrotocopherols as a new chemical character of Stemona species.Phytochemistry200465192719272910.1016/j.phytochem.2004.08.023 15464160
    [Google Scholar]
  25. LinL.G. YangX.Z. TangC.P. KeC.Q. ZhangJ.B. YeY. Antibacterial stilbenoids from the roots of Stemona tuberosa.Phytochemistry200869245746310.1016/j.phytochem.2007.07.012 17826806
    [Google Scholar]
  26. ZhouX. Ho Henry LeungP. LiN. YeY. ZhangL. ZuoZ. LinG. Oral absorption and antitussive activity of tuberostemonine alkaloids from the roots of Stemona tuberosa.Planta Med.200975657558010.1055/s‑0029‑1185363 19214944
    [Google Scholar]
  27. XuY.T. HonP.M. JiangR.W. ChengL. LiS.H. ChanY.P. XuH.X. ShawP.C. ButP.P.H. Antitussive effects of Stemona tuberosa with different chemical profiles.J. Ethnopharmacol.20061081465310.1016/j.jep.2006.04.022 16750339
    [Google Scholar]
  28. ChungH.S. HonP.M. LinG. ButP.P.H. DongH. Antitussive activity of Stemona alkaloids from Stemona tuberosa.Planta Med.2003691091492010.1055/s‑2003‑45100 14648394
    [Google Scholar]
  29. XuY.T. ShawP.C. JiangR.W. HonP.M. ChanY.M. ButP.P.H. Antitussive and central respiratory depressant effects of Stemona tuberosa.J. Ethnopharmacol.2010128367968410.1016/j.jep.2010.02.018 20219659
    [Google Scholar]
  30. WangR. LinF. YeC. AihemaitijiangS. HalimulatiM. HuangX. JiangZ. LiL. ZhangZ. Multi-omics analysis reveals therapeutic effects of Bacillus subtilis-fermented Astragalus membranaceus in hyperuricemia via modulation of gut microbiota.Food Chem.202339913399310.1016/j.foodchem.2022.133993 36029678
    [Google Scholar]
  31. MengX. CaiH. LiH. YouF. JiangA. HuW. LiK. ZhangX. ZhangY. ChangX. YangG. ZhouZ. Clostridium butyricum-fermented Chinese herbal medicine enhances the immunity by modulating the intestinal microflora of largemouth bass (Micropterus salmoides).Aquaculture202356273876810.1016/j.aquaculture.2022.738768
    [Google Scholar]
  32. ShakyaS. DanshiitsoodolN. SugimotoS. NodaM. SugiyamaM. Anti-oxidant and anti-inflammatory substance generated newly in paeoniae radix alba extract fermented with plant-derived Lactobacillus brevis 174A.Antioxidants2021107107110.3390/antiox10071071 34356304
    [Google Scholar]
  33. QinD. ShenW. GaoT. ZuoS. SongH. XuJ. YuB. PengY. GuoJ. TangW. DongJ. Kadanguslactones A-E, further oxygenated terpenoids from Kadsura angustifolia fermented by a symbiotic endophytic fungus, Penicillium ochrochloron SWUKD4.1850.Phytochemistry202017411233510.1016/j.phytochem.2020.112335 32182448
    [Google Scholar]
  34. DongJ.W. LiX.J. XuX.X. GuS.F. ZhaoH. WangX.X. Solid-state fermentation of Aspergillus sydowii G12, an approach to produce isocorydine.Process Biochem.202414714715110.1016/j.procbio.2024.08.021
    [Google Scholar]
  35. DongJ.W. LiX.J. LiuP.H. WuY.P. YangC. LiY.F. ZhangY.Q. Improving the antioxidant and anti-tyrosinase activities of Stemonae Radix by solid-state fermentation with Mucor circinelloides T2-12.Prep. Biochem. Biotechnol.202050768268810.1080/10826068.2020.1728697 32069137
    [Google Scholar]
  36. KozyraM. KomstaŁ. WojtanowskiK. Analysis of phenolic compounds and antioxidant activity of methanolic extracts from inflorescences of Carduus sp.Phytochem. Lett.20193125626210.1016/j.phytol.2019.04.012
    [Google Scholar]
  37. Al-DuaisM. MüllerL. BöhmV. JetschkeG. Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: Use of different assays.Eur. Food Res. Technol.2009228581382110.1007/s00217‑008‑0994‑8
    [Google Scholar]
  38. DongJ.W. CaiL. XiongJ. ChenX.H. WangW.Y. ShenN. LiuB.L. DingZ.T. Improving the antioxidant and antibacterial activities of fermented Bletilla striata with Fusarium avenaceum and Fusarium oxysporum.Process Biochem.201550181310.1016/j.procbio.2014.09.008
    [Google Scholar]
  39. KaurM. PeshwaniH. GoelM. Penicillium: A treasure trove for antimycobacterial and antioxidant metabolites.Fungi Bioactive Metabolites.SingaporeSpringer202426328110.1007/978‑981‑99‑5696‑8_9
    [Google Scholar]
  40. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.0292 8660627
    [Google Scholar]
/content/journals/npj/10.2174/0122103155340018241210065825
Loading
/content/journals/npj/10.2174/0122103155340018241210065825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test