Skip to content
2000
image of Updates on the Anticancer Profile of Lycopene and its Probable Mechanism Against Breast and Gynecological Cancer

Abstract

Natural substances are gaining interest as anticancer agents nowadays due to the adverse effects of synthetic drugs. Among various natural substances, lycopene has emerged as a strong antioxidant agent and has been found to be effective against prostate, breast, colon, ovarian, liver, endometrial cancers, . This article reviews the therapeutic potential and proposed mechanism of action of lycopene against breast and gynecological cancer from 2005 to now. Experimental studies suggest that lycopene can inhibit tumor growth by regulating various signaling pathways for cell growth, arresting the cell cycle, and inducing cell apoptosis. Lycopene is reported to combat breast cancer specifically mechanisms, such as regulation of expression of p53 and Bax, suppression of cyclin D, inhibiting the activation of ERK and Akt signaling pathway, and gynecological cancer various signaling pathways such as STAT3, Nrf2, and NF- 𝜅B, down-regulation of ITGB1, ITGA5, FAK, MMP9, and EMT markers, .

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155331365241118061443
2025-01-03
2025-06-20
Loading full text...

Full text loading...

References

  1. Choudhari A.S. Mandave P.C. Deshpande M. Ranjekar P. Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020 10 1614 10.3389/fphar.2019.01614 32116665
    [Google Scholar]
  2. Krishnaiah D. Nithyanandam R. Sarbatly R. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties. Crit. Rev. Food Sci. Nutr. 2014 54 4 449 473 10.1080/10408398.2011.587038 24236997
    [Google Scholar]
  3. Caseiro M. Ascenso A. Costa A. Creagh-Flynn J. Johnson M. Simões S. Lycopene in human health. Lebensm. Wiss. Technol. 2020 127 109323 10.1016/j.lwt.2020.109323
    [Google Scholar]
  4. Kong K.W. Khoo H.E. Prasad K.N. Ismail A. Tan C.P. Rajab N.F. Revealing the power of the natural red pigment lycopene. Molecules 2010 15 2 959 987 10.3390/molecules15020959 20335956
    [Google Scholar]
  5. Aghel N. Ramezani Z. Amirfakhrian S. Isolation and quantification of lycopene from tomato cultivated in dezfoul, Iran. Jundishapur J. Nat. Pharm. Prod. 2011 6 1 9 15
    [Google Scholar]
  6. Amorim A.G.N. Vasconcelos A.G. Souza J. Oliveira A. Gullón B. de Souza de Almeida Leite J.R. Pintado M. Bio-availability, anticancer potential, and chemical data of lycopene: an overview and technological prospecting. Antioxidants 2022 11 2 360 10.3390/antiox11020360 35204241
    [Google Scholar]
  7. Bhuvaneswari V. Nagini S. Lycopene: a review of its potential as an anticancer agent. Curr. Med. Chem. Anticancer Agents 2005 5 6 627 635 10.2174/156801105774574667 16305484
    [Google Scholar]
  8. Imran M. Ghorat F. Ul-Haq I. Ur-Rehman H. Aslam F. Heydari M. Shariati M.A. Okuskhanova E. Yessimbekov Z. Thiruvengadam M. Hashempur M.H. Rebezov M. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants 2020 9 8 706 10.3390/antiox9080706 32759751
    [Google Scholar]
  9. Kalpana S.J. Kulsange M.G. Lycopene estimation from selected fruits and Vegetables. Int. J. Res. Biosci. Agric. Technol. 2015 2 7 263 265
    [Google Scholar]
  10. Ge B. Wang W. Gao Y. Chen X. Optimization of extraction of lycopene from carrot and determination of its antioxidant activity. J. Food Meas. Charact. 2023 17 5 5497 5505 10.1007/s11694‑023‑02046‑9
    [Google Scholar]
  11. Priam F. Marcelin O. Marcus R. Jô L.F. Smith-Ravin E.J. Lycopene extraction from Psidium guajava L. and evaluation of its antioxidant properties using a modified DPPH test. IOSR J. Environ. Sci. Toxicol. Food Technol. 2017 11 4 67 73 10.9790/2402‑1104016773
    [Google Scholar]
  12. Malviya N. Isolation and quantification of lycopene from watermelon, tomato and papaya. Res. J. Recent Sci. 2014 ••• 2502
    [Google Scholar]
  13. Grabowska M. Wawrzyniak D. Rolle K. Chomczyński P. Oziewicz S. Jurga S. Barciszewski J. Let food be your medicine: Nutraceutical properties of lycopene. Food Funct. 2019 10 6 3090 3102 10.1039/C9FO00580C 31120074
    [Google Scholar]
  14. Sotomayor-Gerding D. Oomah B.D. Acevedo F. Morales E. Bustamante M. Shene C. Rubilar M. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability. Food Chem. 2016 199 463 470 10.1016/j.foodchem.2015.12.004 26775996
    [Google Scholar]
  15. Ha T.V.A. Kim S. Choi Y. Kwak H.S. Lee S.J. Wen J. Oey I. Ko S. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem. 2015 178 115 121 10.1016/j.foodchem.2015.01.048 25704691
    [Google Scholar]
  16. Wu X. Li M. Xiao Z. Daglia M. Dragan S. Delmas D. Vong C.T. Wang Y. Zhao Y. Shen J. Nabavi S.M. Sureda A. Cao H. Simal-Gandara J. Wang M. Sun C. Wang S. Xiao J. Dietary polyphenols for managing cancers: What have we ignored? Trends Food Sci. Technol. 2020 101 150 164 10.1016/j.tifs.2020.05.017
    [Google Scholar]
  17. Liang X. Ma C. Yan X. Liu X. Liu F. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene. Trends Food Sci. Technol. 2019 93 185 196 10.1016/j.tifs.2019.08.019
    [Google Scholar]
  18. Roldán-Gutiérrez J.M. Dolores Luque de Castro M. Lycopene: The need for better methods for characterization and determination. Trends Analyt. Chem. 2007 26 2 163 170 10.1016/j.trac.2006.11.013
    [Google Scholar]
  19. Agarwal A. Durairajanayagam D. Ong C. Prashast P. Lycopene and male infertility. Asian J. Androl. 2014 16 3 420 425 10.4103/1008‑682X.126384 24675655
    [Google Scholar]
  20. Kelkel M. Schumacher M. Dicato M. Diederich M. Antioxidant and anti-proliferative properties of lycopene. Free Radic. Res. 2011 45 8 925 940 10.3109/10715762.2011.564168 21615277
    [Google Scholar]
  21. Martínez A. Melendez-Martínez A.J. Lycopene, oxidative cleavage derivatives and antiradical activity. Comput. Theor. Chem. 2016 1077 92 98 10.1016/j.comptc.2015.11.001
    [Google Scholar]
  22. Ip B.C. Hu K.Q. Liu C. Smith D.E. Obin M.S. Ausman L.M. Wang X.D. Lycopene metabolite, apo-10′-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice. Cancer Prev. Res. (Phila.) 2013 6 12 1304 1316 10.1158/1940‑6207.CAPR‑13‑0178 24085778
    [Google Scholar]
  23. Song X. Luo Y. Ma L. Hu X. Simal-Gandara J. Wang L.S. Bajpai V.K. Xiao J. Chen F. Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent. Semin. Cancer Biol. 2021 73 331 346 10.1016/j.semcancer.2021.03.028 33794344
    [Google Scholar]
  24. Moran N.E. Cichon M.J. Riedl K.M. Grainger E.M. Schwartz S.J. Novotny J.A. Erdman J.W. Clinton S.K. Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults. Am. J. Clin. Nutr. 2015 102 6 1436 1449 10.3945/ajcn.114.103143 26561629
    [Google Scholar]
  25. Li W. Yalcin M. Lin Q. Ardawi M.S.M. Mousa S.A. Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery. J. Control. Release 2017 248 117 124 10.1016/j.jconrel.2017.01.009 28077264
    [Google Scholar]
  26. Zhao Y. Xin Z. Li N. Chang S. Chen Y. Geng L. Chang H. Shi H. Chang Y.Z. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic. Biol. Med. 2018 124 1 11 10.1016/j.freeradbiomed.2018.05.082 29807160
    [Google Scholar]
  27. Fan Y. Xie X. Zhang B. Zhang Z. Absorption and antioxidant activity of lycopene nanoliposomes in vivo. Curr. Top. Nutraceutical Res. 2011 9 4 131
    [Google Scholar]
  28. Jain S. Winuprasith T. Suphantharika M. Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion. Food Hydrocoll. 2020 104 105730 10.1016/j.foodhyd.2020.105730
    [Google Scholar]
  29. Salvia-Trujillo L. McClements D.J. Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: Influence of lipid droplet size. Food Chem. 2016 210 295 304 10.1016/j.foodchem.2016.04.125 27211650
    [Google Scholar]
  30. Wang H. Wang S. Zhu H. Wang S. Xing J. Inclusion complexes of lycopene and β-cyclodextrin: Preparation, characterization, stability and antioxidant activity. Antioxidants 2019 8 8 314 10.3390/antiox8080314 31426339
    [Google Scholar]
  31. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  32. Sato H. Shibata M. Shimizu T. Shibata S. Toriumi H. Ebine T. Kuroi T. Iwashita T. Funakubo M. Kayama Y. Akazawa C. Wajima K. Nakagawa T. Okano H. Suzuki N. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience 2013 248 345 358 10.1016/j.neuroscience.2013.06.010 23774632
    [Google Scholar]
  33. Navarro-Yepes J. Zavala-Flores L. Anandhan A. Wang F. Skotak M. Chandra N. Li M. Pappa A. Martinez-Fong D. Del Razo L.M. Quintanilla-Vega B. Franco R. Antioxidant gene therapy against neuronal cell death. Pharmacol. Ther. 2014 142 2 206 230 10.1016/j.pharmthera.2013.12.007 24333264
    [Google Scholar]
  34. Pacher P. Beckman J.S. Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007 87 1 315 424 10.1152/physrev.00029.2006 17237348
    [Google Scholar]
  35. Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal. 2007 19 9 1807 1819 10.1016/j.cellsig.2007.04.009 17570640
    [Google Scholar]
  36. Halliwell B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007 35 5 1147 1150 10.1042/BST0351147 17956298
    [Google Scholar]
  37. Jaswir I. Noviendri D. Hasrini R.F. Octavianti F. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 2011 5 33 7119 7131
    [Google Scholar]
  38. Zuorro A. Lavecchia R. Medici F. Piga L. Enzyme-assisted production of tomato seed oil enriched with lycopene from tomato pomace. Food Bioprocess Technol. 2013 6 12 3499 3509 10.1007/s11947‑012‑1003‑6
    [Google Scholar]
  39. Ben-Dor A. Steiner M. Gheber L. Danilenko M. Dubi N. Linnewiel K. Zick A. Sharoni Y. Levy J. Carotenoids activate the antioxidant response element transcription system. Mol. Cancer Ther. 2005 4 1 177 186 10.1158/1535‑7163.177.4.1 15657364
    [Google Scholar]
  40. Uppala P.T. Dissmore T. Lau B.H.S. Andacht T. Rajaram S. Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: A proteomic analysis. Phytother. Res. 2013 27 4 595 601 10.1002/ptr.4764 22718574
    [Google Scholar]
  41. Fornelli F. Leone A. Verdesca I. Minervini F. Zacheo G. The influence of lycopene on the proliferation of human breast cell line (MCF-7). Toxicol. In Vitro 2007 21 2 217 223 10.1016/j.tiv.2006.09.024 17140762
    [Google Scholar]
  42. Xu J. Li Y. Hu H. Effects of lycopene on ovarian cancer cell line SKOV3 in vitro: Suppressed proliferation and enhanced apoptosis. Mol. Cell. Probes 2019 46 101419 10.1016/j.mcp.2019.07.002 31279748
    [Google Scholar]
  43. Trejo-Solís C. Pedraza-Chaverrí J. Torres-Ramos M. Jiménez-Farfán D. Cruz Salgado A. Serrano-García N. Osorio-Rico L. Sotelo J. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition. Evid. Based Complement. Alternat. Med. 2013 2013 705121 10.1155/2013/705121 23970935
    [Google Scholar]
  44. Peng S.J. Li J. Zhou Y. Tuo M. Qin X.X. Yu Q. Cheng H. Li Y.M. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. Genet. Mol. Res. 2017 16 2 13 10.4238/gmr16029434 28407181
    [Google Scholar]
  45. Vasconcelos A.G. Amorim A.G.N. dos Santos R.C. Souza J.M.T. de Souza L.K.M. Araújo T.S.L. Nicolau L.A.D. de Lima Carvalho L. de Aquino P.E.A. da Silva Martins C. Ropke C.D. Soares P.M.G. Kuckelhaus S.A.S. Medeiros J.V.R. Leite J.R.S.A. Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res. Int. 2017 99 Pt 2 959 968 10.1016/j.foodres.2017.01.017 28847433
    [Google Scholar]
  46. Koh M.S. Hwang J.S. Moon A.R. Lycopene inhibits proliferation, invasion and migration of human breast cancer cells. Biomol. Ther. (Seoul) 2010 18 1 92 98 10.4062/biomolther.2010.18.1.092
    [Google Scholar]
  47. Chen M.L. Lin Y.H. Yang C.M. Hu M.L. Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways. Mol. Nutr. Food Res. 2012 56 6 889 899 10.1002/mnfr.201100683 22707264
    [Google Scholar]
  48. Huang C.S. Shih M.K. Chuang C.H. Hu M.L. Lycopene inhibits cell migration and invasion and upregulates Nm23-H1 in a highly invasive hepatocarcinoma, SK-Hep-1 cells. J. Nutr. 2005 135 9 2119 2123 10.1093/jn/135.9.2119 16140886
    [Google Scholar]
  49. Raghu H. Sodadasu P.K. Malla R.R. Gondi C.S. Estes N. Rao J.S. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 2010 10 1 647 10.1186/1471‑2407‑10‑647 21106094
    [Google Scholar]
  50. Nusse R. Varmus H. Three decades of Wnts: A personal perspective on how a scientific field developed. EMBO J. 2012 31 12 2670 2684 10.1038/emboj.2012.146 22617420
    [Google Scholar]
  51. Preet R. Mohapatra P. Das D. Satapathy S.R. Choudhuri T. Wyatt M.D. Kundu C.N. Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis 2013 34 2 277 286 10.1093/carcin/bgs351 23129580
    [Google Scholar]
  52. Takeshima M. Ono M. Higuchi T. Chen C. Hara T. Nakano S. Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci. 2014 105 3 252 257 10.1111/cas.12349 24397737
    [Google Scholar]
  53. Velmurugan B. Nagini S. Combination chemoprevention of experimental gastric carcinogenesis by s-allylcysteine and lycopene: modulatory effects on glutathione redox cycle antioxidants. J. Med. Food 2005 8 4 494 501 10.1089/jmf.2005.8.494 16379561
    [Google Scholar]
  54. Zhang B. Gu Y. Low expression of ERK signaling pathway affecting proliferation, cell cycle arrest and apoptosis of human gastric HGC-27 cells line. Mol. Biol. Rep. 2014 41 6 3659 3669 10.1007/s11033‑014‑3230‑6 24554029
    [Google Scholar]
  55. Cui L. Xu F. Wu K. Li L. Qiao T. Li Z. Chen T. Sun C. Anticancer effects and possible mechanisms of lycopene intervention on N-methylbenzylnitrosamine induced esophageal cancer in F344 rats based on PPARγ1. Eur. J. Pharmacol. 2020 881 173230 10.1016/j.ejphar.2020.173230 32553810
    [Google Scholar]
  56. Ngoc N.B. Lv P. Zhao W.E. Suppressive effects of lycopene and β-carotene on the viability of the human esophageal squamous carcinoma cell line EC109. Oncol. Lett. 2018 15 5 6727 6732 29731858
    [Google Scholar]
  57. Tang F.Y. Pai M.H. Wang X.D. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model. J. Agric. Food Chem. 2011 59 16 9011 9021 10.1021/jf2017644 21744871
    [Google Scholar]
  58. Lin M.C. Wang F.Y. Kuo Y.H. Tang F.Y. Cancer chemopreventive effects of lycopene: Suppression of MMP-7 expression and cell invasion in human colon cancer cells. J. Agric. Food Chem. 2011 59 20 11304 11318 10.1021/jf202433f 21923160
    [Google Scholar]
  59. Li B-H. Jiang L-N. Liu Y-B. Lycopene exerts anti-inflammatory effect to inhibit prostate cancer progression. Asian J. Androl. 2019 21 1 80 85 10.4103/aja.aja_70_18 30198495
    [Google Scholar]
  60. Jhou B.Y. Song T.Y. Lee I. Hu M.L. Yang N.C. Lycopene inhibits metastasis of human liver adenocarcinoma SK-Hep-1 cells by downregulation of NADPH oxidase 4 protein expression. J. Agric. Food Chem. 2017 65 32 6893 6903 10.1021/acs.jafc.7b03036 28723216
    [Google Scholar]
  61. Hwang E.S. Lee H.J. Inhibitory effects of lycopene on the adhesion, invasion, and migration of SK-Hep1 human hepatoma cells. Exp. Biol. Med. (Maywood) 2006 231 3 322 327 10.1177/153537020623100313 16514180
    [Google Scholar]
  62. Ye M. Wu Q. Zhang M. Huang J. Lycopene inhibits the cell proliferation and invasion of human head and neck squamous cell carcinoma. Mol. Med. Rep. 2016 14 4 2953 2958 10.3892/mmr.2016.5597 27510325
    [Google Scholar]
  63. Tao A. Wang X. Li C. Effect of Lycopene on oral squamous cell carcinoma cell growth by inhibiting IGF1 pathway. Cancer Manag. Res. 2021 13 723 732 10.2147/CMAR.S283927 33531840
    [Google Scholar]
  64. Cancer facts & figures 2023. 2023 Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html
  65. Goyal P.K. Khurana S. Mittal A. Hydrogel-bound cytotoxic drug delivery system for breast cancer. Health Sci. Rev. (Oxf.) 2023 9 100140 10.1016/j.hsr.2023.100140
    [Google Scholar]
  66. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  67. Sahin K. Orhan C. Sahin N. Kucuk O. Anticancer properties of lycopene. Bioactive Molecules in Food Cham Springer Mérillon J.M. Ramawat K.G. 2019 935 969 10.1007/978‑3‑319‑78030‑6_88
    [Google Scholar]
  68. Ferlay J. Colombet M. Soerjomataram I. Mathers C. Parkin D.M. Piñeros M. Znaor A. Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019 144 8 1941 1953 10.1002/ijc.31937 30350310
    [Google Scholar]
  69. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  70. Sahin K. Yenice E. Tuzcu M. Orhan C. Mizrak C. Ozercan I.H. Sahin N. Yilmaz B. Bilir B. Ozpolat B. Kucuk O. Lycopene protects against spontaneous ovarian cancer formation in laying hens. J. Cancer Prev. 2018 23 1 25 36 10.15430/JCP.2018.23.1.25 29629346
    [Google Scholar]
  71. Holzapfel N.P. Shokoohmand A. Wagner F. Landgraf M. Champ S. Holzapfel B.M. Clements J.A. Hutmacher D.W. Loessner D. Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load. Am. J. Cancer Res. 2017 7 6 1322 1336 28670494
    [Google Scholar]
  72. Aktepe O.H. Şahi̇n T.K. Güner G. Arik Z. Yalçin Ş. Lycopene sensitizes the cervical cancer cells to cisplatin via targeting nuclear factor-kappa B (NF-κB) pathway. Turk. J. Med. Sci. 2021 51 1 368 374 10.3906/sag‑2005‑413 32718121
    [Google Scholar]
  73. Dehnavi M.K. Ebrahimpour-Koujan S. Lotfi K. Azadbakht L. The association between circulating carotenoids and risk of breast cancer: A systematic review and dose–response meta-analysis of prospective studies. Adv. Nutr. 2024 15 1 100135 10.1016/j.advnut.2023.10.007 38436219
    [Google Scholar]
  74. Voskuil D.W. Vrieling A. Korse C.M. Beijnen J.H. Bonfrer J.M.G. van Doorn J. Kaas R. Oldenburg H.S.A. Russell N.S. Rutgers E.J.T. Verhoef S. van Leeuwen F.E. van’t Veer L.J. Rookus M.A. Effects of lycopene on the insulin-like growth factor (IGF) system in premenopausal breast cancer survivors and women at high familial breast cancer risk. Nutr. Cancer 2008 60 3 342 353 10.1080/01635580701861777 18444168
    [Google Scholar]
  75. Li X. Xu J. Meta-analysis of the association between dietary lycopene intake and ovarian cancer risk in postmenopausal women. Sci. Rep. 2014 4 1 4885 10.1038/srep04885 24810584
    [Google Scholar]
  76. Liu Q. Loo W.T.Y. Sze S.C.W. Tong Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine 2009 16 10 916 922 10.1016/j.phymed.2009.04.008 19524420
    [Google Scholar]
  77. Zong H. Wang F. Fan Q. Wang L. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol. Biol. Rep. 2012 39 4 4803 4808 10.1007/s11033‑011‑1273‑5 21947854
    [Google Scholar]
  78. Bachmeier B.E. Mohrenz I.V. Mirisola V. Schleicher E. Romeo F. Höhneke C. Jochum M. Nerlich A.G. Pfeffer U. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB. Carcinogenesis 2008 29 4 779 789 10.1093/carcin/bgm248 17999991
    [Google Scholar]
  79. Deb G. Thakur V.S. Limaye A.M. Gupta S. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Mol. Carcinog. 2015 54 6 485 499 10.1002/mc.22121 24481780
    [Google Scholar]
  80. Hsu Y.C. Liou Y.M. The anti‐cancer effects of (−)‐Epigalocathine‐3‐gallate on the signaling pathways associated with membrane receptors in MCF‐7 cells. J. Cell. Physiol. 2011 226 10 2721 2730 10.1002/jcp.22623 21792929
    [Google Scholar]
  81. Chung M.H. Kim D.H. Na H.K. Kim J.H. Kim H.N. Haegeman G. Surh Y.J. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutat. Res. 2014 768 74 83 10.1016/j.mrfmmm.2014.04.003 24742714
    [Google Scholar]
  82. Pons D.G. Nadal-Serrano M. Blanquer-Rossello M.M. Sastre-Serra J. Oliver J. Roca P. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio. J. Cell. Biochem. 2014 115 5 949 958 10.1002/jcb.24737 24375531
    [Google Scholar]
  83. Wang Y. Lee K.W. Chan F.L. Chen S. Leung L.K. The red wine polyphenol resveratrol displays bilevel inhibition on aromatase in breast cancer cells. Toxicol. Sci. 2006 92 1 71 77 10.1093/toxsci/kfj190 16611627
    [Google Scholar]
  84. Li Y. Liu J. Liu X. Xing K. Wang Y. Li F. Yao L. Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9. Appl. Biochem. Biotechnol. 2006 135 3 181 192 10.1385/ABAB:135:3:181 17299206
    [Google Scholar]
  85. Iriti M. Kubina R. Cochis A. Sorrentino R. Varoni E.M. Kabała-Dzik A. Azzimonti B. Dziedzic A. Rimondini L. Wojtyczka R.D. Rutin, a quercetin glycoside, restores chemosensitivity in human breast cancer cells. Phytother. Res. 2017 31 10 1529 1538 10.1002/ptr.5878 28752532
    [Google Scholar]
  86. Lin T.H. Hsu W.H. Tsai P.H. Huang Y.T. Lin C.W. Chen K.C. Tsai I.H. Kandaswami C.C. Huang C.J. Chang G.D. Lee M.T. Cheng C.H. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial–mesenchymal transition signaling. Food Funct. 2017 8 4 1558 1568 10.1039/C6FO00551A 28277581
    [Google Scholar]
  87. Gao X. Wang B. Wei X. Men K. Zheng F. Zhou Y. Zheng Y. Gou M. Huang M. Guo G. Huang N. Qian Z. Wei Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 2012 4 22 7021 7030 10.1039/c2nr32181e 23044718
    [Google Scholar]
  88. Liu Y. Gong W. Yang Z.Y. Zhou X.S. Gong C. Zhang T.R. Wei X. Ma D. Ye F. Gao Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis 2017 22 4 544 557 10.1007/s10495‑016‑1334‑2 28188387
    [Google Scholar]
  89. Deepika M.S. Thangam R. Sheena T.S. Sasirekha R. Sivasubramanian S. Babu M.D. Jeganathan K. Thirumurugan R. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed. Pharmacother. 2019 109 1181 1195 10.1016/j.biopha.2018.10.178 30551368
    [Google Scholar]
  90. Hussain A. Harish G. Prabhu S.A. Mohsin J. Khan M.A. Rizvi T.A. Sharma C. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitiors of matrix metalloproteinase-1 expression. Cancer Epidemiol. 2012 36 6 e387 e393 10.1016/j.canep.2012.07.005 22884883
    [Google Scholar]
  91. Xu H. Gong Z. Zhou S. Yang S. Wang D. Chen X. Wu J. Liu L. Zhong S. Zhao J. Tang J. Liposomal curcumin targeting endometrial Cancer through the NF-κB pathway. Cell. Physiol. Biochem. 2018 48 2 569 582 10.1159/000491886 30021217
    [Google Scholar]
  92. Seo J. Kim B. Dhanasekaran D.N. Tsang B.K. Song Y.S. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells. Cancer Lett. 2016 371 1 30 37 10.1016/j.canlet.2015.11.021 26607901
    [Google Scholar]
  93. Liu Q. Zhu D. Hao B. Zhang Z. Tian Y. Luteolin promotes the sensitivity of cisplatin in ovarian cancer by decreasing PRPA1-medicated autophagy. Cell. Mol. Biol. 2018 64 6 17 22 10.14715/cmb/2018.64.6.4 29808795
    [Google Scholar]
  94. Zhao B. Hu M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol. Lett. 2013 6 6 1749 1755 10.3892/ol.2013.1632 24843386
    [Google Scholar]
  95. He Z. Chen A.Y. Rojanasakul Y. Rankin G.O. Chen Y.C. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells. Oncol. Rep. 2016 35 1 291 297 10.3892/or.2015.4354
    [Google Scholar]
  96. Wang S. Meng X. Dong Y. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. Int. J. Oncol. 2017 50 4 1330 1340 10.3892/ijo.2017.3890 28259944
    [Google Scholar]
  97. Achiwa Y. Hasegawa K. Udagawa Y. Effect of ursolic acid on MAPK in cyclin D1 signaling and RING-type E3 ligase (SCF E3s) in two endometrial cancer cell lines. Nutr. Cancer 2013 65 7 1026 1033 10.1080/01635581.2013.810292 24083669
    [Google Scholar]
  98. Zhang J. Wang W. Qian L. Zhang Q. Lai D. Qi C. Ursolic acid inhibits the proliferation of human ovarian cancer stem-like cells through epithelial-mesenchymal transition. Oncol. Rep. 2015 34 5 2375 2384 10.3892/or.2015.4213 26323892
    [Google Scholar]
  99. Yu H.C. Chen L.J. Cheng K.C. Li Y.X. Yeh C.H. Cheng J.T. Silymarin inhibits cervical cancer cell through an increase of phosphatase and tensin homolog. Phytother. Res. 2012 26 5 709 715 10.1002/ptr.3618 22016029
    [Google Scholar]
  100. Fan L. Ma Y. Liu Y. Zheng D. Huang G. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells. Eur. J. Pharmacol. 2014 743 79 88 10.1016/j.ejphar.2014.09.019 25242120
    [Google Scholar]
/content/journals/npj/10.2174/0122103155331365241118061443
Loading
/content/journals/npj/10.2174/0122103155331365241118061443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test