Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Bovine colostrum, also known as cow colostrum, is the first milk produced by cows after giving birth. It is packed with natural macro-micronutrients, immunoglobulins, peptides, and proteins and has been utilized in traditional medicine for centuries to treat a range of illnesses and problems. Its therapeutic advantages are particularly significant in the treatment of respiratory problems, growth factor augmentation, and other conditions. Numerous preclinical and clinical research studies have demonstrated its therapeutic effects, including its ability to promote well-being, treat medical conditions, and support animal husbandry. Bovine colostrum may assist therapy against COVID-19 due to its potential antiviral properties, which can slow the course of the disease. Bovine colostrum contains bioactive components such as lactoferrin, which has antibacterial, anti-inflammatory, and antiviral properties. Additionally, bovine colostrum may boost both the adaptive and innate immune systems of humans. Colostrum's chemical composition differs from milk, with higher concentrations of nutrients and physiologically active compounds such as enzymes, growth factors, immunoglobulins, and hormones. The colostrum is crucial for the development of a newborn calf's immune system, and the initial section of the colostrum has the highest concentration of insulin-like growth factors (IGFs), which rapidly decline after that. While cow colostrum is generally considered safe when consumed orally, it should be noted that rectal administration can function as an enema, and consuming colostrum from infected cows can result in severe disorders such as bovine spongiform encephalitis (BSE), also known as “mad cow disease” or other disorders. Therefore, it is crucial to use proper sanitation and dosage of cow/ bovine colostrum for food or medicinal usage to avoid potential adverse effects. This review article highlights the medical applications, constituents, and benefits of cow colostrum, showcasing its potential as a natural remedy for health and wellness. However, it is essential to exercise caution and obtain bovine colostrum from safe sources for optimal therapeutic benefits.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155310246240603074349
2024-06-13
2025-03-30
Loading full text...

Full text loading...

References

  1. PlayfordR.J. WeiserM.J. Bovine colostrum: Its constituents and uses.Nutrients202113126510.3390/nu1301026533477653
    [Google Scholar]
  2. GrodkowskaK. GołębiewskiM. SlósarzJ. SakowskiT. PuppelK. The effect of supplementation using a mixture of fish oil and linseed on the level of immunomodulatory components in bovine colostrum.Molecules2023285215410.3390/molecules2805215436903401
    [Google Scholar]
  3. KaplanM. ArslanA. DumanH. KaryelioğluM. BaydemirB. GünarB.B. AlkanM. BayraktarA. TosunH.İ. ErtürkM. EskiciG. DuarR.M. HenrickB.M. FreseS.A. KaravS. Production of bovine colostrum for human consumption to improve health.Front. Pharmacol.20221279682410.3389/fphar.2021.79682435046820
    [Google Scholar]
  4. HurleyW.L. TheilP.K. Perspectives on immunoglobulins in colostrum and milk.Nutrients20113444247410.3390/nu304044222254105
    [Google Scholar]
  5. GhoshS. IacucciM. Diverse immune effects of bovine colostrum and benefits in human health and disease.Nutrients20211311379810.3390/nu1311379834836054
    [Google Scholar]
  6. GubertiM. BottiS. CapuzzoM.T. NardoziS. FuscoA. CeraA. DugoL. PireddaM. De MarinisM.G. Bovine colostrum applications in sick and healthy people: A systematic review.Nutrients2021137219410.3390/nu1307219434202206
    [Google Scholar]
  7. PanahiY. FalahiG. FalahpourM. MoharamzadY. KhorasganiM.R. BeiraghdarF. NaghizadehM.M. Bovine colostrum in the management of nonorganic failure to thrive: A randomized clinical trial.J. Pediatr. Gastroenterol. Nutr.201050555155410.1097/MPG.0b013e3181b9130720639714
    [Google Scholar]
  8. MehraR. GarhwalR. SangwanK. GuinéR.P.F. LemosE.T. ButtarH.S. VisenP.K.S. KumarN. BhardwajA. KumarH. Insights into the research trends on bovine colostrum: Beneficial health perspectives with special reference to manufacturing of functional foods and feed supplements.Nutrients202214365910.3390/nu1403065935277018
    [Google Scholar]
  9. KotsisY. MikellidiA. ArestiC. PersiaE. SotiropoulosA. PanagiotakosD.B. AntonopoulouS. NomikosT. A low-dose, 6-week bovine colostrum supplementation maintains performance and attenuates inflammatory indices following a loughborough intermittent shuttle test in soccer players.Eur. J. Nutr.20185731181119510.1007/s00394‑017‑1401‑728285432
    [Google Scholar]
  10. Skarpańska-StejnbornA. CieślickaM. DziewieckaH. KujawskiS. MarcinkiewiczA. TrzeciakJ. BastaP. MaciejewskiD. LatourE. Effects of long-term supplementation of bovine colostrum on the immune system in young female basketball players. Randomized trial.Nutrients202013111810.3390/nu1301011833396972
    [Google Scholar]
  11. CostaA. SneddonN.W. GoiA. VisentinG. MammiL.M.E. SavarinoE.V. ZingoneF. FormigoniA. PenasaM. De MarchiM. Invited review: Bovine colostrum, a promising ingredient for humans and animals—Properties, processing technologies, and uses.J. Dairy Sci.202310685197521710.3168/jds.2022‑2301337268582
    [Google Scholar]
  12. BochniarzM. BłaszczykP. SzczubiałM. VasiuI. AdaszekŁ. MichalakK. Pietras-OżgaD. WochnikM. DąbrowskiR. Comparative analysis of total protein, casein, lactose, and fat content in milk of cows suffering from subclinical and clinical mastitis caused by Streptococcus spp.J. Vet. Res.202367225125710.2478/jvetres‑2023‑002838143829
    [Google Scholar]
  13. KehoeS.I. JayaraoB.M. HeinrichsA.J. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms.J. Dairy Sci.20079094108411610.3168/jds.2007‑004017699028
    [Google Scholar]
  14. DurhamS.D. WeiZ. LemayD.G. LangeM.C. BarileD. Creation of a milk oligosaccharide database, MilkOligoDB, reveals common structural motifs and extensive diversity across mammals.Sci. Rep.20231311034510.1038/s41598‑023‑36866‑y37365203
    [Google Scholar]
  15. ContariniG. PovoloM. PelizzolaV. MontiL. BruniA. PassolungoL. AbeniF. DeganoL. Bovine colostrum: Changes in lipid constituents in the first 5 days after parturition.J. Dairy Sci.20149785065507210.3168/jds.2013‑751724931528
    [Google Scholar]
  16. QuinnE.M. O’CallaghanT.F. TobinJ.T. MurphyJ.P. SugrueK. SlatteryH. O’DonovanM. HickeyR.M. Changes to the oligosaccharide profile of bovine milk at the onset of lactation.Dairy20201328429610.3390/dairy1030019
    [Google Scholar]
  17. CleminsonJ.S. ZalewskiS.P. EmbletonN.D. Nutrition in the preterm infant.Curr. Opin. Clin. Nutr. Metab. Care2016193110.1097/MCO.000000000000027027504517
    [Google Scholar]
  18. PereiraP.C. Milk nutritional composition and its role in human health.Nutrition201430661962710.1016/j.nut.2013.10.01124800664
    [Google Scholar]
  19. LefèvreC.M. SharpJ.A. NicholasK.R. Evolution of lactation: Ancient origin and extreme adaptations of the lactation system.Annu. Rev. Genomics Hum. Genet.201011121923810.1146/annurev‑genom‑082509‑14180620565255
    [Google Scholar]
  20. PowerM.L. SchulkinJ. Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation.Appl. Transl. Genomics20132556310.1016/j.atg.2013.06.00127896056
    [Google Scholar]
  21. SeroussiU. LugowskiA. WadiL. LaoR.X. WillisA.R. ZhaoW. SundbyA.E. CharlesworthA.G. ReinkeA.W. ClaycombJ.M. A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory networks and functions.eLife202312e8385310.7554/eLife.8385336790166
    [Google Scholar]
  22. Bofill-De RosX. Vang ØromU.A. Recent progress in miRNA biogenesis and decay.RNA Biol.20242111810.1080/15476286.2023.228874138031325
    [Google Scholar]
  23. LiC. YoonB. StefaniG. SlackF.J. Lipid kinase PIP5K1A regulates let-7 microRNA biogenesis through interacting with nuclear export protein XPO5.Nucleic Acids Res.202351189849986210.1093/nar/gkad70937655623
    [Google Scholar]
  24. Lagos-QuintanaM. RauhutR. MeyerJ. BorkhardtA. TuschlT. New microRNAs from mouse and human.RNA20039217517910.1261/rna.214690312554859
    [Google Scholar]
  25. KozomaraA. Griffiths-JonesS. miRBase: integrating microRNA annotation and deep-sequencing data.Nucleic Acids Res.201139DatabaseSuppl. 1D152D15710.1093/nar/gkq102721037258
    [Google Scholar]
  26. LeeC.T. RisomT. StraussW.M. Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny.DNA Cell Biol.200726420921810.1089/dna.2006.054517465887
    [Google Scholar]
  27. ChenX. GaoC. LiH. HuangL. SunQ. DongY. TianC. GaoS. DongH. GuanD. HuX. ZhaoS. LiL. ZhuL. YanQ. ZhangJ. ZenK. ZhangC.Y. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products.Cell Res.201020101128113710.1038/cr.2010.8020548333
    [Google Scholar]
  28. WeberJ.A. BaxterD.H. ZhangS. HuangD.Y. How HuangK. Jen LeeM. GalasD.J. WangK. The microRNA spectrum in 12 body fluids.Clin. Chem.201056111733174110.1373/clinchem.2010.14740520847327
    [Google Scholar]
  29. JacksonK.M. NazarA.M. Breastfeeding, the immune response, and long-term health.J. Am. Osteopath. Assoc.2006106420320716627775
    [Google Scholar]
  30. HasselbalchH. JeppesenD.L. EngelmannM.D.M. MichaelsenK.F. NielsenM.B. Decreased thymus size in formula‐fed infants compared with breastfed infants.Acta Paediatr.19968591029103210.1111/j.1651‑2227.1996.tb14211.x8888912
    [Google Scholar]
  31. EndresM. MoroM.A. NolteC.H. DamesC. BuckwalterM.S. MeiselA. Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke.Circ. Res.202213081167118610.1161/CIRCRESAHA.121.31999435420915
    [Google Scholar]
  32. EmeryH. ButtT.M. CoatesC.J. Nutraceutical intervention protects against bacterial and chemical-induced gastrotoxicity in a non-mammalian model, Galleria mellonella.Food Chem. Toxicol.202115411235410.1016/j.fct.2021.11235434146620
    [Google Scholar]
  33. KwonO.Y. LeeJ.S. ChoiH.S. HongH.P. JangK.H. PaekJ.H. KangS.A. KoY.G. Antioxidant and anticytokine effects of bovine colostrum in intestinal ischemia/reperfusion injured rat model.Food Sci. Biotechnol.20101951295130110.1007/s10068‑010‑0185‑9
    [Google Scholar]
  34. PlayfordR.J. MacDonaldC.E. CalnanD.P. FloydD.N. PodasT. JohnsonW. WicksA.C. BashirO. MarchbankT. Co-administration of the health food supplement, bovine colostrum, reduces the acute non-steroidal anti-inflammatory drug-induced increase in intestinal permeability.Clin. Sci.2001100662763310.1042/cs100062711352778
    [Google Scholar]
  35. GoldmanA.S. ThorpeL.W. GoldblumR.M. HansonL.A. Anti-inflammatory properties of human milk.Acta Paediatr.198675568969510.1111/j.1651‑2227.1986.tb10275.x3551484
    [Google Scholar]
  36. YadavR. AngolkarT. KaurG. ButtarH.S. Antibacterial and antiinflammatory properties of bovine colostrum.Recent Pat. Inflamm. Allergy Drug Discov.2016101495310.2174/187221481066616021916311826899853
    [Google Scholar]
  37. SethR DasA Colostrum powder and its health benefits.Compendium of lectures, winter school on chemical analysis of value-added dairy products and their quality assurance. Dairy chemistry division.National Dairy Research Institute, Deemed University20115967
    [Google Scholar]
  38. BagweS. TharappelL.J.P. KaurG. ButtarH.S. Bovine colostrum: An emerging nutraceutical.J. Complement. Integr. Med.201512317518510.1515/jcim‑2014‑003925781716
    [Google Scholar]
  39. JahantighM AtyabiN PourkabirM JebelliJA AfshariM The effect of dietary bovine colostrum supplementation on serum malondialdehyde levels and antioxidant activity in alloxan-induced diabetic rats.Int. J. Vet. Res.2011516367
    [Google Scholar]
  40. PanD. LiuH. Preventive effect of ordinary and hyperimmune bovine colostrums on mice diabetes induced by alloxan.Afr. J. Biotechnol.2008724
    [Google Scholar]
  41. ChantlerS. GriffithsA. MatuJ. DavisonG. HollidayA. JonesB. A systematic review: Role of dietary supplements on markers of exercise-associated gut damage and permeability.PLoS One2022174e026637910.1371/journal.pone.026637935417467
    [Google Scholar]
  42. AntonioJ. SandersM.S. Van GammerenD. The effects of bovine colostrum supplementation on body composition and exercise performance in active men and women.Nutrition200117324324710.1016/S0899‑9007(00)00552‑911312068
    [Google Scholar]
  43. MeroA. KähkönenJ. NykänenT. ParviainenT. JokinenI. TakalaT. NikulaT. RasiS. LeppäluotoJ. IGF-I, IgA, and IgG responses to bovine colostrum supplementation during training.J. Appl. Physiol.200293273273910.1152/japplphysiol.00002.200212133885
    [Google Scholar]
  44. GodhiaM. PatelN. Colostrum–its composition, benefits as a nutraceutical–A review.Curr. Res. Nutr. Food Sci.201311374710.12944/CRNFSJ.1.1.04
    [Google Scholar]
  45. MarchbankT. DavisonG. OakesJ.R. GhateiM.A. PattersonM. MoyerM.P. PlayfordR.J. The nutriceutical bovine colostrum truncates the increase in gut permeability caused by heavy exercise in athletes.Am. J. Physiol. Gastrointest. Liver Physiol.20113003G477G48410.1152/ajpgi.00281.201021148400
    [Google Scholar]
  46. ShingC.M. HunterD.C. StevensonL.M. Bovine colostrum supplementation and exercise performance: potential mechanisms.Sports Med.200939121033105410.2165/11317860‑000000000‑0000019902984
    [Google Scholar]
  47. SydneyA.C. IkedaI.K. de Oliveira RibeiroM.C. SydneyE.B. de Carvalho NetoD.P. KarpS.G. RodriguesC. SoccolC.R. Colostrum new insights: Products and processes.Current Developments in Biotechnology and Bioengineering.Elsevier202239742210.1016/B978‑0‑12‑823506‑5.00003‑5
    [Google Scholar]
  48. RonaZ.P. Bovine colostrum emerges as immune system modulator.Am J Nat Med.199831923
    [Google Scholar]
  49. KimJ.H. JungW.S. ChoiN.J. KimD.O. ShinD.H. KimY.J. Health-promoting effects of bovine colostrum in Type 2 diabetic patients can reduce blood glucose, cholesterol, triglyceride and ketones.J. Nutr. Biochem.200920429830310.1016/j.jnutbio.2008.04.00218602824
    [Google Scholar]
  50. WangX. GuoY. Effects of yak protein on athletes’ training effect and immune function.Invest. Clin.2020611448458
    [Google Scholar]
  51. Santos-PereiraC. RodriguesL.R. Côrte-RealM. Plasmalemmal V-ATPase as a potential biomarker for lactoferrin-based anticancer therapy.Biomolecules202212111910.3390/biom1201011935053267
    [Google Scholar]
  52. SabraS. AgwaM.M. Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications.Int. J. Biol. Macromol.20201641046106010.1016/j.ijbiomac.2020.07.16732707283
    [Google Scholar]
  53. LiuK.Y. ComstockS.S. ShunkJ.M. MonacoM.H. DonovanS.M. Natural killer cell populations and cytotoxic activity in pigs fed mother’s milk, formula, or formula supplemented with bovine lactoferrin.Pediatr. Res.201374440240710.1038/pr.2013.12523868366
    [Google Scholar]
  54. Bagwe-ParabS. YadavP. KaurG. TuliH.S. ButtarH.S. Therapeutic applications of human and bovine colostrum in the treatment of gastrointestinal diseases and distinctive cancer types: The current evidence.Front. Pharmacol.2020110110010.3389/fphar.2020.0110033071773
    [Google Scholar]
  55. MosconiE. RekimaA. Seitz-PolskiB. KandaA. FleuryS. TissandieE. MonteiroR. DombrowiczD.D. JuliaV. GlaichenhausN. VerhasseltV. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.Mucosal Immunol.20103546147410.1038/mi.2010.2320485331
    [Google Scholar]
  56. ChenC.N. LinY.C. HoS.R. FuC.M. ChouA.K. YangY.H. Association of exclusive breastfeeding with asthma risk among preschool children: An analysis of national health and nutrition examination survey data, 1999 to 2014.Nutrients20221420425010.3390/nu1420425036296941
    [Google Scholar]
  57. SozańskaB. Raw cow’s milk and its protective effect on allergies and asthma.Nutrients201911246910.3390/nu1102046930813365
    [Google Scholar]
  58. van NeervenR.J.J. The effects of milk and colostrum on allergy and infection: Mechanisms and implications.Anim. Front.201442162210.2527/af.2014‑0010
    [Google Scholar]
  59. UlfmanL.H. LeusenJ.H.W. SavelkoulH.F.J. WarnerJ.O. van NeervenR.J.J. Effects of bovine immunoglobulins on immune function, allergy, and infection.Front. Nutr.201855210.3389/fnut.2018.0005229988421
    [Google Scholar]
  60. WongC. O033 Bovine colostrum as an adjunct therapy in the control of allergic respiratory disease in children.Ann. Allergy Asthma Immunol.20161175Suppl. 12S1210.1016/j.anai.2016.09.393
    [Google Scholar]
  61. Oloroso-ChavezK. AndayaP. WongC. OR082 Bovine colostrum supplementation in respiratory allergies according to sensitization: Subgroup analysis of randomized controlled trial.Ann. Allergy Asthma Immunol.20171195S11S1210.1016/j.anai.2017.08.062
    [Google Scholar]
  62. PaytonE. KhubchandaniJ. ThompsonA. PriceJ.H. Parents’ expectations of high schools in firearm violence prevention.J. Community Health20174261118112610.1007/s10900‑017‑0360‑528527100
    [Google Scholar]
  63. TayM.Z. PohC.M. RéniaL. MacAryP.A. NgL.F.P. The trinity of COVID-19: Immunity, inflammation and intervention.Nat. Rev. Immunol.202020636337410.1038/s41577‑020‑0311‑832346093
    [Google Scholar]
  64. CarvalhoC.A. CassebS.M. GonçalvesR.B. SilvaE.V. GomesA.M. VasconcelosP.F. Bovine lactoferrin activity against chikungunya and Zika viruses.bioRxiv201607157110.1101/071571
    [Google Scholar]
  65. AhvanooeiM.R.R. NorouzianM.A. VahmaniP. Beneficial effects of vitamins, minerals, and bioactive peptides on strengthening the immune system against COVID-19 and the role of cow’s milk in the supply of these nutrients.Biol. Trace Elem. Res.2022200114664467710.1007/s12011‑021‑03045‑x34837602
    [Google Scholar]
  66. YadavP. AroraS. DeyM. KumarT. LalH. PrasadN. SrivastavaA. Renal allograft dysfunction secondary to ureterolithiasis: Diagnosis and management.Indian J Transplant.2016102495110.1016/j.ijt.2016.03.011
    [Google Scholar]
  67. LinT. MeletharayilG. KapoorR. AbbaspourradA. Bioactives in bovine milk: Chemistry, technology, and applications.Nutr. Rev.202179Suppl. 2486910.1093/nutrit/nuab09934879147
    [Google Scholar]
  68. KorhonenHJ Bioactive milk proteins, peptides and lipids and other functional components derived from milk and bovine colostrum.Functional foods Woodhead Publishing201147151110.1533/9780857092557.3.471
    [Google Scholar]
  69. DumanH. KaravS. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19.Front. Immunol.202314121451410.3389/fimmu.2023.121451437908368
    [Google Scholar]
  70. KhartodeS.S. Early recovery of COVID-19 patients by using immunoglobulins present in cow colostrum food supplement-A clinical study.J. Res. Med. Dent. Sci.20219186198
    [Google Scholar]
  71. KramskiM. CenterR.J. WheatleyA.K. JacobsonJ.C. AlexanderM.R. RawlinG. PurcellD.F.J. Hyperimmune bovine colostrum as a low-cost, large-scale source of antibodies with broad neutralizing activity for HIV-1 envelope with potential use in microbicides.Antimicrob. Agents Chemother.20125684310431910.1128/AAC.00453‑1222664963
    [Google Scholar]
  72. WongE.B. MalletJ.F. DuarteJ. MatarC. RitzB.W. Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4.Nutr. Res.201434431832510.1016/j.nutres.2014.02.00724774068
    [Google Scholar]
  73. XuML KimHJ WiGR KimHJ The effect of dietary bovine colostrum on respiratory syncytial virus infection and immune responses following the infection in the mouse.J. Microbiol.201553661666
    [Google Scholar]
  74. IshayY. PotruchA. Weksler-ZangenS. ShabatY. IlanY. Augmented antiviral T cell immunity by oral administration of IMM‐124E in preclinical models and a phase I/ IIa clinical trial: A method for the prevention and treatment of COVID ‐19.Drug Dev. Res.2021833ddr.2189010.1002/ddr.2189034596893
    [Google Scholar]
  75. NederendM. van StigtA.H. JansenJ.H.M. JacobinoS.R. BrugmanS. de HaanC.A.M. BontL.J. van NeervenR.J.J. LeusenJ.H.W. Bovine igg prevents experimental infection with rsv and facilitates human t cell responses to RSV.Front. Immunol.202011170110.3389/fimmu.2020.0170132849597
    [Google Scholar]
  76. LaneJ.A. MariñoK. NaughtonJ. KavanaughD. ClyneM. CarringtonS.D. HickeyR.M. Anti-infective bovine colostrum oligosaccharides: Campylobacter jejuni as a case study.Int. J. Food Microbiol.2012157218218810.1016/j.ijfoodmicro.2012.04.02722647676
    [Google Scholar]
  77. Baśkiewicz-HałasaM. StachowskaE. GrochansE. Maciejewska-MarkiewiczD. BühnerL. Skonieczna-ŻydeckaK. HałasaM. Moderate dose bovine colostrum supplementation in prevention of upper respiratory tract infections in medical university students: A randomized, triple blind, placebo-controlled trial.Nutrients2023158192510.3390/nu1508192537111143
    [Google Scholar]
  78. KaducuF.O. OkiaS.A. UpenythoG. ElfstrandL. FlorénC.H. Effect of bovine colostrum-based food supplement in the treatment of HIV-associated diarrhea in Northern Uganda: A randomized controlled trial.Indian J. Gastroenterol.201130627027610.1007/s12664‑011‑0146‑022161540
    [Google Scholar]
  79. NiliH. BouzariM. AttaranH.R. GhalegolabN. RabaniM. MahmoudianA. Hyper-immune bovine milk as an immunological and nutritional supplement for COVID-19.Front. Nutr.2022986896410.3389/fnut.2022.86896435799590
    [Google Scholar]
  80. KangroK. KurašinM. GildemannK. SankovskiE. ŽusinaiteE. LelloL.S. PertR. KavakA. PoikalainenV. LepasaluL. KuuskM. PauR. PiiskopS. RomS. OltjerR. TiirikK. KogermannK. PlaasM. TiiratsT. AasmäeB. PlaasM. MummK. KrinkaD. TalpsepE. KadajaM. GerholdJ.M. PlankenA. ToverA. MeritsA. MännikA. UstavM.Jr UstavM. Bovine colostrum-derived antibodies against SARS-CoV-2 show great potential to serve as prophylactic agents.PLoS One2022176e026880610.1371/journal.pone.026880635687549
    [Google Scholar]
  81. MannJ.K. ReddyT. der StokM. NgubaneA. MulaudziT. MchunuN. NevhungoniP. ManickchundN. ManickchundP. Louise CairnsC.H. GovenderV. Ndung’uT. Suleman MoosaM.Y. GosnellB.I. Hen egg white bovine colostrum supplement reduces symptoms of mild/moderate COVID-19: A randomized control trial.Future Sci. OA202398FSO88210.2144/fsoa‑2023‑002437621850
    [Google Scholar]
  82. BarakatS.H. MeheissenM.A. OmarO.M. ElbanaD.A. Bovine colostrum in the treatment of acute diarrhea in children: A double-blinded randomized controlled trial.J. Trop. Pediatr.2020661465531168590
    [Google Scholar]
  83. GraikiniD. ConesaC. AbadI. PérezM.D. SánchezL. Evaluation of in vitro antirotaviral activity of lactoferrin from different species using a human intestinal model.Int. Dairy J.202414910581810.1016/j.idairyj.2023.105818
    [Google Scholar]
  84. KaurG. GathwalaG. Efficacy of bovine lactoferrin supplementation in preventing late-onset sepsis in low birth weight neonates: A randomized placebo-controlled clinical trial.J. Trop. Pediatr.201561537037610.1093/tropej/fmv04426224129
    [Google Scholar]
  85. CampioneE. LannaC. CosioT. RosaL. ConteM.P. IacovelliF. RomeoA. FalconiM. Del VecchioC. FranchinE. LiaM.S. MinieriM. ChiaramonteC. CiottiM. NuccetelliM. TerrinoniA. IannuzziI. CoppetaL. MagriniA. BernardiniS. SabatiniS. RosapepeF. BartolettiP.L. MoriccaN. Di LorenzoA. AndreoniM. SarmatiL. MianiA. PiscitelliP. SquillaciE. ValentiP. BianchiL. Lactoferrin as antiviral treatment in COVID-19 management: Preliminary evidence.Int. J. Environ. Res. Public Health202118201098510.3390/ijerph18201098534682731
    [Google Scholar]
  86. MehraR. SinghR. NayanV. ButtarH.S. KumarN. KumarS. BhardwajA. KaushikR. KumarH. Nutritional attributes of bovine colostrum components in human health and disease: A comprehensive review.Food Biosci.20214010090710.1016/j.fbio.2021.100907
    [Google Scholar]
  87. LinehanK. RossR.P. StantonC. Bovine colostrum for veterinary and human health applications: A critical review.Annu. Rev. Food Sci. Technol.202314138741010.1146/annurev‑food‑060721‑01465036972163
    [Google Scholar]
  88. ArslanA. KaplanM. DumanH. BayraktarA. ErtürkM. HenrickB.M. FreseS.A. KaravS. Bovine colostrum and its potential for human health and nutrition.Front. Nutr.2021865172110.3389/fnut.2021.65172134235166
    [Google Scholar]
  89. MatkarimovaD.A. Prevention and significance of infectious diseases in animals.Results of National Scientific Research International Journal.2023210106118
    [Google Scholar]
  90. BlumJ.W. Nutritional physiology of neonatal calves.J. Anim. Physiol. Anim. Nutr.2006901-211110.1111/j.1439‑0396.2005.00614.x16422763
    [Google Scholar]
  91. AhmannJ. Steinhoff-WagnerJ. BüscherW. Determining immunoglobulin content of bovine colostrum and factors affecting the outcome: A review.Animals20211112358710.3390/ani1112358734944362
    [Google Scholar]
  92. GeigerA.J. Colostrum: Back to basics with immunoglobulins.J. Anim. Sci.202098Suppl. 1S126S13210.1093/jas/skaa14232810237
    [Google Scholar]
  93. OntsoukaC.E. BruckmaierR.M. BlumJ.W. Fractionized milk composition during removal of colostrum and mature milk.J. Dairy Sci.20038662005201110.3168/jds.S0022‑0302(03)73789‑812836936
    [Google Scholar]
  94. LindleyG. BoothR. MahendranS. WathesC. BlackieN. Colostrum quality and composition.Livestock202328161210.12968/live.2023.28.1.6
    [Google Scholar]
  95. YangM. ZouY. WuZ.H. LiS.L. CaoZ.J. Colostrum quality affects immune system establishment and intestinal development of neonatal calves.J. Dairy Sci.201598107153716310.3168/jds.2014‑923826233454
    [Google Scholar]
  96. KolumanN GöncüS AnitaşÖ ÖzoğulY BozkurtS. Cow, Sheep and Goat Colostrum Content ComparisonsCAPPADOCIA, TURKEY2019233
    [Google Scholar]
  97. RauprichA.B. HammonH.M. BlumJ.W. Influence of feeding different amounts of first colostrum on metabolic, endocrine, and health status and on growth performance in neonatal calves.J. Anim. Sci.200078489690810.2527/2000.784896x10784179
    [Google Scholar]
  98. AhmadiM BolduraO MilovanovC DroncaD MircuC HuțuI PopescuS PădeanuI TulcanC Colostrum from different animal species-a product for health status enhancement.Anim Sci Biotechnol2016731710.15835/buasvmcn‑asb:11949
    [Google Scholar]
  99. BrenmoehlJ. OhdeD. WirthgenE. HoeflichA. Cytokines in milk and the role of TGF-beta.Best Pract. Res. Clin. Endocrinol. Metab.2018321475610.1016/j.beem.2018.01.00629549959
    [Google Scholar]
  100. PlayfordR.J. MacdonaldC.E. JohnsonW.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders.Am. J. Clin. Nutr.200072151410.1093/ajcn/72.1.510871554
    [Google Scholar]
/content/journals/npj/10.2174/0122103155310246240603074349
Loading
/content/journals/npj/10.2174/0122103155310246240603074349
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test