Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Diabetes Mellitus (DM) is a long-term metabolic condition that has significant social, health, and economic consequences. There are various forms of diabetes mellitus, but the two most common varieties are type I and type II. Insulin-dependent diabetes (IDDM) is one of the most well-known autoimmune illnesses that cause insulin insufficiency and hyperglycemia by either damaging or destroying Langerhans' beta cells. Available scientific data evidenced the greatest genetic contribution of Human Leukocyte Antigen class II in the IDDM. Hyperglycemia and individual components of the insulin resistance (metabolic) syndrome put people with type II diabetes at increased risk for microvascular consequences (retinopathy, nephropathy, and neuropathy) as well as macrovascular issues (cardiovascular comorbidities). A number of pathophysiological abnormalities, including obesity, poor diet, and physical inactivity, as well as genetic variables, are involved in the disturbed glucose homeostasis associated with type II diabetes. Diseases like lipid abnormalities contribute to the progression of diabetes, whereas obesity and its related medical disorders (such as hypertension, diabetes, insulin resistance, and sleep apnea syndrome) are eventually linked to an elevated cardiovascular risk. Diabetes raises the incidence, intensity, and duration of peri-densities in people with diabetes compared to healthy persons, making it a risk factor for periodontal disease. Diabetes conditions in patients concurrently also increase the progression or risk of other diseases, ., cardiovascular-related diseases (hypertension, oxidative stress, hyperlipidemia), nervous system-related diseases, and COVID-19, by increasing the overall infection rate. There is widespread evidence that correlates the direct connection between diabetes and other diseases, including immunity disorders, CVS disorders, . This review provides a correlation between diabetes and another disease with an overall impact on the progression of cardiovascular diseases, neurological diseases, COVID-19, and periodontal diseases. This current review focuses on the collation of some plants that show antidiabetic activity, including plant part, family, chemical constituent, mechanism of action, and chemical used for extraction. Studies on the role, causes, clinical management, prevention, and treatment of diabetes heavily rely on epidemiological evidence. This review also explains different factors responsible for diabetes, like genetic factors, environmental factors, and viral infections.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155298605240303181317
2025-01-01
2024-11-23
Loading full text...

Full text loading...

References

  1. MohajanD. MohajanH.K. Hyperglycaemia among diabetes patients: A preventive approach.Innov. Sci. Technol.202326273310.56397/IST.2023.11.05
    [Google Scholar]
  2. FareedR.Y. The changing frequency of Type 1 diabetes-associated genes over time: Insights into how our changing environment influences risk. Doctoral dissertation. University of Bristol2021
    [Google Scholar]
  3. KannanS. Assessment of insulin resistance in offspring of diabetic and Non diabetic parents. Doctoral dissertation. Madurai: Madurai Medical College2019
    [Google Scholar]
  4. GlovaciD. FanW. WongN.D. Epidemiology of diabetes mellitus and cardiovascular disease.Curr. Cardiol. Rep.20192142110.1007/s11886‑019‑1107‑y30828746
    [Google Scholar]
  5. FloraG.D. NayakM.K. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes.Curr. Pharm. Des.201925384063408410.2174/138161282566619092516382731553287
    [Google Scholar]
  6. BusuiP.R. SimaA. StevensM. Diabetic neuropathy and oxidative stress.Diabetes Metab. Res. Rev.200622425727310.1002/dmrr.62516506271
    [Google Scholar]
  7. LiuJ. TingJ.P. Al-AzzamS. DingY. AfsharS. Therapeutic advances in diabetes, autoimmune, and neurological diseases.Int. J. Mol. Sci.2021226280510.3390/ijms2206280533802091
    [Google Scholar]
  8. RossC.M. BiesselsG.J. de HaanE.H.F. KappelleL.J. Are fatty acids a link between diabetes and lowered cognitive performance?Diabetes Care20052892335233610.2337/diacare.28.9.233516123523
    [Google Scholar]
  9. ShinkovA. BorissovaA.M. KovatchevaR. VlahovJ. DakovskaL. AtanassovaI. PetkovaP. Increased prevalence of depression and anxiety among subjects with metabolic syndrome and known type 2 diabetes mellitus – A population-based study.Postgrad. Med.2018130225125710.1080/00325481.2018.141005429185828
    [Google Scholar]
  10. KönönenE. GursoyM. GursoyU. Periodontitis: A multifaceted disease of tooth-supporting tissues.J. Clin. Med.201988113510.3390/jcm808113531370168
    [Google Scholar]
  11. YangY. WangZ. MoM. MuyiduliX. WangS. LiM. JiangS. WuY. ShaoB. ShenY. YuY. The association of gestational diabetes mellitus with fetal birth weight.J. Diabetes Complications201832763564210.1016/j.jdiacomp.2018.04.00829907325
    [Google Scholar]
  12. MonosDS. WinchesterRJ. The major histocompatibility complex.In: Clinical immunology.Elsevier2019799210.1016/B978‑0‑7020‑6896‑6.00005‑3
    [Google Scholar]
  13. NobleJ.A. Immunogenetics of type 1 diabetes: A comprehensive review.J. Autoimmun.20156410111210.1016/j.jaut.2015.07.01426272854
    [Google Scholar]
  14. RobertsonC.C. RichS.S. Genetics of type 1 diabetes.Curr. Opin. Genet. Dev.20185071610.1016/j.gde.2018.01.00629453110
    [Google Scholar]
  15. Saberzadeh-ArdestaniB. KaramzadehR. BasiriM. SaffarH.E. FarhadiA. ShapiroA.M.J. TahamtaniY. BaharvandH. Type 1 diabetes mellitus: Cellular and molecular pathophysiology at a glance.Cell J.201820329430110.22074/cellj.2018.551329845781
    [Google Scholar]
  16. DariyaB ChalikondaG SrivaniG AlamA NagarajuGP Pathophysiology, etiology, epidemiology of type 1 diabetes and computational approaches for immune targets and therapy. . Crit Rev Immunol™ in Immunology., 201939423926510.1615/CritRevImmunol.2019033126
    [Google Scholar]
  17. IlonenJ. LempainenJ. HammaisA. LaineA.P. HärkönenT. ToppariJ. VeijolaR. KnipM. Primary islet autoantibody at initial seroconversion and autoantibodies at diagnosis of type 1 diabetes as markers of disease heterogeneity.Pediatr. Diabetes201819228429210.1111/pedi.1254528597949
    [Google Scholar]
  18. MathieuC. LahesmaaR. BonifacioE. AchenbachP. TreeT. Immunological biomarkers for the development and progression of type 1 diabetes.Diabetologia201861112252225810.1007/s00125‑018‑4726‑830209538
    [Google Scholar]
  19. AlcazarO. HernandezL.F. NakayasuE.S. NicoraC.D. AnsongC. MuehlbauerM.J. BainJ.R. MyerC.J. BhattacharyaS.K. BuchwaldP. AbdulredaM.H. Parallel multi-omics in high-risk subjects for the identification of integrated biomarker signatures of type 1 diabetes.Biomolecules202111338310.3390/biom1103038333806609
    [Google Scholar]
  20. BoikeS. MirM. RaufI. JamaA.B. SunesaraS. MushtaqH. KhedrA. NiteshJ. SuraniS. KhanS.A. Ketosis-prone diabetes mellitus: A phenotype that hospitalists need to understand.World J. Clin. Cases20221030108671087210.12998/wjcc.v10.i30.1086736338201
    [Google Scholar]
  21. WaddankeriS.S. WaddankeriS.M. MangshettyG.B. Clinical and biochemical characteristics and treatment outcomes of ketosis-prone diabetes: The remission prone diabetes.Int. J. Endocrinol. Metab.2021192e10679910.5812/ijem.10679934149844
    [Google Scholar]
  22. JahoorF. HsuJ.W. MehtaP.B. KeeneK.R. GabaR. MulukutlaS.N. CaducoyE. PeacockW.F. PatelS.G. BennetR. LernmarkA. BalasubramanyamA. Metabolomics profiling of patients with A− β+ ketosis-prone diabetes during diabetic ketoacidosis.Diabetes20217081898190910.2337/db21‑006634021044
    [Google Scholar]
  23. MárquezA. MartínJ. Genetic overlap between type 1 diabetes and other autoimmune diseases.Immunopathol Berlin Heidelberg.2022441819710.1007/s00281‑021‑00885‑6
    [Google Scholar]
  24. De RosaS. ArcidiaconoB. ChiefariE. BrunettiA. IndolfiC. FotiD.P. Type 2 diabetes mellitus and cardiovascular disease: Genetic and epigenetic links.Front. Endocrinol.20189210.3389/fendo.2018.0000229387042
    [Google Scholar]
  25. TremblayJ. HametP. Environmental and genetic contributions to diabetes.Metabolism201910015395210.1016/j.metabol.2019.15395231610851
    [Google Scholar]
  26. MaleckiM.T. Genetics of type 2 diabetes mellitus.Diabetes Res. Clin. Pract.200568S1S10S2110.1016/j.diabres.2005.03.00315955369
    [Google Scholar]
  27. VerbalisJ.G. Acquired forms of central diabetes insipidus: Mechanisms of disease.Best Pract. Res. Clin. Endocrinol. Metab.202034510144910.1016/j.beem.2020.10144932792133
    [Google Scholar]
  28. Op de BeeckA. EizirikD.L. Viral infections in type 1 diabetes mellitus — Why the β cells?Nat. Rev. Endocrinol.201612526327310.1038/nrendo.2016.3027020257
    [Google Scholar]
  29. McCanceDR. CassidyL. Diabetes in pregnancy. In: Textbook Diabetes.Wiley20241034107110.1002/9781119697473.ch71
    [Google Scholar]
  30. MehtaS. BrancatiF.L. StrathdeeS.A. PankowJ.S. NetskiD. CoreshJ. SzkloM. ThomasD.L. Hepatitis C virus infection and incident type 2 diabetes.Hepatology2003381505610.1053/jhep.2003.5029112829986
    [Google Scholar]
  31. HenschelA.M. CabreraS.M. KaldunskiM.L. JiaS. GeoffreyR. RoethleM.F. LamV. ChenY.G. WangX. SalzmanN.H. HessnerM.J. Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and β-cell chemokine expression associated with autoimmune diabetes susceptibility.PLoS One2018131e019035110.1371/journal.pone.019035129293587
    [Google Scholar]
  32. JonesD.P. Radical-free biology of oxidative stress.Am. J. Physiol. Cell Physiol.20082954C849C86810.1152/ajpcell.00283.200818684987
    [Google Scholar]
  33. MakineC. KarşıdağÇ. KadıoğluP. IlkovaH. KarşıdağK. SkovlundS.E. SnoekF.J. PouwerF. Symptoms of depression and diabetes‐specific emotional distress are associated with a negative appraisal of insulin therapy in insulin‐naïve patients with Type 2 diabetes mellitus. A study from the European Depression in Diabetes [EDID] Research Consortium.Diabet. Med.2009261283310.1111/j.1464‑5491.2008.02606.x19125757
    [Google Scholar]
  34. DongG. QuL. GongX. PangB. YanW. WeiJ. Effect of social factors and the natural environment on the etiology and pathogenesis of diabetes mellitus.Int. J. Endocrinol.201920191710.1155/2019/874929131341475
    [Google Scholar]
  35. VirtanenS.M. KnipM. Nutritional risk predictors of β cell autoimmunity and type 1 diabetes at a young age.Am. J. Clin. Nutr.20037861053106710.1093/ajcn/78.6.105314668264
    [Google Scholar]
  36. KaurM. MisraS. SwarnkarP. PatelP. Das KurmiB. Das GuptaG. SinghA. Understanding the role of hyperglycemia and the molecular mechanism associated with diabetic neuropathy and possible therapeutic strategies.Biochem. Pharmacol.202321511572310.1016/j.bcp.2023.11572337536473
    [Google Scholar]
  37. Powell-WileyT.M. PoirierP. BurkeL.E. DesprésJ.P. Gordon-LarsenP. LavieC.J. LearS.A. NdumeleC.E. NeelandI.J. SandersP. St-OngeM.P. Obesity and cardiovascular disease: A scientific statement from the American Heart Association.Circulation202114321e984e101010.1161/CIR.000000000000097333882682
    [Google Scholar]
  38. MokdadA.H. BowmanB.A. FordE.S. VinicorF. MarksJ.S. KoplanJ.P. The continuing epidemics of obesity and diabetes in the United States.JAMA2001286101195120010.1001/jama.286.10.119511559264
    [Google Scholar]
  39. VisscherT.L.S. SeidellJ.C. The public health impact of obesity.Annu. Rev. Public Health200122135537510.1146/annurev.publhealth.22.1.35511274526
    [Google Scholar]
  40. Valdés PJJ Dyslipidaemia diabética.CardioVasc. Metab. Sci.202132S316817210.35366/100791
    [Google Scholar]
  41. SandesaraP.B. ViraniS.S. FazioS. ShapiroM.D. The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk.Endocr. Rev.201940253755710.1210/er.2018‑0018430312399
    [Google Scholar]
  42. RajbhandariJ. FernandezC.J. AgarwalM. YeapB.X.Y. PappachanJ.M. Diabetic heart disease: A clinical update.World J. Diabetes202112438340610.4239/wjd.v12.i4.38333889286
    [Google Scholar]
  43. AbernethyA.D. StackhouseK. HartS. DevendraG. BashoreT.M. DweikR. KrasuskiR.A. Impact of diabetes in patients with pulmonary hypertension.Pulm. Circ.20155111712310.1086/67970525992276
    [Google Scholar]
  44. LimL.L. ChowE. ChanJ.C.N. Cardiorenal diseases in type 2 diabetes mellitus: Clinical trials and real-world practice.Nat. Rev. Endocrinol.202319315116310.1038/s41574‑022‑00776‑236446898
    [Google Scholar]
  45. RomicS. DjordjevicA. TepavcevicS. CulaficT. StojiljkovicM. BursacB. StanisicJ. KosticM. GligorovskaL. KoricanacG. Effects of a fructose-rich diet and chronic stress on insulin signaling and regulation of glycogen synthase kinase-3 beta and the sodium–potassium pump in the hearts of male rats.Food Funct.20201121455146610.1039/C9FO02306B31974538
    [Google Scholar]
  46. KushnerM. NenciniP. ReivichM. RangoM. JamiesonD. FazekasF. ZimmermanR. ChawlukJ. AlaviA. AlvesW. Relation of hyperglycemia early in ischemic brain infarction to cerebral anatomy, metabolism, and clinical outcome.Ann. Neurol.199028212913510.1002/ana.4102802042221843
    [Google Scholar]
  47. CacciatoreM. GrassoE.A. TripodiR. ChiarelliF. Impact of glucose metabolism on the developing brain.Front. Endocrinol.202213104754510.3389/fendo.2022.104754536619556
    [Google Scholar]
  48. MuramatsuK. Diabetes mellitus-related dysfunction of the motor system.Int. J. Mol. Sci.20202120748510.3390/ijms2120748533050583
    [Google Scholar]
  49. ZhangY. QuM. YiX. ZhuoP. TangJ. ChenX. ZhouG. HuP. QiuT. XingW. MaoY. ChenB.T. WuJ. ZhangY. LiaoW. Sensorimotor and pain‐related alterations of the gray matter and white matter in Type 2 diabetic patients with peripheral neuropathy.Hum. Brain Mapp.202041371072510.1002/hbm.2483431663232
    [Google Scholar]
  50. FerrisJ.K. InglisJ.T. MaddenK.M. BoydL.A. Brain and body: A review of central nervous system contributions to movement impairments in diabetes.Diabetes202069131110.2337/db19‑032131862690
    [Google Scholar]
  51. KhormiF.A. . Is alzheimer's disease a type 3 diabetes? as the possible link between diabetes and neurodegenerative in Saudi Population. Doctoral dissertation, King Abdulaziz University Jeddah.
    [Google Scholar]
  52. Sims-RobinsonC. KimB. RoskoA. FeldmanE.L. How does diabetes accelerate Alzheimer disease pathology?Nat. Rev. Neurol.201061055155910.1038/nrneurol.2010.13020842183
    [Google Scholar]
  53. MoreiraP.I. SantosM.S. SeiçaR. OliveiraC.R. Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes.J. Neurol. Sci.20072571-220621410.1016/j.jns.2007.01.01717316694
    [Google Scholar]
  54. KnolM.J. TwiskJ.W.R. BeekmanA.T.F. HeineR.J. SnoekF.J. PouwerF. Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis.Diabetologia200649583784510.1007/s00125‑006‑0159‑x16520921
    [Google Scholar]
  55. MezukB. EatonW.W. AlbrechtS. GoldenS.H. Depression and type 2 diabetes over the lifespan: A meta-analysis.Diabetes Care200831122383239010.2337/dc08‑098519033418
    [Google Scholar]
  56. RoyT. LloydC.E. Epidemiology of depression and diabetes: A systematic review.J. Affect. Disord.2012142S8S2110.1016/S0165‑0327(12)70004‑623062861
    [Google Scholar]
  57. RustadJ.K. MusselmanD.L. NemeroffC.B. The relationship of depression and diabetes: Pathophysiological and treatment implications.Psychoneuroendocrinology20113691276128610.1016/j.psyneuen.2011.03.00521474250
    [Google Scholar]
  58. GemeayE.M. MoawedS.A. MansourE.A. EbrahiemN.E. MoussaI.M. NadrahWO. The association between diabetes and depression.Saudi Med. J.201536101210121510.15537/smj.2015.10.1194426446333
    [Google Scholar]
  59. CampayoA. BielG.C.H. LoboA. Diabetes and depression.Curr. Psychiatry Rep.2011131263010.1007/s11920‑010‑0165‑z
    [Google Scholar]
  60. PetrieJ.R. GuzikT.J. TouyzR.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms.Can. J. Cardiol.201834557558410.1016/j.cjca.2017.12.00529459239
    [Google Scholar]
  61. NassarM. DaoudA. NsoN. MedinaL. GhernautanV. BhangooH. NyeinA. MohamedM. AlqassiehA. SolimanK. AlfishawyM. SachmechiI. MisraA. Diabetes mellitus and COVID-19.Review Article. Diabetes Metab. Syndr.202115610226810.1016/j.dsx.2021.10226834562865
    [Google Scholar]
  62. DerouicheS. TaissirC. AbdelmalekD. AchiI. Effect of COVID-19 infection on the immune system and risk of developing diabetes complications: A review.J Pharm Care.2020202013313910.18502/jpc.v8i3.4548
    [Google Scholar]
  63. LimS. BaeJ.H. KwonH.S. NauckM.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management.Nat. Rev. Endocrinol.2021171113010.1038/s41574‑020‑00435‑433188364
    [Google Scholar]
  64. MartínezB.A. FeblesG.J. EsporrínS.J. Diabetes and periodontal disease. Review of the literature.Am. J. Dent.2014272636725000662
    [Google Scholar]
  65. JainA. ChawlaM. KumarA. ChawlaR. GroverV. GhoshS. PanditN. ChawlaP. Management of periodontal disease in patients with diabetes- good clinical practice guidelines: A joint statement by indian society of periodontology and research society for the study of diabetes in India.J. Indian Soc. Periodontol.202024649852410.4103/jisp.jisp_688_2033424167
    [Google Scholar]
  66. MealeyB.L. OatesT.W. Diabetes mellitus and periodontal diseases.J. Periodontol.20067781289130310.1902/jop.2006.05045916881798
    [Google Scholar]
  67. MouS.S. The association between HbA1c with macrosomia/large for gestational age in GDM; and preterm birth in women with diabetes mellitus.. Doctoral dissertation. University of Leicester,
    [Google Scholar]
  68. LucasM.J. LevenoK.J. WilliamsM.L. RaskinP. WhalleyP.J. Early pregnancy glycosylated hemoglobin, severity of diabetes, and fetal malformations.Am. J. Obstet. Gynecol.1989161242643110.1016/0002‑9378(89)90536‑X2669494
    [Google Scholar]
  69. HoffmanD.J. PowellT.L. BarrettE.S. HardyD.B. Developmental origins of metabolic diseases.Physiol. Rev.2021101373979510.1152/physrev.00002.202033270534
    [Google Scholar]
  70. OrnoyA. ReeceE.A. PavlinkovaG. KappenC. MillerR.K. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes.Birth Defects Res. C Embryo Today20151051537210.1002/bdrc.2109025783684
    [Google Scholar]
  71. GabbeS. GravesC.R. Management of diabetes mellitus complicating pregnancy.Obstet. Gynecol.2003102485786810.1016/j.obstetgynecol.2003.07.00114551019
    [Google Scholar]
  72. CorriganN. BrazilD.P. McAuliffeF. Fetal cardiac effects of maternal hyperglycemia during pregnancy.Birth Defects Res. A Clin. Mol. Teratol.200985652353010.1002/bdra.2056719180650
    [Google Scholar]
  73. JežekP. JabůrekM. HlavatáP.L. Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes.Antioxid. Redox Signal.2019311072275110.1089/ars.2018.765630450940
    [Google Scholar]
  74. TsalamandrisS. AntonopoulosA.S. OikonomouE. PapamikroulisG.A. VogiatziG. PapaioannouS. DeftereosS. TousoulisD. The role of inflammation in diabetes: Current concepts and future perspectives.Eur. Cardiol.2019141505910.15420/ecr.2018.33.131131037
    [Google Scholar]
  75. Maldonado-CelisM.E. YahiaE.M. BedoyaR. LandázuriP. LoangoN. AguillónJ. RestrepoB. OspinaG.J.C. Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds.Front. Plant Sci.201910107310.3389/fpls.2019.0107331681339
    [Google Scholar]
  76. NgoD.H. NgoD.N. VoT.T.N. VoT.S. Mechanism of action of Mangifera indica leaves for anti-diabetic activity.Sci. Pharm.20198721310.3390/scipharm87020013
    [Google Scholar]
  77. RakibA. AhmedS. IslamM.A. UddinM.M.N. PaulA. ChyM.N.U. EmranT.B. SeidelV. Pharmacological studies on the antinociceptive, anxiolytic and antidepressant activity of Tinospora crispa.Phytother. Res.202034112978298410.1002/ptr.672532430999
    [Google Scholar]
  78. YusofN. GohM.P.Y. AhmadN. Evaluation of the antidiabetic, islet protective and beta-cell regenerative effects of Tinospora crispa (L.).Nat. Prod. Sci.202228310511410.20307/nps.2022.28.3.105
    [Google Scholar]
  79. AnsariA. MahmoodT. BaggaP. AhsanF. ShamimA. AhmadS. ShariqM. ParveenS. Areca catechu: A phytopharmacological legwork.Food Front.20212216318310.1002/fft2.70
    [Google Scholar]
  80. MusdjaM.Y. NurdinA. MusirA. Antidiabetic effect and glucose tolerance of areca nut (Areca catechu) seed ethanol extract on alloxan-induced diabetic male rats. The 3rd International Conference on Natural Products and Bioresource Sciences – 2019, 23-24 October 2019Tangerang, Indonesia 202010.1088/1755‑1315/462/1/012036
    [Google Scholar]
  81. MirmiranP. HoushialsadatZ. GaeiniZ. BahadoranZ. AziziF. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases.Nutr. Metab. 2020171310.1186/s12986‑019‑0421‑031921325
    [Google Scholar]
  82. Abd El-GhffarE.A. HegaziN.M. SaadH.H. SolimanM.M. El-RaeyM.A. ShehataS.M. BarakatA. YasriA. SobehM. HPLC-ESI- MS/MS analysis of beet (Beta vulgaris) leaves and its beneficial properties in type 1 diabetic rats.Biomed. Pharmacother.201912010954110.1016/j.biopha.2019.10954131629949
    [Google Scholar]
  83. KhanM.A. A critical review on health promoting benefits of Sana Makki (Senna Alexendrina).J. Popul. Ther. Clin. Pharmacol.20222904317330
    [Google Scholar]
  84. YuniartoA. SukandarE.Y. FidriannyI. SetiawanF. KetutI. Antiobesity, antidiabetic and antioxidant activities of senna (Senna alexandrina Mill.) and pomegranate (Punica granatum L.) leaves extracts and its fractions.Int J Pharm Phytopharmacol Res2018831824
    [Google Scholar]
  85. ThakurS. KauravH. ChaudharyG. A review on Woodfordia fruticosa Kurz (Dhatki): ayurvedic, folk and modern uses.J. Drug Deliv. Ther.202111312613110.22270/jddt.v11i3.4839
    [Google Scholar]
  86. GiriS. DeyG. DuaT.K. Antioxidant and antidiabetic activity of hydroalcoholic flower extract of Woodfordia fruticosa (L.).Kurz. J. Drug Deliv. Ther.20221211610.22270/jddt.v12i1.5247
    [Google Scholar]
  87. JhaD.K. KoneriR. SamaddarS. Medicinal use of an ancient herb Momordica cymbalaria: A review.Int. J. Pharm. Sci. Res.201892432441
    [Google Scholar]
  88. ElangovanA. SubramanianA. DurairajS. RamachandranJ. LakshmananD.K. RavichandranG. NambirajanG. ThilagarS. Antidiabetic and hypolipidemic efficacy of skin and seed extracts of Momordica cymbalaria on alloxan induced diabetic model in rats.J. Ethnopharmacol.201924111198910.1016/j.jep.2019.11198931150795
    [Google Scholar]
  89. KulkarniR.V. Saraca asoca (ashoka): A review.World J. Pharm. Res.2018719536544
    [Google Scholar]
  90. ThilagamE. ChidambaramK. RavitejaC. VahanaT. VasudevanP. GarridoG. Anti-hyperglycemic and hypolipidemic effects of Saraca asoca (Roxb.) Wild. flowers in alloxan-treated diabetic rats.J. Pharm. Pharmacogn. Res.202191586810.56499/jppres20.894_9.1.58
    [Google Scholar]
  91. AhmedO.M. FattahA.A.A. HamidA.M. AzizA.A.M. SakrH.I. DamanhoryA.A. Abdel-KawiS.H. GhabouraN. AwadM.M.Y. Antidiabetic and liver histological and ultrastructural effects of Cynara Scolymus Leaf and flower head hydroethanolic extracts in nicotinamide/streptozotocin-induced diabetic rats.Evid. Based Complement. Alternat. Med.2023202311310.1155/2023/422302637163198
    [Google Scholar]
  92. GadMH SeeniAMA SawiENM AbbasA MahrousAM HabibTN Assessment of the ameliorative and antihyperglycemic effects of fractions of Ipomoea aquatica in male rats with streptozotocin-induced diabetes. Res. sq., 202310.21203/rs.3.rs‑3174027/v1
    [Google Scholar]
  93. GhouiziE.A. OusaaidD. LaaroussiH. BakourM. AboulghaziA. SoutienR.S. HanoC. LyoussiB. Ficus carica (Linn.) Leaf and bud extracts and their combination attenuates type-1 diabetes and its complications via the inhibition of oxidative stress.Foods202312475910.3390/foods1204075936832834
    [Google Scholar]
  94. HelmyS.A. MorsyN.F.S. ElabyS.M. GhalyM.A.H.A. Antidiabetic effect of combined leaf extracts of Portulaca oleracea L., Beta vulgaris L., and Cichorium intybus L. in streptozotocininduced diabetic rats. J. Med. Food2023 202310.1089/jmf.2022.011937801671
    [Google Scholar]
  95. JadhavVB. Vaghela, JS Nephroprotective potential of Sphaeranthus indicus Linn extract against hyperglycemia and dyslipidemia in streptozotocin-induced diabetic nephropathy.J Health Allied Sci2023 202310.1055/s‑0043‑1769511
    [Google Scholar]
  96. AhamdA.R. MalikA. HandayaniV. In vivo and in vitro antidiabetic assay of purified mahoni seeds extract (Swietenia Mahagoni (L.) Jacq).Biomed. Pharmacol. J.20231631701170610.13005/bpj/2748
    [Google Scholar]
  97. HanM. YangF. ZhangK. NiJ. ZhaoX. ChenX. ZhangZ. WangH. LuJ. ZhangY. Antioxidant, anti-inflammatory and anti-diabetic activities of tectona grandis methanolic extracts, fractions, and isolated compounds.Antioxidants202312366410.3390/antiox1203066436978912
    [Google Scholar]
  98. AlqahtaniMS ShuklaA HarsolaL ShaikB SyedR HassanAM Mitragyna parvifolia-effective against hyperglycaemia, proinflammatory markers and liver apoptosis in streptozotocin induced diabetic rats.. Int. J. Clin. Med. Edu. Res.2023202310.21203/rs.3.rs‑3342541/v1
    [Google Scholar]
  99. DivyaM. ShantiG. AmalrajS. ArdekaniA.E. GuravS. AyyanarM. Evaluation of in vitro enzyme inhibitory, anti-inflammatory, antioxidant, and antibacterial activities of Oldenlandia corymbosa L. and Oldenlandia umbellata L. whole plant extracts.Pharmacol. Res. Mod. Chin. Med.2023810028610.1016/j.prmcm.2023.100286
    [Google Scholar]
  100. KingsleyO. NgwuEE. MbanasoEL. Assessment of the anti-diabetic potential of ethanol leaf extract of Crateva adansonii in streptozotocin induced diabetic rats.Int. J. Life Sci. Res.20230401222226
    [Google Scholar]
/content/journals/npj/10.2174/0122103155298605240303181317
Loading
/content/journals/npj/10.2174/0122103155298605240303181317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test