Skip to content
2000
image of Milestones in the Technology of Modified Starch in Pharmaceutical Formulation

Abstract

Carbohydrates, the most prevalent class of organic substances in living systems, play a variety of important roles, such as in the creation of energy, the construction of biological structures, and the synthesis of paper and food. More advanced uses of modified starch have been introduced over the past millennium, demonstrating that modified starches are promising excipients in drug delivery, an area in which their role and range of utility continuously increase. Technological advancements in the pharmaceutical field have led to the development of new and highly stable molecules with enhanced properties for novel drug delivery systems. Innovative starches from various sources present exclusive support in the development of novel dosage forms.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155319243240927062730
2024-10-09
2024-11-26
Loading full text...

Full text loading...

References

  1. Cun D. Zhang C. Bera H. Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv. Drug Deliv. Rev. 2021 174 140 167 10.1016/j.addr.2021.04.006 33845039
    [Google Scholar]
  2. Sivamaruthi B.S. Nallasamy P. Suganthy N. Kesika P. Chaiyasut C. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. J. Drug Deliv. Sci. Technol. 2022 77 103890 10.1016/j.jddst.2022.103890
    [Google Scholar]
  3. Thanyapanich N. Jimtaisong A. Rawdkuen S. Functional properties of banana starch (Musa spp.) and its utilization in cosmetics. Molecules 2021 26 12 3637 10.3390/molecules26123637 34198695
    [Google Scholar]
  4. Wang S. Zhang P. Li Y. Li J. Li X. Yang J. Ji M. Li F. Zhang C. Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydr. Polym. 2023 307 120627 10.1016/j.carbpol.2023.120627 36781278
    [Google Scholar]
  5. Sun C. Wei Z. Xue C. Yang L. Development, application and future trends of starch-based delivery systems for nutraceuticals: A review. Carbohydr. Polym. 2023 308 120675 10.1016/j.carbpol.2023.120675 36813348
    [Google Scholar]
  6. Wu H. Sang S. Weng P. Pan D. Wu Z. Yang J. Liu L. Farag M.A. Xiao J. Liu L. Structural, rheological, and gelling characteristics of starch‐based materials in context to 3D food printing applications in precision nutrition. Compr. Rev. Food Sci. Food Saf. 2023 22 6 4217 4241 10.1111/1541‑4337.13217 37583298
    [Google Scholar]
  7. Uddin I. Abzal S.M. Kalyan K. Janga S. Patel R. Dash J.K. Starch-assisted stable synthesis of CdS nanoparticles for enhanced electrical and optical properties. J. Electron. Mater. 2023 52 3 1710 1716 10.1007/s11664‑022‑10198‑5
    [Google Scholar]
  8. Cheetham N.W.H. Tao L. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydr. Polym. 1998 36 4 277 284 10.1016/S0144‑8617(98)00007‑1
    [Google Scholar]
  9. Singh V. Ali S.Z. Somashekar R. Mukherjee P.S. Nature of crystallinity in native and acid modified starches. Int. J. Food Prop. 2006 9 4 845 854 10.1080/10942910600698922
    [Google Scholar]
  10. Tang H. Mitsunaga T. Kawamura Y. Molecular arrangement in blocklets and starch granule architecture. Carbohydr. Polym. 2006 63 4 555 560 10.1016/j.carbpol.2005.10.016
    [Google Scholar]
  11. Wang S Guo P Botanical sources of starch. Starch Structure, Functionality and Application in Foods. Springer Singapore 2020 9 27
    [Google Scholar]
  12. Prabhu M. Chemodanov A. Gottlieb R. Kazir M. Nahor O. Gozin M. Israel A. Livney Y.D. Golberg A. Starch from the sea: The green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Res. 2019 37 215 227 10.1016/j.algal.2018.11.007
    [Google Scholar]
  13. Ali N.A. Dash K.K. Routray W. Physicochemical characterization of modified lotus seed starch obtained through acid and heat moisture treatment. Food Chem. 2020 319 126513 10.1016/j.foodchem.2020.126513 32151897
    [Google Scholar]
  14. Light J.M. Modified food starches: Why, what, where, and how. Cereal Foods World 1990 35 11 1081 1092
    [Google Scholar]
  15. Luu T.D. Phan N.H. Tran T.T. Van Vo T. Tran P.H. Use of microwave method for controlling drug release of modified sprouted rice starch. 5th International Conference on Biomedical Engineering in Vietnam. IFMBE Proceedings, Springer, Cham, 2015, pp. 314–316.
    [Google Scholar]
  16. Lewicka K. Siemion P. Kurcok P. Chemical modifications of starch: Microwave effect. Int. J. Polym. Sci. 2015 2015 1 867697
    [Google Scholar]
  17. Konwarh R. Karak N. Sawian C.E. Baruah S. Mandal M. Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at bio-interface. Carbohydr. Polym. 2011 83 3 1245 1252 10.1016/j.carbpol.2010.09.031
    [Google Scholar]
  18. Pejin D.J. Mojović L.V. Pejin J.D. Grujić O.S. Markov S.L. Nikolić S.B. Marković M.N. Increase in bioethanol production yield from triticale by simultaneous saccharification and fermentation with application of ultrasound. J. Chem. Technol. Biotechnol. 2012 87 2 170 176 10.1002/jctb.2675
    [Google Scholar]
  19. Hernoux A. Lévêque J.M. Lassi U. Molina-Boisseau S. Marais M.F. Conversion of a non-water soluble potato starch waste into reducing sugars under non-conventional technologies. Carbohydr. Polym. 2013 92 2 2065 2074 10.1016/j.carbpol.2012.11.048 23399259
    [Google Scholar]
  20. Błaszczak W. Fornal J. Kiseleva V.I. Yuryev V.P. Sergeev A.I. Sadowska J. Effect of high pressure on thermal, structural and osmotic properties of waxy maize and Hylon VII starch blends. Carbohydr. Polym. 2007 68 3 387 396 10.1016/j.carbpol.2006.12.023
    [Google Scholar]
  21. Zhang L. Ji H. Yang M. Ma H. Effects of high hydrostatic pressure treated mung bean starch on characteristics of batters and crusts from deep-fried pork nuggets. Int. J. Food Eng. 2014 10 2 261 268 10.1515/ijfe‑2012‑0105
    [Google Scholar]
  22. Ye J. Hu X. Luo S. Liu W. Chen J. Zeng Z. Liu C. Properties of starch after extrusion: A review. Stärke 2018 70 11-12 1700110 10.1002/star.201700110
    [Google Scholar]
  23. Compart J. Singh A. Fettke J. Apriyanto A. Customizing starch properties: A review of starch modifications and their applications. Polymers 2023 15 16 3491 10.3390/polym15163491 37631548
    [Google Scholar]
  24. Roushdi M. Harras A. El-Meligi A. Bassim M. Effect of high doses of gamma rays on corn grains. Part II. Influence on some physical and chemical properties of starch and its fractions. Stärke 1983 35 1 15 18 10.1002/star.19830350106
    [Google Scholar]
  25. Polesi L.F. Junior M.D.M. Sarmento S.B.S. Canniatti-Brazaca S.G. Starch digestibility and physicochemical and cooking properties of irradiated rice grains. Rice Sci. 2017 24 1 48 55 10.1016/j.rsci.2016.07.005
    [Google Scholar]
  26. Gul K. Singh A.K. Sonkawade R.G. Physicochemical, thermal and pasting characteristics of gamma irradiated rice starches. Int. J. Biol. Macromol. 2016 85 460 466 10.1016/j.ijbiomac.2016.01.024 26778155
    [Google Scholar]
  27. Tomasik P. Zaranyika M.F. Nonconventional methods of modification of starch. Adv. Carbohydr. Chem. Biochem. 1995 51 243 318 10.1016/S0065‑2318(08)60195‑X 7484364
    [Google Scholar]
  28. Thirumdas R. Trimukhe A. Deshmukh R.R. Annapure U.S. Functional and rheological properties of cold plasma treated rice starch. Carbohydr. Polym. 2017 157 1723 1731 10.1016/j.carbpol.2016.11.050 27987888
    [Google Scholar]
  29. Zhu F. Plasma modification of starch. Food Chem. 2017 232 476 486 10.1016/j.foodchem.2017.04.024 28490100
    [Google Scholar]
  30. Tung N.T. Thuy L.T.H. Luong N.T. Van Khoi N. Ha P.T.T. Thang N.H. The molecular structural transformation of jackfruit seed starch in hydrogen peroxide oxidation condition. J. Indian Chem. Soc. 2021 98 11 100192 10.1016/j.jics.2021.100192
    [Google Scholar]
  31. Trinh K.S. Dang T.B. Structural, physicochemical, and functional properties of electrolyzed cassava starch. Int. J. Food Sci. 2019 2019 1 1 7 10.1155/2019/9290627 31192252
    [Google Scholar]
  32. Castanha N. Santos D.N. Cunha R.L. Augusto P.E.D. Properties and possible applications of ozone-modified potato starch. Food Res. Int. 2019 116 1192 1201 10.1016/j.foodres.2018.09.064 30716905
    [Google Scholar]
  33. Wang W. Shi Y.C. Gelatinization, pasting and retrogradation properties of hydroxypropylated normal wheat, waxy wheat, and waxy maize starches. Food Hydrocoll. 2020 106 105910 10.1016/j.foodhyd.2020.105910
    [Google Scholar]
  34. Mendez-Montealvo G. Velazquez G. Fonseca-Florido H.A. Morales-Sanchez E. Soler A. Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. Lebensm. Wiss. Technol. 2022 153 112509 10.1016/j.lwt.2021.112509
    [Google Scholar]
  35. Ayoub A.S. Rizvi S.S.H. An overview on the technology of cross-linking of starch for non-food applications. J. Plast. Film Sheeting 2009 25 1 25 45 10.1177/8756087909336493
    [Google Scholar]
  36. Lopez-Ochoa J.D. Cadena-Chamorro E. Ciro-Velasquez H. Rodríguez-Sandoval E. Enzymatically modified cassava starch as a stabilizer for fermented dairy beverages. Stärke 2022 74 7-8 2100242 10.1002/star.202100242
    [Google Scholar]
  37. Cornejo F. Maldonado-Alvarado P. Palacios-Ponce S. Hugo D. Rosell C.M. Impact of cassava starch varieties on the physiochemical change during enzymatic hydrolysis. Molecules 2022 27 18 6098 10.3390/molecules27186098 36144827
    [Google Scholar]
  38. Johnson LA Hardy CL Baumel CP White PJ Identifying valuable corn quality traits for starch production. Cereal Foods World 2001 46 11707
    [Google Scholar]
  39. González K. Larraza I. Berra G. Eceiza A. Gabilondo N. 3D printing of customized all-starch tablets with combined release kinetics. Int. J. Pharm. 2022 622 121872 10.1016/j.ijpharm.2022.121872 35636631
    [Google Scholar]
  40. Daminabo S.C. Goel S. Grammatikos S.A. Nezhad H.Y. Thakur V.K. Fused deposition modeling-based additive manufacturing (3D printing): Techniques for polymer material systems. Mater. Today Chem. 2020 16 100248 10.1016/j.mtchem.2020.100248
    [Google Scholar]
  41. Salim I. Kehinde O.A. Abdulsamad A. Mohammed K.G. Gwarzo M.S. Physicomechanical behaviour of novel directly compressible Starch-MCC-Povidone composites and their application in ascorbic acid tablet formulation. Br. J. Pharm. 2018 3 1 1 3
    [Google Scholar]
  42. Dziemidowicz K. Lopez F.L. Bowles B.J. Edwards A.J. Ernest T.B. Orlu M. Tuleu C. Co-processed excipients for dispersible tablets—part 2: Patient acceptability. AAPS PharmSciTech 2018 19 6 2646 2657 10.1208/s12249‑018‑1104‑2 29943280
    [Google Scholar]
  43. Patel S.S. Shah S.V. Overview on functionality added co-processed excipients for orodispersible tablets. Asian J. Pharm. Res. 2022 12 4 323 334 10.52711/2231‑5691.2022.00052
    [Google Scholar]
  44. Kokott M. Lura A. Breitkreutz J. Wiedey R. Evaluation of two novel co-processed excipients for direct compression of orodispersible tablets and mini-tablets. Eur. J. Pharm. Biopharm. 2021 168 122 130 10.1016/j.ejpb.2021.08.016 34474110
    [Google Scholar]
  45. Geerts M.E.J. Strijbos M. van der Padt A. van der Goot A.J. Understanding functional properties of mildly refined starch fractions of yellow pea. J. Cereal Sci. 2017 75 116 123 10.1016/j.jcs.2017.03.025
    [Google Scholar]
  46. Karrout Y. Neut C. Wils D. Siepmann F. Deremaux L. Flament M.P. Dubreuil L. Desreumaux P. Siepmann J. Peas starch‐based film coatings for site‐specific drug delivery to the colon. J. Appl. Polym. Sci. 2011 119 2 1176 1184 10.1002/app.32802
    [Google Scholar]
  47. Saha S. Shahiwala A.F. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin. Drug Deliv. 2009 6 2 197 208 10.1517/17425240802708978 19239391
    [Google Scholar]
  48. Al-Zoubi N. Gharaibeh S. Aljaberi A. Nikolakakis I. Spray drying for direct compression of pharmaceuticals. Processes 2021 9 2 267 10.3390/pr9020267
    [Google Scholar]
  49. Yap S. Adams M. Seville J. Zhang Z. Understanding the mechanical properties of single micro-particles and their compaction behaviour. China Particuology 2006 4 1 35 40 10.1016/S1672‑2515(07)60231‑0
    [Google Scholar]
  50. Kittipongpatana O.S. Trisopon K. Wattanaarsakit P. Kittipongpatana N. Fabrication and characterization of orodispersible composite film from hydroxypropyl methyl cellulose-crosslinked carboxymethyl rice starch. Membranes 2022 12 6 594 10.3390/membranes12060594 35736301
    [Google Scholar]
  51. Starch softgel capsules market forecast and growth 2031. Available from: https://www.theinsightpartners.com/reports/starch-soft-gel-capsules-market
  52. Zafar N Naeem N Khan T Ullah H Wahid F. Green composites for drugs capsule coatings. Green Sustainable Process for Chemical and Environmental Engineering and Science Elsevier 2023 2023 1 20
    [Google Scholar]
  53. Mironescu M. Lazea-Stoyanova A. Barbinta-Patrascu M.E. Virchea L.I. Rexhepi D. Mathe E. Georgescu C. Green design of novel starch-based packaging materials sustaining human and environmental health. Polymers 2021 13 8 1190 10.3390/polym13081190 33917150
    [Google Scholar]
  54. Singh R.S. Kaur N. Singh D. Purewal S.S. Kennedy J.F. Pullulan in pharmaceutical and cosmeceutical formulations: A review. Int. J. Biol. Macromol. 2023 231 123353 10.1016/j.ijbiomac.2023.123353 36681225
    [Google Scholar]
  55. Burns S. Corness D. Hay G. Higginbottom S. Whelan I. Attwood D. Barnwell S.G. An in vitro assessment of liquid-filled capill® potato starch capsules with biphasic release characteristics. Int. J. Pharm. 1996 134 1-2 223 230 10.1016/0378‑5173(95)04462‑0
    [Google Scholar]
  56. Poeloengasih C.D. Pranoto Y. Anggraheni F.D. Marseno D.W. Potential of sago starch/carrageenan mixture as gelatin alternative for hard capsule material. AIP Conference Proceedings 2017 1823 1
    [Google Scholar]
  57. Nyamweya N.N. Applications of polymer blends in drug delivery. Future J. Pharm. Sci. 2021 7 1 5
    [Google Scholar]
  58. Sarmah D. Karak N. Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel. Carbohydr. Polym. 2022 289 119428 10.1016/j.carbpol.2022.119428 35483842
    [Google Scholar]
  59. Wang Y. Huang H. Wu J. Han L. Yang Z. Jiang Z. Wang R. Huang Z. Xu M. Ultrafast self-healing, reusable, and conductive polysaccharide-based hydrogels for sensitive ionic sensors. ACS Sustain. Chem.& Eng. 2020 8 50 18506 18518 10.1021/acssuschemeng.0c06258
    [Google Scholar]
  60. Bai C. Zhang S. Huang L. Wang H. Wang W. Ye Q. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption. Carbohydr. Polym. 2015 125 376 383 10.1016/j.carbpol.2015.03.004 25857995
    [Google Scholar]
  61. Otálora González C.M. Alvarez Castillo E. Flores S. Gerschenson L.N. Bengoechea C. Effect of plasticizer composition on the properties of injection molded cassava starch-based bioplastics. Food Packag. Shelf Life 2023 40 101218 10.1016/j.fpsl.2023.101218
    [Google Scholar]
  62. Abdullah A.H. Fikriyyah A.K. Putri O.D. Asri P.P. Fabrication and characterization of poly lactic acid (PLA)-starch based bioplastic composites. IOP Conf Ser: Mater Sci Eng 2019 553 1 012052
    [Google Scholar]
  63. Cataño F.A. Moreno-Serna V. Cament A. Loyo C. Yáñez-S M. Ortiz J.A. Zapata P.A. Green composites based on thermoplastic starch reinforced with micro- and nano-cellulose by melt blending - A review. Int. J. Biol. Macromol. 2023 248 125939 10.1016/j.ijbiomac.2023.125939 37482162
    [Google Scholar]
  64. Xie F. Luckman P. Milne J. McDonald L. Young C. Tu C.Y. Pasquale T.D. Faveere R. Halley P.J. Thermoplastic Starch. J. Renew. Mater. 2014 2 2 95 106 10.7569/JRM.2014.634104
    [Google Scholar]
  65. Carvalho A.J.F. Job A.E. Alves N. Curvelo A.A.S. Gandini A. Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 2003 53 1 95 99 10.1016/S0144‑8617(03)00005‑5
    [Google Scholar]
  66. García-Cruz HI Jaime-Fonseca MR Von Borries-Medrano E Vieyra H Extrusion parameters to produce a PLA-starch derived thermoplastic polymer. Rev Mex Ing Quím 2020 19 Sup. 1 395 412 10.24275/rmiq/Poly1529
    [Google Scholar]
  67. Trebuňová M. Petroušková P. Balogová A.F. Ižaríková G. Horňak P. Bačenková D. Demeterová J. Živčák J. Evaluation of biocompatibility of PLA/PHB/TPS polymer scaffolds with different additives of ATBC and OLA plasticizers. J. Funct. Biomater. 2023 14 8 412 10.3390/jfb14080412 37623657
    [Google Scholar]
  68. Wang R. Poly (Lactic Acid) (PLA), Poly (ε-Caprolactone) (PCL) and Thermoplastic Starch (TPS) Blends for Compostable Packaging Applications. Rochester Institute of Technology 2018
    [Google Scholar]
  69. Józó M. Functional biopolymers for medical applications. Doctoral dissertation, Budapest University of Technology and Economics (Hungary)
    [Google Scholar]
  70. Huang L. Zhao H. Yi T. Qi M. Xu H. Mo Q. Huang C. Wang S. Liu Y. Preparation and properties of cassava residue cellulose nanofibril/cassava starch composite films. Nanomaterials 2020 10 4 755 10.3390/nano10040755 32326505
    [Google Scholar]
  71. Sánchez M.D. Duque J.F. Galindo A.S. Herrera R.R. Biodegradable Polymers. CRC Press 2023
    [Google Scholar]
  72. Lipatova I.M. Losev N.V. The influence of the combined impact of shear stress and cavitation on the structure and properties of starch-natural rubber composite. Carbohydr. Polym. 2024 330 121852 10.1016/j.carbpol.2024.121852 38368078
    [Google Scholar]
  73. Leroy L. Stoclet G. Lefebvre J.M. Gaucher V. Mechanical behaviour of thermoplastic starch: Rationale for the temperature-relative humidity equivalence. Polymers 2022 14 13 2531 10.3390/polym14132531 35808576
    [Google Scholar]
  74. Jaymand M. Sulfur functionality-modified starches: Review of synthesis strategies, properties, and applications. Int. J. Biol. Macromol. 2022 197 111 120 10.1016/j.ijbiomac.2021.12.090 34952096
    [Google Scholar]
  75. Lemos P.V.F. Marcelino H.R. Cardoso L.G. Souza C.O. Druzian J.I. Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials. Int. J. Biol. Macromol. 2021 184 218 234 10.1016/j.ijbiomac.2021.06.077 34144062
    [Google Scholar]
  76. Aly AA El-Bisi MK Grafting of polysaccharides: Recent advances. Biopolymer Grafting Elsevier 2018 469 519
    [Google Scholar]
  77. Kumar D. Pandey J. Raj V. Kumar P. A review on the modification of polysaccharide through graft copolymerization for various potential applications. Open Med. Chem. J. 2017 11 1 109 126 10.2174/1874104501711010109 29151987
    [Google Scholar]
  78. Mohd Roslan M.R. Mohd Kamal N.L. Abdul Khalid M.F. Mohd Nasir N.F. Cheng E.M. Beh C.Y. Tan J.S. Mohamed M.S. The state of starch/hydroxyapatite composite scaffold in bone tissue engineering with consideration for dielectric measurement as an alternative characterization technique. Materials 2021 14 8 1960 10.3390/ma14081960 33919814
    [Google Scholar]
  79. Asl M.A. Karbasi S. Beigi-Boroujeni S. Zamanlui Benisi S. Saeed M. Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications. Int. J. Biol. Macromol. 2021 191 500 513 10.1016/j.ijbiomac.2021.09.078 34555400
    [Google Scholar]
  80. Roslan M.R. Nasir N.M. Cheng E.M. Amin N.A. Tissue engineering scaffold based on starch: A review. 2016 international conference on electrical, electronics, and optimization techniques (ICEEOT), Chennai, India, 03-05 March 2016, pp. 1857-1860. 10.1109/ICEEOT.2016.7755010
    [Google Scholar]
  81. Gutiérrez-Sánchez M. Escobar-Barrios V.A. Pozos-Guillén A. Escobar-García D.M. RGD-functionalization of PLA/starch scaffolds obtained by electrospinning and evaluated in vitro for potential bone regeneration. Mater. Sci. Eng. C 2019 96 798 806 10.1016/j.msec.2018.12.003 30606593
    [Google Scholar]
  82. Punyanitya S. Koonawoot R. Raksanti A. Thiansem S. Chankachang P. The processing and characterization of the new semi-absorbable bone wax made from rice starch blended with beeswax. GMS Med. J. 2024 4 2 71 77
    [Google Scholar]
  83. Suwanprateeb J. Suvannapruk W. Thammarakcharoen F. Chokevivat W. Rukskul P. Preparation and characterization of PEG–PPG–PEG copolymer/pregelatinized starch blends for use as resorbable bone hemostatic wax. J. Mater. Sci. Mater. Med. 2013 24 12 2881 2888 10.1007/s10856‑013‑5027‑x 23955721
    [Google Scholar]
  84. Liu C. Liu Z. Wang K. Sun Y. Liu Q. Sun X. Yan T. Yang Q. Ma X. Zhou H. Yang L. Novel bone wax based on DCPA granules and modified starch for hemostasis and bone regeneration. Appl. Mater. Today 2023 32 101815 10.1016/j.apmt.2023.101815
    [Google Scholar]
  85. Brückner T. Schamel M. Kübler A.C. Groll J. Gbureck U. Novel bone wax based on poly(ethylene glycol)–calcium phosphate cement mixtures. Acta Biomater. 2016 33 252 263 10.1016/j.actbio.2016.01.021 26805427
    [Google Scholar]
  86. Xu R. Zhang J. Zhou P. Yang R. Feng X. Xu L. A novel artificial red blood cell substitute: Grafted starch-encapsulated hemoglobin. RSC Advances 2015 5 54 43845 43853 10.1039/C5RA00772K
    [Google Scholar]
  87. Cerny L.C. Barnes B. Fisher L. Anibarro M. Ho N. Cerny E.R. A starch-hemoglobin resuscitative compound. Artif. Cells Blood Substit. Immobil. Biotechnol. 1996 24 2 153 160 10.3109/10731199609118881 8907693
    [Google Scholar]
  88. Zaki Ahmad M. Bhattacharya A. Isolation and physicochemical characterization of Assam Bora rice starch for use as a plasma volume expander. Curr. Drug Deliv. 2010 7 2 162 167 10.2174/156720110791011800 20158491
    [Google Scholar]
  89. Hedlund B.E. Weber T.P. Dragsten P.R. Hanson G.J. Hallaway P.E. Patent and Trademark Office. U.S. Patent No. 6,780,852, 2004
  90. Montgomery E.M. Senti F.R. Separation of amylose from amylopectin of starch by an extraction‐sedimentation procedure. J. Polym. Sci. 1958 28 116 1 9 10.1002/pol.1958.1202811601
    [Google Scholar]
  91. Thombre N. Vishwakarma A. Jadhav T. Kshirsagar S. Formulation and development of plasma volume expander using natural and modified starch from Solanum tuberosum. Int. J. Pharm. Investig. 2016 6 4 207 217 10.4103/2230‑973X.195930 28123990
    [Google Scholar]
  92. Dahiya D. Nigam P.S. Dextran of diverse molecular-configurations used as a blood-plasma substitute, drug-delivery vehicle and food additive biosynthesized by leuconostoc, lactobacillus and weissella. Appl. Sci. 2023 13 22 12526 10.3390/app132212526
    [Google Scholar]
  93. Hoffman C.R. Huynh A. Liu H. Plasma Substitutes. Blood Substitutes and Oxygen Biotherapeutics. Cham Springer International Publishing 2022 185 195 10.1007/978‑3‑030‑95975‑3_18
    [Google Scholar]
  94. Gallandat Huet R.C.G. Siemons A.W. Baus D. van Rooyen-Butijn W.T. Haagenaars J.A.M. van Oeveren W. Bepperling F. A novel hydroxyethyl starch (Voluven®) for effective perioperative plasma volume substitution in cardiac surgery. Can. J. Anaesth. 2000 47 12 1207 1215 10.1007/BF03019870 11132743
    [Google Scholar]
  95. Sun B. Chen Y. Zhou G. Zhou Y. Guo T. Zhu S. Mao S. Zhao Y. Shao J. Li Y. A flexible corn starch‐based biomaterial device integrated with capacitive‐coupled memristive memory, mechanical stress sensing, synapse, and logic operation functions. Adv. Electron. Mater. 2023 9 3 2201017 10.1002/aelm.202201017
    [Google Scholar]
  96. Jones G.E. Chalecke W.E. Dec J. Schilling J.A. Ramsey G.H. Robertson H.D. Strain W.H. GE J Iodinated organic compounds as contrast media for radiographic diagnoses; Studies on tetraiodophthalimidoethanol as a medium for gastro-intestinal visualization. Radiology 1947 49 2 143 151 10.1148/49.2.143 20256671
    [Google Scholar]
  97. Li X. Anton N. Zuber G. Vandamme T. Contrast agents for preclinical targeted X-ray imaging. Adv. Drug Deliv. Rev. 2014 76 116 133 10.1016/j.addr.2014.07.013 25086373
    [Google Scholar]
  98. Lönnemark M. Magnusson A. Ahlström H. Oral contrast media in CT of the abdomen. A double-blind randomized study comparing an aqueous solution of amidotrizoate, an aqueous solution of iohexol and a viscous solution of iohexol. Acta Radiol. 1993 34 5 517 519 10.1177/028418519303400519 8369192
    [Google Scholar]
  99. Kumar V.A. Madhavanunni A.N. Nivetha S. Panicker M.R. On the echogenicity of natural starch-based blood mimicking fluids for contrast enhanced ultrasound imaging: Preliminary in-vitro experiments. Preprint arXiv: 2403.06237. 2024 10.1109/SAUS61785.2024.10563527
    [Google Scholar]
  100. Flores-Silva P.C. Roldan-Cruz C.A. Chavez-Esquivel G. Vernon-Carter E.J. Bello-Perez L.A. Alvarez-Ramirez J. In vitro digestibility of ultrasound-treated corn starch. Stärke 2017 69 9-10 1700040 10.1002/star.201700040
    [Google Scholar]
  101. Wiggermann P. Heibl M. Niessen C. Müller-Wille R. Gössmann H. Uller W. Poschenrieder F. Schreyer A.G. Wohlgemuth W.A. Stroszczynski C. Jung E.M. Degradable starch microspheres transarterial chemoembolisation (DSM-TACE) of HCC: Dynamic contrast-enhanced ultrasonography (DCE-US) based evaluation of therapeutic efficacy using a novel perfusion software. Clin. Hemorheol. Microcirc. 2012 52 2-4 123 129 10.3233/CH‑2012‑1590 22960293
    [Google Scholar]
  102. Tian W. McLaughlin R. oral vaccine fast-dissolving dosage form using starch. U.S. Patent No WO2012/048333 ,
  103. Riese P. Sakthivel P. Trittel S. Guzmán C.A. Intranasal formulations: Promising strategy to deliver vaccines. Expert Opin. Drug Deliv. 2014 11 10 1619 1634 10.1517/17425247.2014.931936 24962722
    [Google Scholar]
  104. Fasquelle F. Dubuquoy L. Betbeder D. Starch-based NP act as antigen delivery systems without immunomodulating effect. PLoS One 2022 17 7 e0272234 10.1371/journal.pone.0272234 35905121
    [Google Scholar]
  105. Lee C.S. Hwang H.S. Starch-based hydrogels as a drug delivery system in biomedical applications. Gels 2023 9 12 951 10.3390/gels9120951 38131937
    [Google Scholar]
  106. Aljibori H.S. Shaker L.M. Alamiery A.A. Al-Azzawi W.K. Revolutionizing lens technology: Chitosan and starch in next‐gen ophthalmic lenses. Stärke 2024 76 5-6 2300207 10.1002/star.202300207
    [Google Scholar]
  107. Zhao L. Wang H. Feng C. Song F. Du X. Preparation and evaluation of starch hydrogel/contact Lens composites as epigallocatechin gallate delivery systems for inhibition of bacterial adhesion. Front. Bioeng. Biotechnol. 2021 9 759303 10.3389/fbioe.2021.759303 34869268
    [Google Scholar]
  108. Musgrave C.S.A. Fang F. Contact lens materials: A materials science perspective. Materials 2019 12 2 261 10.3390/ma12020261 30646633
    [Google Scholar]
  109. Zheng P. Ma T. Ma X. Fabrication and properties of starch-grafted graphene nanosheet/plasticized-starch composites. Ind. Eng. Chem. Res. 2013 52 39 14201 14207 10.1021/ie402220d
    [Google Scholar]
  110. Fonseca D.F.S. Vilela C. Silvestre A.J.D. Freire C.S.R. A compendium of current developments on polysaccharide and protein-based microneedles. Int. J. Biol. Macromol. 2019 136 704 728 10.1016/j.ijbiomac.2019.04.163 31028807
    [Google Scholar]
  111. Rajput A. Kulkarni M. Deshmukh P. Pingale P. Garkal A. Gandhi S. Butani S. A key role by polymers in microneedle technology: A new era. Drug Dev. Ind. Pharm. 2021 47 11 1713 1732 10.1080/03639045.2022.2058531 35332822
    [Google Scholar]
  112. Martínez-Navarrete M. Pérez-López A. Guillot A.J. Cordeiro A.S. Melero A. Aparicio-Blanco J. Latest advances in glucose-responsive microneedle-based systems for transdermal insulin delivery. Int. J. Biol. Macromol. 2024 263 Pt 2 130301 10.1016/j.ijbiomac.2024.130301 38382776
    [Google Scholar]
  113. Han JH Edible films and coatings: A review. Innovations in Food Packaging 2nd ed Academic Press 2014 213 255
    [Google Scholar]
  114. Cui Y. Li C. Guo Y. Liu X. Zhu F. Liu Z. Liu X. Yang F. Rheological & 3D printing properties of potato starch composite gels. J. Food Eng. 2022 313 110756 10.1016/j.jfoodeng.2021.110756
    [Google Scholar]
  115. Fang F. Shear-induced synergistic effects of konjac glucomannan and waxy potato starch on viscosity and gel strength. Food Hydrocoll. 2021 114 106540 10.1016/j.foodhyd.2020.106540
    [Google Scholar]
  116. Hu W.X. Chen J. Xu F. Chen L. Zhao J.W. Study on crystalline, gelatinization and rheological properties of japonica rice flour as affected by starch fine structure. Int. J. Biol. Macromol. 2020 148 1232 1241 10.1016/j.ijbiomac.2019.11.020 31759021
    [Google Scholar]
  117. Castanha N. Miano A.C. Jones O.G. Reuhs B.L. Campanella O.H. Augusto P.E.D. Starch modification by ozone: Correlating molecular structure and gel properties in different starch sources. Food Hydrocoll. 2020 108 106027 10.1016/j.foodhyd.2020.106027
    [Google Scholar]
  118. Chen Y. Zhang M. Sun Y. Phuhongsung P. Improving 3D/4D printing characteristics of natural food gels by novel additives: A review. Food Hydrocoll. 2022 123 107160 10.1016/j.foodhyd.2021.107160
    [Google Scholar]
  119. Seoane-Viaño I. Trenfield S.J. Basit A.W. Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv. Drug Deliv. Rev. 2021 174 553 575 10.1016/j.addr.2021.05.003 33965461
    [Google Scholar]
  120. Dharmamoorthy G Sabareesh M Balaji A Reddy YK Monika B Hema AN Reddy PS Kartheek U A overview on 3D printing–current pharmaceutical applications and future directions. YMER 2022 21 11
    [Google Scholar]
  121. Gioumouxouzis C.I. Karavasili C. Fatouros D.G. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov. Today 2019 24 2 636 643 10.1016/j.drudis.2018.11.019 30503803
    [Google Scholar]
  122. Scoutaris N. Ross S.A. Douroumis D. 3D printed “Starmix” drug loaded dosage forms for paediatric applications. Pharm. Res. 2018 35 2 34 10.1007/s11095‑017‑2284‑2 29368113
    [Google Scholar]
  123. Liu Z. Huang J. Fang D. Feng B. Luo J. Lei P. Chen X. Xie Q. Chen M. Chen P. Material extrusion 3D-printing technology: A new strategy for constructing water-soluble, high-dose, sustained-release drug formulations. Mater. Today Bio 2024 27 101153 10.1016/j.mtbio.2024.101153 39081462
    [Google Scholar]
  124. Kozakiewicz-Latała M. Nartowski K.P. Dominik A. Malec K. Gołkowska A.M. Złocińska A. Rusińska M. Szymczyk-Ziółkowska P. Ziółkowski G. Górniak A. Karolewicz B. Binder jetting 3D printing of challenging medicines: From low dose tablets to hydrophobic molecules. Eur. J. Pharm. Biopharm. 2022 170 144 159 10.1016/j.ejpb.2021.11.001 34785345
    [Google Scholar]
  125. Yang Y. Xu Y. Wei S. Shan W. Oral preparations with tunable dissolution behavior based on selective laser sintering technique. Int. J. Pharm. 2021 593 120127 10.1016/j.ijpharm.2020.120127 33253801
    [Google Scholar]
  126. Karakurt I. Aydoğdu A. Çıkrıkcı S. Orozco J. Lin L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study. Int. J. Pharm. 2020 584 119428 10.1016/j.ijpharm.2020.119428 32445906
    [Google Scholar]
  127. Rostamabadi H. Sadeghi Mahoonak A. Allafchian A. Ghorbani M. Fabrication of β-carotene loaded glucuronoxylan-based nanostructures through electrohydrodynamic processing. Int. J. Biol. Macromol. 2019 139 773 784 10.1016/j.ijbiomac.2019.07.182 31362026
    [Google Scholar]
  128. Ullah M. Wahab A. Khan S.U. Naeem M. ur Rehman K. Ali H. Ullah A. Khan A. Khan N.R. Rizg W.Y. Hosny K.M. Alissa M. Badr M.Y. Alkhalidi H.M. 3D printing technology: A new approach for the fabrication of personalized and customized pharmaceuticals. Eur. Polym. J. 2023 195 112240 10.1016/j.eurpolymj.2023.112240
    [Google Scholar]
  129. Lam C.X.F. Mo X.M. Teoh S.H. Hutmacher D.W. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 2002 20 1-2 49 56 10.1016/S0928‑4931(02)00012‑7
    [Google Scholar]
/content/journals/npj/10.2174/0122103155319243240927062730
Loading
/content/journals/npj/10.2174/0122103155319243240927062730
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: technological ; Modified starch ; drug delivery ; pharmaceutical ; dosage form
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test