Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Plant tissue culture is a process of regeneration requiring numerous resources and intensive labour to mass produce disease-free clones. Diverse factors such as sterilizing agents, media composition, and environmental conditions contribute toward successful regeneration and decide the production, such as the total shoot number, shoot length, rooting, and adaptation of plants to the external environment. Plant tissue culture, the successful induction of rapid shoot production, and subsequent root formation in plants are influenced by the utilization of appropriate growing conditions customized to each specific explant type. By carefully manipulating environmental factors, such as temperature, light, and nutrient availability, it is possible to stimulate the growth and development of new shoots in a time-efficient manner. This strategic combination of optimal growing conditions and hormone supplementation holds great promise in the domain of efficient propagation of plants through tissue culture techniques. The recent progress in artificial techniques such as artificial neural networks (ANN) and machine learning (ML) algorithms has presented promising opportunities for the development of sustainable and precise plant tissue culture processes. These techniques are widely recognized as robust techniques for assessing outcomes and enhancing the accuracy of predicting outputs in the domain of plant tissue culture. AI techniques and optimization algorithms have been applied to predict and optimize callogenesis, embryogenesis, several shoots, shoot length, hairy root culture, rooting, and plant acclimatization by helping predict sterilizing conditions, optimal culture conditions, and formulation of a suitable medium. Patents, modeling, and formulation of each stage of plant tissue culture using tools like artificial neural networks (ANNs), neuro-fuzzy logic, support vector machines (SVMs), decision trees (DT), random forests (FR), and genetic algorithms (GA) are presented.

Conclusion

In this article, the current state of Artificial Intelligence (AI) algorithms, including their applications in all elements of plant tissue culture, as well as the patents that have been gained for these algorithms, are dissected in great detail.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155302871240527094915
2024-06-04
2025-01-31
Loading full text...

Full text loading...

References

  1. LealE.C.A. GarzaP.C.A. LaraG.S. in vitro plant tissue culture: Means for production of biological active compounds.Planta2018248111810.1007/s00425‑018‑2910‑1 29736623
    [Google Scholar]
  2. BidabadiS.S. JainS.M. Cellular, molecular, and physiological aspects of in vitro plant regeneration.Plants20209670210.3390/plants9060702 32492786
    [Google Scholar]
  3. De FossardR.A. Principles of plant tissue culture.Tissue culture as a plant production system for horticultural crops.Springer198611310.1007/978‑94‑009‑4444‑2_1
    [Google Scholar]
  4. HussainA. QarshiI.A. NazirH. UllahI. Plant tissue culture: Current status and opportunities. Recent Adv Plant in vitro.Culture20121128
    [Google Scholar]
  5. BhojwaniS.S. DantuP.K. Micropropagation.Plant tissue culture: An introductory text.Springer201324527410.1007/978‑81‑322‑1026‑9_17
    [Google Scholar]
  6. AhloowaliaB.S. PrakashJ. SavangikarV.A. SavangikarC. Low cost options for tissue culture technology in developing countries.Proceedings of a Technical Meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and held in Vienna26–30 August 2002, ViennaAustria2004
    [Google Scholar]
  7. ArabM.M. YadollahiA. ShojaeiyanA. AhmadiH. Artificial neural network genetic algorithm as powerful tool to predict and optimize in vitro proliferation mineral medium for G×N15 rootstock.Front. Plant Sci.20167152610.3389/fpls.2016.01526 27807436
    [Google Scholar]
  8. HaberlandtG. Culture experiments with isolated plant cells, sessile. Acad. D. Scient.Mathermatusch-Scient.19021902c169
    [Google Scholar]
  9. ChimdessaE. Composition and preparation of plant tissue culture medium.Tissue Cult Bio Bioeng20203120
    [Google Scholar]
  10. GagoJ. TorneroP.O. LandínM. BurgosL. GallegoP.P. Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: A practical case of data mining using apricot databases.J. Plant Physiol.2011168151858186510.1016/j.jplph.2011.04.008 21676490
    [Google Scholar]
  11. GamborgO.L. MurashigeT. ThorpeT.A. VasilI.K. Plant tissue culture media.in vitro197612747347810.1007/BF02796489 965014
    [Google Scholar]
  12. GeorgeE.F. HallM.A. De KlerkG.J. The components of plant tissue culture media I: macro-and micro-nutrients.Plant propagation by tissue culture.Springer200865113
    [Google Scholar]
  13. da SilvaT.J.A. AlanaghN.E. BarrealM.E. KherM.M. WicaksonoA. GulyásA. HidvégiN. TáboriM.K. DrienyovszkiM.N. MártonL. LandínM. GallegoP.P. DriverJ.A. DobránszkiJ. Shoot tip necrosis of in vitro plant cultures: A reappraisal of possible causes and solutions.Planta202025234710.1007/s00425‑020‑03449‑4 32885282
    [Google Scholar]
  14. CaponettiJ.D. GrayD.J. TrigianoR.N. History of plant tissue and cell culture.Plant Tissue Culture.3rd edElsevier2018
    [Google Scholar]
  15. RafiqS. RatherZ.A. BhatR.A. NazkiI.T. AL-Harbi, M.S.; Banday, N.; Farooq, I.; Samra, B.N.; Khan, M.H.; Ahmed, A.F.; Andrabi, N. Standardization of in vitro micropropagation procedure of oriental lilium hybrid Cv. ‘Ravenna’.Saudi J. Biol. Sci.202128127581758710.1016/j.sjbs.2021.09.064 34867062
    [Google Scholar]
  16. ElemikeE. UzohI. OnwudiweD. BabalolaO. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production.Appl. Sci.20199349910.3390/app9030499
    [Google Scholar]
  17. HarrellR.C. HoodC.F. MoltóE. MunillaR. BieniekM. CantliffeD.J. Machine vision based analysis and harvest of somatic embryos.Comput. Electron. Agric.199391132310.1016/0168‑1699(93)90026‑W
    [Google Scholar]
  18. De MiccoV. AmitranoC. MastroleoF. AronneG. BattistelliA. Carnero-DiazE. De PascaleS. DetrellG. DussapC.G. GaniguéR. JakobsenØ.M. PouletL. Van HoudtR. VerseuxC. VlaeminckS.E. WillaertR. LeysN. Plant and microbial science and technology as cornerstones to bioregenerative life support systems in space.NPJ Microgravity2023916910.1038/s41526‑023‑00317‑9 37620398
    [Google Scholar]
  19. GagoJ. NúñezM.L. LandínM. GallegoP.P. Artificial neural networks as an alternative to the traditional statistical methodology in plant research.J. Plant Physiol.20101671232710.1016/j.jplph.2009.07.007 19716625
    [Google Scholar]
  20. ComptonM.E. Statistical analysis of plant tissue culture data.Plant Tissue Culture Concepts and Laboratory Exercises.Springer20186172
    [Google Scholar]
  21. KniefU. ForstmeierW. Violating the normality assumption may be the lesser of two evils.Behav. Res. Methods20215362576259010.3758/s13428‑021‑01587‑5 33963496
    [Google Scholar]
  22. GagoJ. LandínM. GallegoP.P. A neurofuzzy logic approach for modeling plant processes: A practical case of in vitro direct rooting and acclimatization of Vitis vinifera L.Plant Sci.2010179324124910.1016/j.plantsci.2010.05.009
    [Google Scholar]
  23. GallegoP.P. GagoJ. LandínM. Artificial neural network technology to model and predict plant biology process.Artificial Neural Networks-Methodological and Biomedical Applications. SuzukiK. CroatiaIntech Open Access Publisher2011197216
    [Google Scholar]
  24. ZhaoL. WalkowiakS. FernandoW.G.D. Artificial intelligence: A promising tool in exploring the phytomicrobiome in managing disease and promoting plant health.Plants2023129185210.3390/plants12091852 37176910
    [Google Scholar]
  25. SharmaV. TsaiM.L. ChenC.W. SunP.P. NargotraP. DongC.D. Advances in machine learning technology for sustainable biofuel production systems in lignocellulosic biorefineries.Sci. Total Environ.202388616397210.1016/j.scitotenv.2023.163972 37164089
    [Google Scholar]
  26. HesamiM. NaderiR. NajafabadiY.M. RahmatiM. Data-driven modeling in plant tissue culture.J. Appl. Environ. Biol. Sci.2017783744
    [Google Scholar]
  27. HesamiM. NaderiR. TohidfarM. Modeling and optimizing in vitro sterilization of chrysanthemum via multilayer perceptron-non-dominated sorting genetic algorithm-II (MLP-NSGAII).Front. Plant Sci.20191028210.3389/fpls.2019.00282 30923529
    [Google Scholar]
  28. CarabantesM. Black-box artificial intelligence: An epistemological and critical analysis.AI Soc.202035230931710.1007/s00146‑019‑00888‑w
    [Google Scholar]
  29. JiB. XuanL. ZhangY. MuW. PaekK.Y. ParkS.Y. WangJ. GaoW. Application of data modeling, instrument engineering and nanomaterials in selected medid the scientific recinal plant tissue culture.Plants2023127150510.3390/plants12071505 37050131
    [Google Scholar]
  30. ErtelW. Introduction to artificial intelligence.Springer2018
    [Google Scholar]
  31. SarkerI.H. AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems.SN Comput. Sci.20223215810.1007/s42979‑022‑01043‑x 35194580
    [Google Scholar]
  32. QuaziS. Artificial intelligence and machine learning in precision and genomic medicine.Med. Oncol.202239812010.1007/s12032‑022‑01711‑1 35704152
    [Google Scholar]
  33. AlzubaidiL. ZhangJ. HumaidiA.J. Al-DujailiA. DuanY. ShammaA.O. SantamaríaJ. FadhelM.A. AmidieA.M. FarhanL. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions.J. Big Data2021815310.1186/s40537‑021‑00444‑8 33816053
    [Google Scholar]
  34. PrakashO. MehrotraS. KrishnaA. MishraB.N. A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures.J. Theor. Biol.2010265457958510.1016/j.jtbi.2010.05.020 20561985
    [Google Scholar]
  35. DiasF.M. AntunesA. MotaA.M. Artificial neural networks: A review of commercial hardware.Eng. Appl. Artif. Intell.200417894595210.1016/j.engappai.2004.08.011
    [Google Scholar]
  36. DingS. LiH. SuC. YuJ. JinF. Evolutionary artificial neural networks: A review.Artif. Intell. Rev.201339325126010.1007/s10462‑011‑9270‑6
    [Google Scholar]
  37. CabanerosS.M. CalautitJ.K. HughesB.R. A review of artificial neural network models for ambient air pollution prediction.Environ. Model. Softw.201911928530410.1016/j.envsoft.2019.06.014
    [Google Scholar]
  38. DayhoffJ.E. DeLeoJ.M. Artificial neural networks.Cancer200191S81615163510.1002/1097‑0142(20010415)91:8+<1615::AID‑CNCR1175>3.0.CO;2‑L 11309760
    [Google Scholar]
  39. GrossiE. BuscemaM. Introduction to artificial neural networks.Eur. J. Gastroenterol. Hepatol.200719121046105410.1097/MEG.0b013e3282f198a0 17998827
    [Google Scholar]
  40. LeeD.H. KimY.T. LeeS.R. Shallow landslide susceptibility models based on artificial neural networks considering the factor selection method and various non-linear activation functions.Remote Sens.2020127119410.3390/rs12071194
    [Google Scholar]
  41. KarlikB. OlgacA.V. Performance analysis of various activation functions in generalized MLP architectures of neural networks.Int J Artif Intelligence Exp Syst201114111122
    [Google Scholar]
  42. FunahashiK.I. On the approximate realization of continuous mappings by neural networks.Neural Netw.19892318319210.1016/0893‑6080(89)90003‑8
    [Google Scholar]
  43. GardnerM.W. DorlingS.R. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences.Atmos. Environ.19983214-152627263610.1016/S1352‑2310(97)00447‑0
    [Google Scholar]
  44. AliJ. KhanR. AhmadN. MaqsoodI. Random forests and decision trees.Int J Computer Sci Issues201295272
    [Google Scholar]
  45. ZarbakhshS. ShahsavarA.R. Artificial neural network-based model to predict the effect of γ-aminobutyric acid on salinity and drought responsive morphological traits in pomegranate.Sci. Rep.20221211666210.1038/s41598‑022‑21129‑z 36198905
    [Google Scholar]
  46. AbiodunOI JantanA OmolaraAE DadaKV UmarAM LinusOU ArshadH KazaureAA GanaUM KiruMU Comprehensive review of artificial neural network applications to pattern recognition.IEEE Access2019715882015884610.1109/ACCESS.2019.2945545
    [Google Scholar]
  47. BrownleeJ. Supervised and unsupervised machine learning algorithms.2023Available from: https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/ (Accessed on: 5th November 2023).
    [Google Scholar]
  48. Types of learning rules in ANN.Available from: https://www.geeksforgeeks.org/types-of-learning-rules-in-ann/ (Accessed on: 5th November 2023).
  49. DharwalR. KaurL. Applications of artificial neural networks: A review.Indian J. Sci. Technol.2016911810.17485/ijst/2016/v9i47/106807
    [Google Scholar]
  50. AhsanM.M. LunaS.A. SiddiqueZ. Machine-learning-based disease diagnosis: A comprehensive review.Health Care202210354110.3390/healthcare10030541 35327018
    [Google Scholar]
  51. BrownleeJ. How to code a neural network with backpropagation in python (from scratch).2023Available from: https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/ (Accessed on: 5th November 2023).
  52. MorenoJ.M. SánchezJ.M. EspitiaH.E. Use of computational intelligence techniques to predict flooding in places adjacent to the magdalena river.Heliyon202069e0487210.1016/j.heliyon.2020.e04872 32984593
    [Google Scholar]
  53. AlzubiJ. NayyarA. KumarA. Machine learning from theory to algorithms: An overview.J. Phys.201811421012012
    [Google Scholar]
  54. TayeM.M. Understanding of machine learning with deep learning: Architectures, workflow, applications and future directions.Computers20231259110.3390/computers12050091
    [Google Scholar]
  55. HassaniS. DackermannU. A systematic review of optimization algorithms for structural health monitoring and optimal sensor placement.Sensors2023236329310.3390/s23063293 36992004
    [Google Scholar]
  56. MacKayK. KusalikA. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.Brief. Funct. Genomics202019429230810.1093/bfgp/elaa004 32353112
    [Google Scholar]
  57. GuyonI. WestonJ. BarnhillS. VapnikV. Gene selection for cancer classification using support vector machines.Mach. Learn.2002461/338942210.1023/A:1012487302797
    [Google Scholar]
  58. Burgos-ArtizzuX.P. RibeiroA. GuijarroM. PajaresG. Real-time image processing for crop/weed discrimination in maize fields.Comput. Electron. Agric.201175233734610.1016/j.compag.2010.12.011
    [Google Scholar]
  59. TufailS. RiggsH. TariqM. SarwatA.I. Advancements and challenges in machine learning: A comprehensive review of models, libraries, applications, and algorithms.Electronics2023128178910.3390/electronics12081789
    [Google Scholar]
  60. MaxwellA.E. WarnerT.A. FangF. Implementation of machine-learning classification in remote sensing: An applied review.Int. J. Remote Sens.20183992784281710.1080/01431161.2018.1433343
    [Google Scholar]
  61. PiroozniaM. DengY. SVM Classifier – A comprehensive java interface for support vector machine classification of microarray data.BMC Bioinformatics20067S4S2510.1186/1471‑2105‑7‑S4‑S25 17217518
    [Google Scholar]
  62. NguyenT.M.T. BuiL.D. DoT.N. Decision trees using local support vector regression models for large datasets.J. Inform. Telecommun.202041173510.1080/24751839.2019.1686682
    [Google Scholar]
  63. YangZ.R. Biological applications of support vector machines.Brief. Bioinform.20045432833810.1093/bib/5.4.328 15606969
    [Google Scholar]
  64. ZhaoW. LaiX. LiuD. ZhangZ. MaP. WangQ. ZhangZ. PanY. Applications of support vector machine in genomic prediction in pig and maize populations.Front. Genet.20201159831810.3389/fgene.2020.598318 33343636
    [Google Scholar]
  65. Support vector machine algorithm.Available from: https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
  66. CortesC. VapnikV. Support-vector networks.Mach. Learn.199520327329710.1007/BF00994018
    [Google Scholar]
  67. AriaM. CuccurulloC. GnassoA. A comparison among interpretative proposals for Random Forests.Mach. Learn. Appl.2021610009410.1016/j.mlwa.2021.100094
    [Google Scholar]
  68. FuM. ZhangC. HuC. WuT. DongJ. ZhuL. Achieving verifiable decision tree prediction on hybrid blockchains.Entropy2023257105810.3390/e25071058 37510005
    [Google Scholar]
  69. AkkadK. MehboobH. AlyamaniR. TarlochanF. A machine-learning-based approach for predicting mechanical performance of semi-porous hip stems.J. Funct. Biomater.202314315610.3390/jfb14030156 36976080
    [Google Scholar]
  70. AnQ. RahmanS. ZhouJ. KangJ.J. A comprehensive review on machine learning in healthcare industry: Classification, restrictions, opportunities and challenges.Sensors2023239417810.3390/s23094178 37177382
    [Google Scholar]
  71. CorchadoJ.M. AikenJ. Hybrid artificial intelligence methods in oceanographic forecast models.IEEE Trans. Syst. Man Cybern. C200232430731310.1109/TSMCC.2002.806072
    [Google Scholar]
  72. ElbazK. ShenS.L. ZhouA. YuanD.J. XuY.S. Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm.Appl. Sci.20199478010.3390/app9040780
    [Google Scholar]
  73. JamshidiS. YadollahiA. ArabM.M. SoltaniM. EftekhariM. ShiriJ. High throughput mathematical modeling and multi-objective evolutionary algorithms for plant tissue culture media formulation: Case study of pear rootstocks.PLoS One20201512e024394010.1371/journal.pone.0243940 33338074
    [Google Scholar]
  74. DuC.T.T. WolfeP.M. The amalgamation of neural networks and fuzzy logic systems - A survey.Computers Indust Training1995291-4193197
    [Google Scholar]
  75. MathurN. GleskI. BuisA. Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses.Med. Eng. Phys.201638101083108910.1016/j.medengphy.2016.07.003 27452775
    [Google Scholar]
  76. HesamiM. JonesA.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture.Appl. Microbiol. Biotechnol.2020104229449948510.1007/s00253‑020‑10888‑2 32984921
    [Google Scholar]
  77. ArabM.M. YadollahiA. EftekhariM. AhmadiH. AkbariM. KhoramiS.S. Modeling and optimizing a new culture medium for in vitro rooting of G× N15 Prunus rootstock using artificial neural network genetic algorithm.Sci. Rep.201881997710.1038/s41598‑018‑27858‑4 29311619
    [Google Scholar]
  78. HaqE. AhmadI. HussainA. AlmanjahieI.M. A novel selection approach for genetic algorithms for global optimization of multimodal continuous functions.Comput. Intell. Neurosci.2019201911410.1155/2019/8640218 31885532
    [Google Scholar]
  79. HassanatA. AlmohammadiK. AlkafaweenE. AbunawasE. HammouriA. PrasathV.B.S. Choosing mutation and crossover ratios for genetic algorithms - A review with a new dynamic approach.Information2019101239010.3390/info10120390
    [Google Scholar]
  80. KatochS. ChauhanS.S. KumarV. A review on genetic algorithm: Past, present, and future.Multimedia Tools Appl.20218058091812610.1007/s11042‑020‑10139‑6 33162782
    [Google Scholar]
  81. ParvazeS. KumarR. KhanJ.N. AnsariA.N. ParvazeS. VishwakarmaD.K. ElbeltagiA. KuriqiA. Optimization of water distribution systems using genetic algorithms: A review.Arch. Comput. Methods Eng.20233074209424410.1007/s11831‑023‑09944‑7
    [Google Scholar]
  82. IvashchukO.A. FedorovaV.I. ShcherbininaN.V. MaslovaE.V. ShamraevaE.O. ZhuravlevM.D. Microclonal propagation of plant process modeling and optimization of its parameters based on neural network.Drug Invent. Today201810316
    [Google Scholar]
  83. AasimM. KatırcıR. AkgurO. YildirimB. MustafaZ. NadeemM.A. BalochF.S. KarakoyT. YılmazG. Machine learning (ML) algorithms and artificial neural network for optimizing in vitro germination and growth indices of industrial hemp (Cannabis sativa L.).Ind. Crops Prod.202218111480110.1016/j.indcrop.2022.114801
    [Google Scholar]
  84. PepeM. HesamiM. JonesA.M.P. Machine Learning-Mediated development and optimization of disinfection protocol and scarification method for improved in vitro germination of cannabis seeds.Plants20211011239710.3390/plants10112397 34834760
    [Google Scholar]
  85. RezaeiH. Mirzaie-aslA. AbdollahiM.R. TohidfarM. Comparative analysis of different artificial neural networks for predicting and optimizing in vitro seed germination and sterilization of petunia.PLoS One2023185e028565710.1371/journal.pone.0285657 37167278
    [Google Scholar]
  86. LataH. ChandraS. KhanI.A. ElSohlyM.A. In vitro propagation of Cannabis sativa L. and evaluation of regenerated plants for genetic fidelity and cannabinoids content for quality assurance.Methods Mol. Biol.2016139127528810.1007/978‑1‑4939‑3332‑7_19 27108324
    [Google Scholar]
  87. HesamiM. NaderiR. TohidfarM. NajafabadiY.M. Application of adaptive neuro-fuzzy inference system-nondominated sorting genetic algorithm-II (ANFIS-NSGAII) for modeling and optimizing somatic embryogenesis of Chrysanthemum.Front. Plant Sci.20191086910.3389/fpls.2019.00869 31333705
    [Google Scholar]
  88. HamegR. ArtetaT.A. LandinM. GallegoP.P. BarrealM.E. Modeling and optimizing culture medium mineral composition for in vitro propagation of Actinidia arguta.Front. Plant Sci.20201155490510.3389/fpls.2020.554905 33424873
    [Google Scholar]
  89. JamshidiS. YadollahiA. AhmadiH. ArabM.M. EftekhariM. Predicting in vitro culture medium macro-nutrients composition for pear rootstocks using regression analysis and neural network models.Front. Plant Sci.2016727410.3389/fpls.2016.00274 27066013
    [Google Scholar]
  90. JamshidiS. YadollahiA. ArabM.M. SoltaniM. EftekhariM. SabzalipoorH. SheikhiA. ShiriJ. Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation.Plant Methods201915113610.1186/s13007‑019‑0520‑y 31832078
    [Google Scholar]
  91. Nezami-AlanaghE. GaroosiG.A. MalekiS. LandínM. GallegoP.P. Predicting optimal in vitro culture medium for Pistacia vera micropropagation using neural networks models.Plant Cell Tissue Organ Cult.20171291193310.1007/s11240‑016‑1152‑9
    [Google Scholar]
  92. Nezami-AlanaghE. GaroosiG.A. LandínM. GallegoP.P. Combining DOE with neurofuzzy logic for healthy mineral nutrition of pistachio rootstocks in vitro culture.Front. Plant Sci.20189147410.3389/fpls.2018.01474 30374362
    [Google Scholar]
  93. MohdZ.R. ArunK.K. Micropropagation of an endangered medicinal herb Chlorophytum borivilianum Sant. et Fernand. in bioreactor.Afr. J. Biotechnol.201413171772177810.5897/AJB2013.12904
    [Google Scholar]
  94. MehrotraS. PrakashO. MishraB.N. DwevediB. Efficiency of neural networks for prediction of in vitro culture conditions and inoculum properties for optimum productivity.Plant Cell Tissue Organ Cult.2008951293510.1007/s11240‑008‑9410‑0
    [Google Scholar]
  95. NtanosE. TsafourosA. DenaxaN.K. KostaA. BouchagierP. RoussosP.A. Mitigation of high solar irradiance and heat stress in kiwifruit during summer via the use of alleviating products with different modes of action—Part 1 Effects on leaf physiology and biochemistry.Agriculture20221212212110.3390/agriculture12122121
    [Google Scholar]
  96. MehrotraS. PrakashO. KhanF. KukrejaA.K. Efficiency of neural network-based combinatorial model predicting optimal culture conditions for maximum biomass yields in hairy root cultures.Plant Cell Rep.201332230931710.1007/s00299‑012‑1364‑3 23143691
    [Google Scholar]
  97. MansouriA. FadaviA. MortazavianS.M.M. An artificial intelligence approach for modeling volume and fresh weight of callus – A case study of cumin (Cuminum cyminum L.).J. Theor. Biol.201639719920510.1016/j.jtbi.2016.03.009 26987421
    [Google Scholar]
  98. MunasingheS.P. SomaratneS. WeerakoonS.R. RanasingheC. Prediction of chemical composition for callus production in Gyrinopswalla Gaetner through machine learning.Inf. Process. Agric.202072112
    [Google Scholar]
  99. NiazianM. NooriS.S.A. AbdipourM. Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models.Ind. Crops Prod.201811722423410.1016/j.indcrop.2018.03.013
    [Google Scholar]
  100. GuanY. LiS.G. FanX.F. SuZ.H. Application of somatic embryogenesis in woody plants.Front. Plant Sci.2016793810.3389/fpls.2016.00938 27446166
    [Google Scholar]
  101. FehérA. Callus, Dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology?Front. Plant Sci.20191053610.3389/fpls.2019.00536 31134106
    [Google Scholar]
  102. SchultheisJ. CantliffeD. CheeR. Optimizing sweet potato [Ipomoea batatas (L.) Lam. root and plantlet formation by selection of proper embryo developmental stage and size, and gel type for fluidized sowing.Plant Cell Rep.19909735635910.1007/BF00232398 24227054
    [Google Scholar]
  103. RuanR. XuJ. ZhangC. ChiC.M. HuW.S. Classification of plant somatic embryos by using neural network classifiers.Biotechnol. Prog.199713674174610.1021/bp9700972
    [Google Scholar]
  104. UozumiN. YoshinoT. ShiotaniS. SueharaK.I. AraiF. FukudaT. KobayashiT. Application of image analysis with neural network for plant somatic embryo culture.J. Ferment. Bioeng.199376650550910.1016/0922‑338X(93)90249‑8
    [Google Scholar]
  105. ZhangC. TimmisR. HuW.S. A neural network-based pattern recognition system for somatic embryos of Douglas Fir.Plant Cell Tissue Organ Cult.1999561253510.1023/A:1006287917534
    [Google Scholar]
  106. KaurK. DolkerD. BeheraS. PatiP.K. Critical factors influencing in vitro propagation and modulation of important secondary metabolites in Withania somnifera (L.) dunal.Plant Cell Tissue Organ Cult.20221491-2416010.1007/s11240‑021‑02225‑w 35039702
    [Google Scholar]
  107. AbdallaN. El-RamadyH. SeliemM.K. El-MahroukM.E. TahaN. BayoumiY. ShalabyT.A. DobránszkiJ. An academic and technical overview on plant micropropagation challenges.Horticulturae20228867710.3390/horticulturae8080677
    [Google Scholar]
  108. HondaH. ItoT. YamadaJ. HanaiT. MatsuokaM. KobayashiT. Selection of embryogenic sugarcane callus by image analysis.J. Biosci. Bioeng.199987570070210.1016/S1389‑1723(99)80138‑8 16232542
    [Google Scholar]
  109. HondaH. TakikawaN. NoguchiH. HanaiT. KobayashiT. Image analysis associated with a fuzzy neural network and estimation of shoot length of regenerated rice callus.J. Ferment. Bioeng.199784434234710.1016/S0922‑338X(97)89256‑2
    [Google Scholar]
  110. MeherPK GuptaA RustgiS MirRR KumarA KumarJ BalyanHS GuptaPK Evaluation of eight Bayesian genomic prediction models for three micronutrient traits in bread wheat (Triticum aestivum L.).Plant Genom.20232023
    [Google Scholar]
  111. FakhrzadF. JowkarA. HosseinzadehJ. Mathematical modeling and optimizing the in vitro shoot proliferation of wallflower using multilayer perceptron non-dominated sorting genetic algorithm-II (MLP-NSGAII).PLoS One2022179e027300910.1371/journal.pone.0273009 36083887
    [Google Scholar]
  112. PrasadV.S.S. GuptaS.D. Applications and potentials of artificial neural networks in plant tissue culture.Plant tissue culture engineering.DordrechtSpringer20084767
    [Google Scholar]
  113. AlanaghE.N. GaroosiG. HaddadR. MalekiS. LandínM. GallegoP.P. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models.Plant Cell Tissue Organ Cult.2014117334935910.1007/s11240‑014‑0444‑1
    [Google Scholar]
  114. PerrakiA. CacasJ.L. CrowetJ.M. LinsL. CastroviejoM. German-RetanaS. MongrandS. RaffaeleS. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movementPlant Physiol.2012160262463710.1104/pp.112.200519 22855937
    [Google Scholar]
  115. AkinM. EyduranE. ReedB.M. Use of RSM and CHAID data mining algorithm for predicting mineral nutrition of hazelnut.Plant Cell Tissue Organ Cult.2017128230331610.1007/s11240‑016‑1110‑6
    [Google Scholar]
  116. PrasadA. PrakashO. MehrotraS. KhanF. MathurA.K. MathurA. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.Protoplasma2017254133534110.1007/s00709‑016‑0953‑3 27068291
    [Google Scholar]
  117. WebberJ.B. WadaS. StockwellV.O. WimanN.G. Susceptibility of some Corylus avellana L. cultivars to Xanthomonas arboricola pv. corylina.Front. Plant Sci.20211280033910.3389/fpls.2021.800339 34975992
    [Google Scholar]
  118. MalekiS. ZanjaniM.B. KohnehrouzB.B. LandinM. GallegoP.P. Computer-Based tools unmask critical mineral nutrient interactions in hoagland solution for healthy kiwiberry plant acclimatization.Front. Plant Sci.20211272399210.3389/fpls.2021.723992 34777411
    [Google Scholar]
  119. KhvatkovP. FirsovA. ShvedovaA. ShaloikoL. KozlovO. ChernobrovkinaM. PushinA. TarasenkoI. ChabanI. DolgovS. Development of Wolffia arrhiza as a producer for recombinant human granulocyte colony-stimulating factor.Front Chem.2018630410.3389/fchem.2018.00304 30140670
    [Google Scholar]
  120. García-PérezP. Lozano-MiloE. LandinM. GallegoP.P. Machine learning unmasked nutritional imbalances on the medicinal plant Bryophyllum sp. cultured in vitro.Front. Plant Sci.20201157617710.3389/fpls.2020.576177 33329638
    [Google Scholar]
  121. ZhangZ. WenY. YuanL. ZhangY. LiuJ. ZhouF. WangQ. HuX. Genome-Wide identification, characterization, and expression analysis related to low-temperature stress of the CmGLP gene family in Cucumis melo L.Int. J. Mol. Sci.20222315819010.3390/ijms23158190 35897766
    [Google Scholar]
  122. SolangiN. JatoiM.A. MarkhandG.S. Abul-SoadA.A. SolangiM.A. JattT. MirbaharA.A. MiraniA.A. Optimizing tissue culture protocol for in vitro shoot and root development and acclimatization of date palm (Phoenix dactylifera L) plantlets.Erwerbs-Obstbau20226419710610.1007/s10341‑021‑00622‑1
    [Google Scholar]
  123. KirtisA. AasimM. KatırcıR. Application of artificial neural network and machine learning algorithms for modeling the in vitro regeneration of chickpea (Cicer arietinum L.).Plant Cell Tissue Organ Cult.2022150114115210.1007/s11240‑022‑02255‑y
    [Google Scholar]
  124. ViswanathanP. GosukondaJ.S. ShermanS.H. JosheeN. GosukondaR.M. Prediction of in vitro organogenesis of Bacopa monnieri using artificial neural networks and regression models.Heliyon2022812e1196910.1016/j.heliyon.2022.e11969 36544836
    [Google Scholar]
  125. OsamaK. SomvanshiP. PandeyA.K. MishraB.N. Modelling of nutrient mist reactor for hairy root growth using artificial neural network.Eur. J. Sci. Res.2013974516526
    [Google Scholar]
  126. VermaP. AnjumS. KhanS.A. RoyS. OdstrcilikJ. MathurA.K. Envisaging the regulation of alkaloid biosynthesis and associated growth kinetics in hairy roots of Vinca minor through the function of artificial neural network.Appl. Biochem. Biotechnol.201617861154116610.1007/s12010‑015‑1935‑1 26634841
    [Google Scholar]
  127. HillK. SchallerG.E. Enhancing plant regeneration in tissue culture.Plant Signal. Behav.2013810e257092570910.4161/psb.25709 23887495
    [Google Scholar]
  128. TaniE. ChronopoulouE. LabrouN. SarriE. GoufaM. VaharidiX. TornesakiA. PsychogiouM. BebeliP. AbrahamE. Growth, Physiological, biochemical, and transcriptional responses to drought stress in seedlings of Medicago sativa L., Medicago arborea L. and their hybrid (Alborea).Agronomy2019913810.3390/agronomy9010038
    [Google Scholar]
  129. MridulaM.R. NairA.S. KumarK.S. Genetic programming based models in plant tissue culture: An addendum to traditional statistical approach.PLOS Comput. Biol.2018142e100597610.1371/journal.pcbi.1005976 29485995
    [Google Scholar]
  130. GagoJ. Martínez-NúñezL. LandínM. FlexasJ. GallegoP.P. Modeling the effects of light and sucrose on in vitro propagated plants: A multiscale system analysis using artificial intelligence technology.PLoS One201491e8598910.1371/journal.pone.0085989 24465829
    [Google Scholar]
  131. HolzingerA. KeiblingerK. HolubP. ZatloukalK. MüllerH. AI for life: Trends in artificial intelligence for biotechnology.N. Biotechnol.202374162410.1016/j.nbt.2023.02.001 36754147
    [Google Scholar]
  132. MitraS. MurthyG.S. Bioreactor control systems in the biopharmaceutical industry: A critical perspective.Syst. Microbiol. Biomanuf.2022219111210.1007/s43393‑021‑00048‑6
    [Google Scholar]
  133. CicconeF. BacciagliaA. CerutiA. Optimization with artificial intelligence in additive manufacturing: A systematic review.J. Braz. Soc. Mech. Sci. Eng.202345630310.1007/s40430‑023‑04200‑2
    [Google Scholar]
  134. OzsariS. GüzelM.S. YılmazD. KamburoğluK. A comprehensive review of artificial intelligence based algorithms regarding temporomandibular joint related diseases.Diagnostics20231316270010.3390/diagnostics13162700 37627959
    [Google Scholar]
  135. XiaolaiL JianjunZ BeidouC BoyangH Leaf vegetable water planting nutrient solution and preparation method thereof.CN Patent 116655419A2023
  136. XiaolaiL JianjunZ BeidouC BoyangH Bag-removing-free earthing cultivation technical method, device, equipment and storage medium for tiger milk mushrooms.CN Patent 116508579A2023
  137. ZhangJ WuH Plant stem cell line and establishment method and application thereof.CN Patent 116445393A2023
  138. ZengY ChenF HuangQ LeiZ LiJ LiQ LiW LiuY ZhangL Instant transformation method of sunflower exogenous gene.CN Patent 116732086A2023
  139. LuluC ZheS ChanggengT ShanggangL HuaweiQ Quick preparation and long-term preservation method of sweet potato germplasm resource test-tube plantlet.CN Patent 116686714A2023
  140. LuqiH LanpingG ChengcaiZ ShengW HongyangW BinbinY XiaoyuD Culture method of adventitious roots of rhizoma atractylodis.CN Patent 116724891A2023
  141. GaoJ PeiH QinX XieH Greenhouse pepper planting method for combating continuous cropping hurdles.AU Patent 2020100875A42020
  142. LiQ LiuW GuoJ LiZ YuG CuiX YouX CaoX HuangR. Tissue culture method for Thai green pepper grass.CN Patent 111919752A2020
  143. ZhuC HouZ Integrated solution for rooting, seedling exercising and domesticating of tissue culture seedlings.CN Patent 110754360A2019
  144. The aeroponic method of ganoderma lucidum.CN Patent 108782007A2019
  145. WangZ ZhangJ MaH ZhangH TanY Preparation method and application of mesenchyme stem cell scaffold-free threedimensional gel.CN Patent 110747165A2019
  146. GentyN.R. DominicJ.M.J. Automatically optimises plant growth conditions based on artificial intelligence models to maximise the quality of the harvest.US Patent 11308715B22018
  147. LiZ HuiQ FuJ RenZ ZhangM. A kind of mating system of leech.CN Patent 109169525A2018
/content/journals/npj/10.2174/0122103155302871240527094915
Loading
/content/journals/npj/10.2174/0122103155302871240527094915
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test