Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Diabetes Mellitus and its associated brain disorders become more prevalent across the globe. Several comorbidity factors are associated with diabetic mellitus as well as the nervous system. Static molecular variations in the Central Nervous System (CNS) due to Hyperglycemia may be a major cause of psychiatric disorders. Carbohydrates and proteins imbalance as metabolic parameters impact the downregulation of neurotransmitters in the brain region. Glucose metabolism has a key role in brain physiology as well as in neuro-energetics, transmission, and defensive mechanisms of the brain. Several studies revealed that CNS-acting medications overstated the glucose homeostasis associated with brain functioning as well as pharmacological effects. Polyphenols are an assembly of plant-derived composites with anti-inflammatory properties working on the inflammatory markers as well as antioxidant possessions that decrease the oxidative stress that is accompanied by a low pervasiveness of metabolic conditions categorized by insulin resistance. Those Natural products influenced the molecular signaling pathway, which is directly related to depression, cognitive impairment and neurotransmission. Currently, there are not any exact pharmacotherapies accessible for CNS form-induced diabetes. However, around some prebiotics, probiotics with natural remedies show promise in treating these central nervous system difficulties. Consequently, proof-based research concluded the translational study with a clinical setting understanding the connotation among brain glucose homeostasis and central nervous system complications is warranted, and the progress of pharmacologically dynamic therapy for active treatment of comorbidities diseases related to diabetes mellitus.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155295956240529155913
2024-06-06
2025-01-19
Loading full text...

Full text loading...

References

  1. MohanV. PradeepaR. Epidemiology of type 2 diabetes in India.Indian J. Ophthalmol.202169112932293810.4103/ijo.IJO_1627_21 34708726
    [Google Scholar]
  2. AtlasD. IDF Diabetes Atlas7th ed. ; International Diabetes Federation: Brussels, Belgium201527188207
    [Google Scholar]
  3. ButterfieldD.A. Di DomenicoF. BaroneE. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain.Biochim. Biophys. Acta Mol. Basis Dis.2014184291693170610.1016/j.bbadis.2014.06.010 24949886
    [Google Scholar]
  4. DucatL. PhilipsonL.H. AndersonB.J. The mental health comorbidities of diabetes.JAMA2014312769169210.1001/jama.2014.8040 25010529
    [Google Scholar]
  5. LinE.H.B. RutterC.M. KatonW. HeckbertS.R. CiechanowskiP. OliverM.M. LudmanE.J. YoungB.A. WilliamsL.H. McCullochD.K. Von KorffM. Depression and advanced complications of diabetes: A prospective cohort study.Diabetes Care201033226426910.2337/dc09‑1068 19933989
    [Google Scholar]
  6. de GrootM. AndersonR. FreedlandK.E. ClouseR.E. LustmanP.J. Association of depression and diabetes complications: A meta-analysis.Psychosom. Med.200163461963010.1097/00006842‑200107000‑00015 11485116
    [Google Scholar]
  7. LustmanP.J. AndersonR.J. FreedlandK.E. de GrootM. CarneyR.M. ClouseR.E. Depression and poor glycemic control: A meta-analytic review of the literature.Diabetes Care200023793494210.2337/diacare.23.7.934 10895843
    [Google Scholar]
  8. TalbotK. WangH.Y. KaziH. HanL.Y. BakshiK.P. StuckyA. FuinoR.L. KawaguchiK.R. SamoyednyA.J. WilsonR.S. ArvanitakisZ. SchneiderJ.A. WolfB.A. BennettD.A. TrojanowskiJ.Q. ArnoldS.E. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline.J. Clin. Invest.201212241316133810.1172/JCI59903 22476197
    [Google Scholar]
  9. BrueningJ.C. Role of brain insulin receptor and control of body weight and reproduction.Exp. Clin. Endocrinol. Diabetes20061148H110.1055/s‑2006‑954676
    [Google Scholar]
  10. GrilloC.A. PiroliG.G. LawrenceR.C. WrightenS.A. GreenA.J. WilsonS.P. SakaiR.R. KellyS.J. WilsonM.A. MottD.D. ReaganL.P. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity.Diabetes201564113927393610.2337/db15‑0596 26216852
    [Google Scholar]
  11. FiglewiczD.P. EvansS.B. MurphyJ. HoenM. BaskinD.G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat.Brain Res.2003964110711510.1016/S0006‑8993(02)04087‑8 12573518
    [Google Scholar]
  12. WoodsC.A. GuttmanZ.R. HuangD. KolaricR.A. RabinowitschA.I. JonesK.T. Cabeza de VacaS. SclafaniA. CarrK.D. Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal.Physiol. Behav.2016159526310.1016/j.physbeh.2016.03.013 26988281
    [Google Scholar]
  13. GrilloC.A. PiroliG.G. KaiglerK.F. WilsonS.P. WilsonM.A. ReaganL.P. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats.Behav. Brain Res.2011222123023510.1016/j.bbr.2011.03.052 21458499
    [Google Scholar]
  14. KleinriddersA. CaiW. CappellucciL. GhazarianA. CollinsW.R. VienbergS.G. PothosE.N. KahnC.R. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders.Proc. Natl. Acad. Sci. USA2015112113463346810.1073/pnas.1500877112 25733901
    [Google Scholar]
  15. CaiW. XueC. SakaguchiM. KonishiM. ShirazianA. FerrisH.A. LiM.E. YuR. KleinriddersA. PothosE.N. KahnC.R. Insulin regulates astrocyte gliotransmission and modulates behavior.J. Clin. Invest.201812872914292610.1172/JCI99366 29664737
    [Google Scholar]
  16. MansurR.B. FriesG.R. SubramaniapillaiM. FrangouS. De FeliceF.G. RasgonN. McEwenB. BrietzkeE. McIntyreR.S. Expression of dopamine signaling genes in the post-mortem brain of individuals with mental illnesses is moderated by body mass index and mediated by insulin signaling genes.J. Psychiatr. Res.201810712813510.1016/j.jpsychires.2018.10.020 30391805
    [Google Scholar]
  17. HillA.S. SahayA. HenR. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors.Neuropsychopharmacology201540102368237810.1038/npp.2015.85 25833129
    [Google Scholar]
  18. LindqvistA. MohapelP. BouterB. FrielingsdorfH. PizzoD. BrundinP. Erlanson-AlbertssonC. High‐fat diet impairs hippocampal neurogenesis in male rats.Eur. J. Neurol.200613121385138810.1111/j.1468‑1331.2006.01500.x 17116226
    [Google Scholar]
  19. PapazoglouI.K. JeanA. GertlerA. TaouisM. VacherC.M. Hippocampal GSK3β as a molecular link between obesity and depression.Mol. Neurobiol.201552136337410.1007/s12035‑014‑8863‑x 25169083
    [Google Scholar]
  20. BonatoJ.M. BassaniT.B. MilaniH. VitalM.A.B.F. de OliveiraR.M.W. Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson’s disease in rats.Exp. Neurol.201830018820010.1016/j.expneurol.2017.11.009 29162435
    [Google Scholar]
  21. PipatpiboonN. PratchayasakulW. ChattipakornN. ChattipakornS.C. PPARγ agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets.Endocrinology2012153132933810.1210/en.2011‑1502 22109891
    [Google Scholar]
  22. DetkaJ. KurekA. Basta-KaimA. KuberaM. LasońW. BudziszewskaB. Neuroendocrine link between stress, depression and diabetes.Pharmacol. Rep.20136561591160010.1016/S1734‑1140(13)71520‑2 24553007
    [Google Scholar]
  23. LabouèbeG. LiuS. DiasC. ZouH. WongJ.C.Y. KarunakaranS. CleeS.M. PhillipsA.G. BoutrelB. BorglandS.L. Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids.Nat. Neurosci.201316330030810.1038/nn.3321 23354329
    [Google Scholar]
  24. StoufferM.A. WoodsC.A. PatelJ.C. LeeC.R. WitkovskyP. BaoL. MacholdR.P. JonesK.T. de VacaS.C. ReithM.E.A. CarrK.D. RiceM.E. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward.Nat. Commun.201561854310.1038/ncomms9543 26503322
    [Google Scholar]
  25. MirzaS. HossainM. MathewsC. MartinezP. PinoP. GayJ.L. RentfroA. McCormickJ.B. Fisher-HochS.P. Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: A cross-sectional study.Cytokine201257113614210.1016/j.cyto.2011.09.029 22035595
    [Google Scholar]
  26. JohnsonL.A. EdwardsM. GamboaA. HallJ. RobinsonM. O’BryantS.E. Depression, inflammation, and memory loss among Mexican Americans: Analysis of the HABLE cohort.Int. Psychogeriatr.201729101693169910.1017/S1041610217001016 28629481
    [Google Scholar]
  27. PostalM. LapaA.T. SinicatoN.A. de Oliveira PeliçariK. PeresF.A. CostallatL.T.L. FernandesP.T. MariniR. AppenzellerS. Depressive symptoms are associated with tumor necrosis factor alpha in systemic lupus erythematosus.J. Neuroinflammation2016131510.1186/s12974‑015‑0471‑9 26732584
    [Google Scholar]
  28. KasterM.P. GadottiV.M. CalixtoJ.B. SantosA.R.S. RodriguesA.L.S. Depressive-like behavior induced by tumor necrosis factor-α in mice.Neuropharmacology201262141942610.1016/j.neuropharm.2011.08.018 21867719
    [Google Scholar]
  29. MorganJ.A. SinghalG. CorriganF. JaehneE.J. JawaharM.C. BauneB.T. Exercise related anxiety-like behaviours are mediated by TNF receptor signaling, but not depression-like behaviours.Brain Res.20181695101710.1016/j.brainres.2018.05.032 29800552
    [Google Scholar]
  30. BomfimT.R. Forny-GermanoL. SathlerL.B. Brito-MoreiraJ. HouzelJ.C. DeckerH. SilvermanM.A. KaziH. MeloH.M. McCleanP.L. HolscherC. ArnoldS.E. TalbotK. KleinW.L. MunozD.P. FerreiraS.T. De FeliceF.G. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers.J. Clin. Invest.201212241339135310.1172/JCI57256 22476196
    [Google Scholar]
  31. ClarkeJ.R. Lyra e SilvaN.M. FigueiredoC.P. FrozzaR.L. LedoJ.H. BeckmanD. KatashimaC.K. RazolliD. CarvalhoB.M. FrazãoR. SilveiraM.A. RibeiroF.C. BomfimT.R. NevesF.S. KleinW.L. MedeirosR. LaFerlaF.M. CarvalheiraJ.B. SaadM.J. MunozD.P. VellosoL.A. FerreiraS.T. De FeliceF.G. Alzheimer‐associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation.EMBO Mol. Med.20157219021010.15252/emmm.201404183 25617315
    [Google Scholar]
  32. LourencoM.V. ClarkeJ.R. FrozzaR.L. BomfimT.R. Forny-GermanoL. BatistaA.F. SathlerL.B. Brito-MoreiraJ. AmaralO.B. SilvaC.A. Freitas-CorreaL. Espírito-SantoS. Campello-CostaP. HouzelJ.C. KleinW.L. HolscherC. CarvalheiraJ.B. SilvaA.M. VellosoL.A. MunozD.P. FerreiraS.T. De FeliceF.G. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys.Cell Metab.201318683184310.1016/j.cmet.2013.11.002 24315369
    [Google Scholar]
  33. DongJ. JimiE. ZeissC. HaydenM.S. GhoshS. Constitutively active NF-κB triggers systemic TNFα-dependent inflammation and localized TNFα-independent inflammatory disease.Genes Dev.201024161709171710.1101/gad.1958410 20713516
    [Google Scholar]
  34. GuptaS. BiR. KimC. ChiplunkarS. YelL. GollapudiS. Role of NF-κB signaling pathway in increased tumor necrosis factor-α-induced apoptosis of lymphocytes in aged humans.Cell Death Differ.200512217718310.1038/sj.cdd.4401557 15647756
    [Google Scholar]
  35. FaulenbachM. UthoffH. SchweglerK. SpinasG.A. SchmidC. WiesliP. Effect of psychological stress on glucose control in patients with Type 2 diabetes.Diabet. Med.201229112813110.1111/j.1464‑5491.2011.03431.x 21883440
    [Google Scholar]
  36. ViseuJ. LealR. de JesusS.N. PintoP. PechorroP. GreenglassE. Relationship between economic stress factors and stress, anxiety, and depression: Moderating role of social support.Psychiatry Res.201826810210710.1016/j.psychres.2018.07.008 30015107
    [Google Scholar]
  37. AguileraG. HPA axis responsiveness to stress: Implications for healthy aging.Exp. Gerontol.2011462-3909510.1016/j.exger.2010.08.023 20833240
    [Google Scholar]
  38. SmithS.M. ValeW.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress.Dialogues Clin. Neurosci.20068438339510.31887/DCNS.2006.8.4/ssmith 17290797
    [Google Scholar]
  39. RasgonN.L. McEwenB.S. Insulin resistance—a missing link no more.Mol. Psychiatry201621121648165210.1038/mp.2016.162 27698431
    [Google Scholar]
  40. CarrollB.J. CassidyF. NaftolowitzD. TathamN.E. WilsonW.H. IranmaneshA. LiuP.Y. VeldhuisJ.D. Pathophysiology of hypercortisolism in depression.Acta Psychiatr. Scand.2007115s4339010310.1111/j.1600‑0447.2007.00967.x 17280575
    [Google Scholar]
  41. OltmannsK.M. DodtB. SchultesB. RaspeH.H. SchweigerU. BornJ. FehmH.L. PetersA. Cortisol correlates with metabolic disturbances in a population study of type 2 diabetic patients.Eur. J. Endocrinol.2006154232533110.1530/eje.1.02074 16452548
    [Google Scholar]
  42. ChongA.C.N. VogtM.C. HillA.S. BrüningJ.C. ZeltserL.M. Central insulin signaling modulates hypothalamus–pituitary–adrenal axis responsiveness.Mol. Metab.201542839210.1016/j.molmet.2014.12.001 25685696
    [Google Scholar]
  43. JacobsonL. SapolskyR. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis.Endocr. Rev.199112211813410.1210/edrv‑12‑2‑118 2070776
    [Google Scholar]
  44. LópezJ.F. ChalmersD.T. LittleK.Y. WatsonS.J.A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression.Biol. Psychiatry199843854757310.1016/S0006‑3223(97)00484‑8 9564441
    [Google Scholar]
  45. WesselsA.M. ScheltensP. BarkhofF. HeineR.J. Hyperglycaemia as a determinant of cognitive decline in patients with type 1 diabetes.Eur. J. Pharmacol.20085851889610.1016/j.ejphar.2007.11.080 18396273
    [Google Scholar]
  46. FukuiK. OmoiN.O. HayasakaT. ShinnkaiT. SuzukiS. AbeK. UranoS. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E.Ann. N. Y. Acad. Sci.2002959127528410.1111/j.1749‑6632.2002.tb02099.x 11976202
    [Google Scholar]
  47. CominD. GazariniL. ZanoniJ.N. MilaniH. de OliveiraR.M.W. Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats.Behav. Brain Res.20102101384510.1016/j.bbr.2010.02.001 20138920
    [Google Scholar]
  48. SrivastavaS.K. RamanaK.V. BhatnagarA. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options.Endocr. Rev.200526338039210.1210/er.2004‑0028 15814847
    [Google Scholar]
  49. MaloneM.A. SchockenD.D. HannaS.K. LiangX. MaloneJ.I. Diabetes-induced bradycardia is an intrinsic metabolic defect reversed by carnitine.Metabolism20075681118112310.1016/j.metabol.2007.04.005 17618959
    [Google Scholar]
  50. WrightE.Jr Scism-BaconJ.L. GlassL.C. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia.Int. J. Clin. Pract.200660330831410.1111/j.1368‑5031.2006.00825.x 16494646
    [Google Scholar]
  51. AhmadF. HeZ. KingG. Molecular targets of diabetic cardiovascular complications.Curr. Drug Targets20056448749410.2174/1389450054021990 16026267
    [Google Scholar]
  52. TothC. SchmidtA.M. TuorU.I. FrancisG. FoniokT. BrusseeV. KaurJ. YanS.F. MartinezJ.A. BarberP.A. BuchanA. ZochodneD.W. Diabetes, leukoencephalopathy and rage.Neurobiol. Dis.200623244546110.1016/j.nbd.2006.03.015 16815028
    [Google Scholar]
  53. BrownleeM. Biochemistry and molecular cell biology of diabetic complications.Nature2001414686581382010.1038/414813a 11742414
    [Google Scholar]
  54. AragnoM. MastrocolaR. MedanaC. RestivoF. CatalanoM.G. PonsN. DanniO. BoccuzziG. Up-regulation of advanced glycated products receptors in the brain of diabetic rats is prevented by antioxidant treatment.Endocrinology2005146125561556710.1210/en.2005‑0712 16166220
    [Google Scholar]
  55. KalmijnS. JanssenJ.A.M.J.L. PolsH.A.P. LambertsS.W.J. BretelerM.M.B. A prospective study on circulating insulin-like growth factor I (IGF-I), IGF-binding proteins, and cognitive function in the elderly.J. Clin. Endocrinol. Metab.200085124551455510.1210/jcem.85.12.7033 11134107
    [Google Scholar]
  56. HolmesC. Review: Systemic inflammation and A lzheimer’s disease.Neuropathol. Appl. Neurobiol.2013391516810.1111/j.1365‑2990.2012.01307.x 23046210
    [Google Scholar]
  57. McCuskerR.H. KelleyK.W. Immune–neural connections: How the immune system’s response to infectious agents influences behavior.J. Exp. Biol.20132161849810.1242/jeb.073411 23225871
    [Google Scholar]
  58. JanelidzeS. HertzeJ. NäggaK. NilssonK. NilssonC. WennströmM. van WestenD. BlennowK. ZetterbergH. HanssonO. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype.Neurobiol. Aging20175110411210.1016/j.neurobiolaging.2016.11.017 28061383
    [Google Scholar]
  59. DhandaS. SandhirR. Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via mmp-9 activation and downregulation of tight junction proteins.Mol. Neurobiol.201855536423659 28523565
    [Google Scholar]
  60. NadeauS. RivestS. Role of microglial-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor kappa B activity in the brain during endotoxemia.J. Neurosci.20002093456346810.1523/JNEUROSCI.20‑09‑03456.2000 10777809
    [Google Scholar]
  61. MarioniR.E. DearyI.J. StrachanM.W. LoweG.D. RumleyA. MurrayG.D. PriceJ.F. Blood rheology and cognition in the edinburgh type 2 diabetes study.Age Ageing201039335435910.1093/ageing/afq021 20197283
    [Google Scholar]
  62. WellerR.O. MasseyA. KuoY.M. RoherA. Cerebral amyloid angiopathy: Accumulation of A beta in interstitial fluid drainage pathways in Alzheimer’s disease.Ann. N. Y. Acad. Sci.2000903111011710.1111/j.1749‑6632.2000.tb06356.x 10818495
    [Google Scholar]
  63. AnderoR. ChoiD.C. ResslerK.J. BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders.Prog. Mol. Biol. Transl. Sci.201412216919210.1016/B978‑0‑12‑420170‑5.00006‑4 24484701
    [Google Scholar]
  64. MohammadiA. AmooeianV.G. RashidiE. Dysfunction in brain-derived neurotrophic factor signaling pathway and susceptibility to schizophrenia, parkinson’s and alzheimer’s diseases.Curr. Gene Ther.2018181456310.2174/1566523218666180302163029 29512462
    [Google Scholar]
  65. YanT. XuM. WanS. WangM. WuB. XiaoF. BiK. JiaY. Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway.Psychiatry Res.201624313514210.1016/j.psychres.2016.06.037 27387555
    [Google Scholar]
  66. TaoW. DongY. SuQ. WangH. ChenY. XueW. ChenC. XiaB. DuanJ. ChenG. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway.Behav. Brain Res.201630817718610.1016/j.bbr.2016.04.039 27113683
    [Google Scholar]
  67. ChenW. LiangT. ZuoW. WuX. ShenZ. WangF. LiC. ZhengY. PengG. Neuroprotective effect of 1-Deoxynojirimycin on cognitive impairment, β-amyloid deposition, and neuroinflammation in the SAMP8 mice.Biomed. Pharmacother.2018106929710.1016/j.biopha.2018.06.106 29957471
    [Google Scholar]
  68. TangL. KangY.T. YinB. SunL.J. FanX.S. Effects of weight-bearing ladder and aerobic treadmill exercise on learning and memory ability of diabetic rats and its mechanism.Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih2017335436440 29926589
    [Google Scholar]
  69. ZirpelL. JanowiakM.A. VeltriC.A. ParksT.N. AMPA receptor-mediated, calcium-dependent CREB phosphorylation in a subpopulation of auditory neurons surviving activity deprivation.J. Neurosci.200020166267627510.1523/JNEUROSCI.20‑16‑06267.2000 10934277
    [Google Scholar]
  70. SrivastavaP. DhuriyaY.K. KumarV. SrivastavaA. GuptaR. ShuklaR.K. YadavR.S. DwivediH.N. PantA.B. KhannaV.K. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin.Neurotoxicology20186719020510.1016/j.neuro.2018.04.018 29723552
    [Google Scholar]
  71. BathinaS. DasU.N. Brain-derived neurotrophic factor and its clinical implications.Arch. Med. Sci.2015661164117810.5114/aoms.2015.56342 26788077
    [Google Scholar]
  72. ZhouX. WangS. DingX. QinL. MaoY. ChenL. LiW. YingC. Zeaxanthin improves diabetes-induced cognitive deficit in rats through activiting PI3K/AKT signaling pathway.Brain Res. Bull.201713219019810.1016/j.brainresbull.2017.06.001 28599877
    [Google Scholar]
  73. XiangQ. ZhangJ. LiC.Y. WangY. ZengM.J. CaiZ.X. TianR.B. JiaW. LiX.H. Insulin resistance-induced hyperglycemia decreased the activation of Akt/CREB in hippocampus neurons: Molecular evidence for mechanism of diabetes-induced cognitive dysfunction.Neuropeptides20155491510.1016/j.npep.2015.08.009 26344332
    [Google Scholar]
  74. JiangB. XiongZ. YangJ. WangW. WangY. HuZ.L. WangF. ChenJ.G. Antidepressant‐like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus.Br. J. Pharmacol.201216661872188710.1111/j.1476‑5381.2012.01902.x 22335772
    [Google Scholar]
  75. ZhangY. ShaoF. WangQ. XieX. WangW. Neuroplastic correlates in the mPFC underlying the impairment of stress-coping ability and cognitive flexibility in adult rats exposed to chronic mild stress during adolescence.Neural Plast.2017201711010.1155/2017/9382797 28182105
    [Google Scholar]
  76. YuanS. JiangX. ZhouX. ZhangY. TengT. XieP. Inosine alleviates depression-like behavior and increases the activity of the ERK-CREB signaling in adolescent male rats.Neuroreport201829141223122910.1097/WNR.0000000000001101 30028377
    [Google Scholar]
  77. LiuP. ZouL. JiaoQ. ChiT. JiX. QiY. XuQ. WangL. Xanthoceraside attenuates learning and memory deficits via improving insulin signaling in STZ-induced AD rats.Neurosci. Lett.201354311512010.1016/j.neulet.2013.02.065 23562514
    [Google Scholar]
  78. LiuD. XieK. YangX. GuJ. GeL. WangX. WangZ. Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats.Behav. Brain Res.201426491610.1016/j.bbr.2014.01.039 24503118
    [Google Scholar]
  79. SatoK. SuematsuA. NakashimaT. Takemoto-KimuraS. AokiK. MorishitaY. AsaharaH. OhyaK. YamaguchiA. TakaiT. KodamaT. ChatilaT.A. BitoH. TakayanagiH. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway.Nat. Med.200612121410141610.1038/nm1515 17128269
    [Google Scholar]
  80. BossuytJ. BersD.M. Visualizing CaMKII and CaM activity: A paradigm of compartmentalized signaling.J. Mol. Med.201391890791610.1007/s00109‑013‑1060‑y 23775230
    [Google Scholar]
  81. WeiF. QiuC.S. LiauwJ. RobinsonD.A. HoN. ChatilaT. ZhuoM. Calcium–calmodulin-dependent protein kinase IV is required for fear memory.Nat. Neurosci.20025657357910.1038/nn0602‑855 12006982
    [Google Scholar]
  82. GongB. PanY. ZhaoW. KnableL. VempatiP. BegumS. HoL. WangJ. YemulS. BarnumS. BilskiA. GongB.Y. PasinettiG.M. IVIG immunotherapy protects against synaptic dysfunction in Alzheimer’s disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway.Mol. Immunol.201356461962910.1016/j.molimm.2013.06.016 23911420
    [Google Scholar]
  83. YanX. LiuJ. YeZ. HuangJ. HeF. XiaoW. HuX. LuoZ. CaMKII-mediated CREB phosphorylation is involved in ca2+-induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation.PLoS One2016119e016278410.1371/journal.pone.0162784 27611779
    [Google Scholar]
  84. Gomez-PinillaF. YingZ. ZhuangY. Brain and spinal cord interaction: Protective effects of exercise prior to spinal cord injury.PLoS One201272e3229810.1371/journal.pone.0032298 22384207
    [Google Scholar]
  85. CuiW. BaiY. LuoP. MiaoL. CaiL. Preventive and therapeutic effects of MG132 by activating Nrf2-ARE signaling pathway on oxidative stress-induced cardiovascular and renal injury.Oxid. Med. Cell. Longev.2013201311010.1155/2013/306073 23533688
    [Google Scholar]
  86. SongY. DingW. BeiY. XiaoY. TongH.D. WangL.B. AiL.Y. Insulin is a potential antioxidant for diabetes-associated cognitive decline via regulating Nrf2 dependent antioxidant enzymes.Biomed. Pharmacother.201810447448410.1016/j.biopha.2018.04.097 29793180
    [Google Scholar]
  87. ZhangS. YuanL. ZhangL. LiC. LiJ. Prophylactic use of troxerutin can delay the development of diabetic cognitive dysfunction and improve the expression of Nrf2 in the hippocampus on STZ diabetic rats.Behav. Neurol.201820181810.1155/2018/8678539 29849815
    [Google Scholar]
  88. RisnerM.E. SaundersA.M. AltmanJ F B. OrmandyG.C. CraftS. FoleyI.M. Zvartau-HindM.E. HosfordD.A. RosesA.D. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease.Pharmacogenomics J.20066424625410.1038/sj.tpj.6500369 16446752
    [Google Scholar]
  89. ClaxtonA. BakerL.D. HansonA. TrittschuhE.H. CholertonB. MorganA. CallaghanM. ArbuckleM. BehlC. CraftS. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia.J. Alzheimers Dis.201544389790610.3233/JAD‑141791 25374101
    [Google Scholar]
  90. AlagiakrishnanK. SankaralingamS. GhoshM. MereuL. SeniorP. Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease.Discov. Med.20131690277286 24333407
    [Google Scholar]
  91. MoosaviF. HosseiniR. SasoL. FiruziO. Modulation of neurotrophic signaling pathways by polyphenols.Drug Des. Devel. Ther.2015102342 26730179
    [Google Scholar]
  92. AliF. Bioavailability and pharmaco-therapeutic potential of luteolin in overcoming Alzheimer’s disease.CNS Neurol. Disord. Drug Targets2019185235236210.2174/1871527318666190319141835
    [Google Scholar]
  93. NabaviS.F. BraidyN. GortziO. Sobarzo-SanchezE. DagliaM. Skalicka-WoźniakK. NabaviS.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review.Brain Res. Bull.2015119Pt A11110.1016/j.brainresbull.2015.09.002 26361743
    [Google Scholar]
  94. LinC.W. WuM.J. LiuI.Y.C. SuJ.D. YenJ.H. Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression.J. Agric. Food Chem.20105874477448610.1021/jf904061x 20302373
    [Google Scholar]
  95. HuL.W. YenJ.H. ShenY.T. WuK.Y. WuM.J. Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells.PLoS One201495e9788010.1371/journal.pone.0097880 24846311
    [Google Scholar]
  96. TsaiF.S. PengW.H. WangW.H. WuC.R. HsiehC.C. LinY.T. FengI.C. HsiehM.T. Effects of luteolin on learning acquisition in rats: Involvement of the central cholinergic system.Life Sci.200780181692169810.1016/j.lfs.2007.01.055 17337279
    [Google Scholar]
  97. LiuY. TianX. GouL. SunL. LingX. YinX. Luteolin attenuates diabetes-associated cognitive decline in rats.Brain Res. Bull.201394232910.1016/j.brainresbull.2013.02.001 23415807
    [Google Scholar]
  98. LallR.K. AdhamiV.M. MukhtarH. Dietary flavonoid fisetin for cancer prevention and treatment.Mol. Nutr. Food Res.20166061396140510.1002/mnfr.201600025 27059089
    [Google Scholar]
  99. PrasathG.S. SundaramC.S. SubramanianS.P. Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats.Endocrine201344235936810.1007/s12020‑012‑9866‑x 23277230
    [Google Scholar]
  100. ZhenL. ZhuJ. ZhaoX. HuangW. AnY. LiS. DuX. LinM. WangQ. XuY. PanJ. The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system.Behav. Brain Res.2012228235936610.1016/j.bbr.2011.12.017 22197297
    [Google Scholar]
  101. PrasathG.S. SubramanianS.P. Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats.J. Biochem. Mol. Toxicol.2014281044244910.1002/jbt.21583 24939606
    [Google Scholar]
  102. MaherP. Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin.Genes Nutr.20094429730710.1007/s12263‑009‑0142‑5 19756810
    [Google Scholar]
  103. CurraisA. FarrokhiC. DarguschR. ArmandoA. QuehenbergerO. SchubertD. MaherP. Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse.J. Gerontol. A Biol. Sci. Med. Sci.201873329930710.1093/gerona/glx104 28575152
    [Google Scholar]
  104. SandireddyR. YerraV.G. KomirishettiP. AretiA. KumarA. Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways.Cell. Mol. Neurobiol.201636688389210.1007/s10571‑015‑0272‑9 26399251
    [Google Scholar]
  105. KasiP.D. TamilselvamR. Skalicka-WoźniakK. NabaviS.F. DagliaM. BishayeeA. Pazoki-toroudiH. NabaviS.M. Molecular targets of curcumin for cancer therapy: An updated review.Tumour Biol.20163710130171302810.1007/s13277‑016‑5183‑y 27468716
    [Google Scholar]
  106. PlataniaC.B.M. FidilioA. LazzaraF. PiazzaC. GeraciF. GiurdanellaG. LeggioG.M. SalomoneS. DragoF. BucoloC. Retinal protection and distribution of curcumin in vitro and in vivo.Front. Pharmacol.2018967010.3389/fphar.2018.00670 30013474
    [Google Scholar]
  107. KooB.B. CalderazzoS. BowleyB.G.E. KolliA. MossM.B. RoseneD.L. MooreT.L. Long-term effects of curcumin in the non-human primate brain.Brain Res. Bull.2018142889510.1016/j.brainresbull.2018.06.015 29981358
    [Google Scholar]
  108. ReddyP.H. ManczakM. YinX. GradyM.C. MitchellA. TonkS. KuruvaC.S. BhattiJ.S. KandimallaR. VijayanM. KumarS. WangR. PradeepkiranJ.A. OgunmokunG. ThamaraiK. QuesadaK. BolesA. ReddyA.P. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease.J. Alzheimers Dis.201861384386610.3233/JAD‑170512 29332042
    [Google Scholar]
  109. ZhangL. FangY. XuY. LianY. XieN. WuT. ZhangH. SunL. ZhangR. WangZ. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway.PLoS One2015106e013152510.1371/journal.pone.0131525 26114940
    [Google Scholar]
  110. FaheemN.M. El AskaryA. Neuroprotective role of curcumin on the hippocampus against the structural and serological alterations of streptozotocin-induced diabetes in Sprague Dawely rats.Iran. J. Basic Med. Sci.2017206690699 28868124
    [Google Scholar]
  111. KumarP.T. GeorgeN. AntonyS. Skaria PauloseC. Curcumin restores diabetes induced neurochemical changes in the brain stem of Wistar rats.Eur. J. Pharmacol.20137021-332333110.1016/j.ejphar.2013.01.012 23380686
    [Google Scholar]
  112. KumarT.P. AntonyS. GireeshG. GeorgeN. PauloseC.S. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats.J. Biomed. Sci.20101714310.1186/1423‑0127‑17‑43 20513244
    [Google Scholar]
  113. KuhadA. ChopraK. Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences.Eur. J. Pharmacol.20075761-3344210.1016/j.ejphar.2007.08.001 17822693
    [Google Scholar]
  114. CoxK.H.M. PipingasA. ScholeyA.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population.J. Psychopharmacol.201529564265110.1177/0269881114552744 25277322
    [Google Scholar]
  115. SmallG.W. SiddarthP. LiZ. MillerK.J. ErcoliL. EmersonN.D. MartinezJ. WongK.P. LiuJ. MerrillD.A. ChenS.T. HenningS.M. SatyamurthyN. HuangS.C. HeberD. BarrioJ.R. Memory and brain amyloid and Tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial.Am. J. Geriatr. Psychiatry201826326627710.1016/j.jagp.2017.10.010 29246725
    [Google Scholar]
  116. HodaeiH. AdibianM. NikpayamO. HedayatiM. SohrabG. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial.Diabetol. Metab. Syndr.20191114110.1186/s13098‑019‑0437‑7 31149032
    [Google Scholar]
  117. SchiborrC. KocherA. BehnamD. JandasekJ. ToelstedeS. FrankJ. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes.Mol. Nutr. Food Res.201458351652710.1002/mnfr.201300724 24402825
    [Google Scholar]
  118. KulkarniS.S. CantóC. The molecular targets of resveratrol.Biochim. Biophys. Acta Mol. Basis Dis.2015185261114112310.1016/j.bbadis.2014.10.005 25315298
    [Google Scholar]
  119. TianZ. WangJ. XuM. WangY. ZhangM. ZhouY. Resveratrol improves cognitive impairment by regulating apoptosis and synaptic plasticity in streptozotocin-induced diabetic rats.Cell. Physiol. Biochem.20164061670167710.1159/000453216 28006780
    [Google Scholar]
  120. GocmezS.S. ŞahinT.D. YazirY. DuruksuG. EraldemirF.C. PolatS. UtkanT. Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia.Physiol. Behav.201920119820710.1016/j.physbeh.2018.12.012 30550811
    [Google Scholar]
  121. SadiG. KonatD. Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats.Pharm. Biol.201654711561163 26079852
    [Google Scholar]
  122. ThomasJ. GargM.L. SmithD.W. Dietary resveratrol supplementation normalizes gene expression in the hippocampus of streptozotocin-induced diabetic C57Bl/6 mice.J. Nutr. Biochem.201425331331810.1016/j.jnutbio.2013.11.005 24456733
    [Google Scholar]
  123. HuberJ. Diabetes, cognitive function, and the blood-brain barrier.Curr. Pharm. Des.200814161594160010.2174/138161208784705441 18673200
    [Google Scholar]
  124. JingY.H. ChenK.H. KuoP.C. PaoC.C. ChenJ.K. Neurodegeneration in streptozotocin-induced diabetic rats is attenuated by treatment with resveratrol.Neuroendocrinology201398211612710.1159/000350435 23486084
    [Google Scholar]
  125. SchmatzR. MazzantiC.M. SpanevelloR. StefanelloN. GutierresJ. CorrêaM. da RosaM.M. RubinM.A. Chitolina SchetingerM.R. MorschV.M. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats.Eur. J. Pharmacol.20096101-3424810.1016/j.ejphar.2009.03.032 19303406
    [Google Scholar]
  126. SchmatzR. MazzantiC.M. SpanevelloR. StefanelloN. GutierresJ. MaldonadoP.A. CorrêaM. da RosaC.S. BeckerL. BagatiniM. GonçalvesJ.F. JaquesJ.D.S. SchetingerM.R. MorschV.M. Ectonucleotidase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of streptozotocin-induced diabetic rats and treated with resveratrol.Brain Res. Bull.200980637137610.1016/j.brainresbull.2009.08.019 19723569
    [Google Scholar]
  127. WongR.H. Raederstorff, and P.R. Howe, Acute resveratrol consumption improve neurovascular coupling capacity in adults with type 2 diabetes mellitus.Nutrients20168710.3390/nu8070425 27420093
    [Google Scholar]
  128. MurakamiA. AshidaH. TeraoJ. Multitargeted cancer prevention by quercetin.Cancer Lett.2008269231532510.1016/j.canlet.2008.03.046 18467024
    [Google Scholar]
  129. XueF. NieX. ShiJ. LiuQ. WangZ. LiX. ZhouJ. SuJ. XueM. ChenW.D. WangY.D. Quercetin inhibits LPS-induced inflammation and ox-LDL-induced lipid deposition.Front. Pharmacol.201784010.3389/fphar.2017.00040 28217098
    [Google Scholar]
  130. FuentesJ. AtalaE. PasteneE. Carrasco-PozoC. SpeiskyH. Quercetin oxidation paradoxically enhances its antioxidant and cytoprotective properties.J. Agric. Food Chem.20176550110021101010.1021/acs.jafc.7b05214 29179550
    [Google Scholar]
  131. GormazJ. QuintremilS. RodrigoR. Cardiovascular disease: A target for the pharmacological effects of quercetin.Curr. Top. Med. Chem.201515171735174210.2174/1568026615666150427124357 25915608
    [Google Scholar]
  132. ZuninoS.J. Type 2 diabetes and glycemic response to grapes or grape products.J. Nutr.200913991794S1800S10.3945/jn.109.107631 19625702
    [Google Scholar]
  133. BhutadaP. MundhadaY. BansodK. BhutadaC. TawariS. DixitP. MundhadaD. Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats.Neurobiol. Learn. Mem.201094329330210.1016/j.nlm.2010.06.008 20620214
    [Google Scholar]
  134. TotaS. AwasthiH. KamatP.K. NathC. HanifK. Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice.Behav. Brain Res.20102091737910.1016/j.bbr.2010.01.017 20096732
    [Google Scholar]
  135. DemirE.A. GergerliogluH.S. OzM. Antidepressant‐like effects of quercetin in diabetic rats are independent of hypothalamic–pituitary–adrenal axis.Acta Neuropsychiatr.2016281233010.1017/neu.2015.45 26234153
    [Google Scholar]
  136. MacielR.M. CarvalhoF.B. OlabiyiA.A. SchmatzR. GutierresJ.M. StefanelloN. ZaniniD. RosaM.M. AndradeC.M. RubinM.A. SchetingerM.R. MorschV.M. DanesiC.C. LopesS.T.A. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities.Biomed. Pharmacother.20168455956810.1016/j.biopha.2016.09.069 27694000
    [Google Scholar]
  137. ChougalaM.B. BhaskarJ.J. RajanM.G.R. SalimathP.V. Effect of curcumin and quercetin on lysosomal enzyme activities in streptozotocin-induced diabetic rats.Clin. Nutr.201231574975510.1016/j.clnu.2012.02.003 22445558
    [Google Scholar]
  138. YoulE. BardyG. MagousR. CrosG. SejalonF. VirsolvyA. RichardS. QuignardJ.F. GrossR. PetitP. BatailleD. OiryC. Quercetin potentiates insulin secretion and protects INS‐1 pancreatic β‐cells against oxidative damage via the ERK1/2 pathway.Br. J. Pharmacol.2010161479981410.1111/j.1476‑5381.2010.00910.x 20860660
    [Google Scholar]
  139. CoskunO. KanterM. KorkmazA. OterS. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and? -cell damage in rat pancreas.Pharmacol. Res.200551211712310.1016/j.phrs.2004.06.002 15629256
    [Google Scholar]
  140. BournivalJ. FrancoeurM.A. RenaudJ. MartinoliM.G. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis.Rejuvenation Res.201215332233310.1089/rej.2011.1242 22524206
    [Google Scholar]
  141. NakagawaT. ItohM. OhtaK. HayashiY. HayakawaM. YamadaY. AkanabeH. ChikaishiT. NakagawaK. ItohY. MuroT. YanagidaD. NakabayashiR. MoriT. SaitoK. OhzawaK. SuzukiC. LiS. UedaM. WangM.X. NishidaE. IslamS. Tana; Kobori, M.; Inuzuka, T. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients.Neuroreport201627967167610.1097/WNR.0000000000000594 27145228
    [Google Scholar]
  142. VenzaI. VisalliM. OteriR. BeninatiC. TetiD. VenzaM. Genistein reduces proliferation of EP3-expressing melanoma cells through inhibition of PGE2-induced IL-8 expression.Int. Immunopharmacol.201862869510.1016/j.intimp.2018.06.009 29990698
    [Google Scholar]
  143. GanaiA.A. FarooqiH. Bioactivity of genistein: A review of in vitro and in vivo studies.Biomed. Pharmacother.201576303810.1016/j.biopha.2015.10.026 26653547
    [Google Scholar]
  144. CaiB. WangY. ShaoJ. WangT. CaiR. MaC. HanT. DuJ. Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer’s disease.Neural Regen. Res.20161171153115810.4103/1673‑5374.187056 27630702
    [Google Scholar]
  145. Bonet-CostaV. Herranz-PérezV. Blanco-GandíaM. Mas-BarguesC. InglésM. Garcia-TarragaP. Rodriguez-AriasM. MiñarroJ. BorrasC. Garcia-VerdugoJ.M. ViñaJ. Clearing Amyloid-β through PPARγ/ApoE activation by genistein is a treatment of experimental alzheimer’s disease.J. Alzheimers Dis.201651370171110.3233/JAD‑151020 26890773
    [Google Scholar]
  146. CaiB. YeS. WangT. WangY. LiJ. ZhanJ. ShenG. Genistein protects hippocampal neurons against injury by regulating calcium/calmodulin dependent protein kinase IV protein levels in Alzheimer’s disease model rats.Neural Regen. Res.20171291479148410.4103/1673‑5374.215260 29089994
    [Google Scholar]
  147. RajputM.S. SarkarP.D. Modulation of neuro-inflammatory condition, acetylcholinesterase and antioxidant levels by genistein attenuates diabetes associated cognitive decline in mice.Chem. Biol. Interact.20172689310210.1016/j.cbi.2017.02.021 28259689
    [Google Scholar]
  148. ZhangZ. YanJ. ShiH. Hyperglycemia as a risk factor of ischemic stroke.J. Drug Metab. Toxicol.201344153 25328819
    [Google Scholar]
  149. RajputM.S. SarkarP.D. NirmalN.P. Inhibition of DPP-4 activity and neuronal atrophy with genistein attenuates neurological deficits induced by transient global cerebral ischemia and reperfusion in streptozotocin-induced diabetic mice.Inflammation201740262363510.1007/s10753‑017‑0509‑5 28091829
    [Google Scholar]
  150. LiuY.W. ZhuX. YangQ.Q. LuQ. WangJ.Y. LiH.P. WeiY.Q. YinJ.L. YinX.X. Suppression of methylglyoxal hyperactivity by mangiferin can prevent diabetes-associated cognitive decline in rats.Psychopharmacology2013228458559410.1007/s00213‑013‑3061‑5 23529380
    [Google Scholar]
  151. MarrazzoG. BoscoP. La DeliaF. ScapagniniG. Di GiacomoC. MalaguarneraM. GalvanoF. NicolosiA. Li VoltiG. Neuroprotective effect of silibinin in diabetic mice.Neurosci. Lett.2011504325225610.1016/j.neulet.2011.09.041 21970972
    [Google Scholar]
  152. LiR. ZangA. ZhangL. ZhangH. ZhaoL. QiZ. WangH. Chrysin ameliorates diabetes-associated cognitive deficits in Wistar rats.Neurol. Sci.201435101527153210.1007/s10072‑014‑1784‑7 24737349
    [Google Scholar]
  153. SharifzadehM. RanjbarA. HosseiniA. KhanaviM. The effect of green tea extract on oxidative stress and spatial learning in streptozotocin-diabetic rats.Iran. J. Pharm. Res.2017161201209 28496475
    [Google Scholar]
  154. BaluchnejadmojaradT. RoghaniM. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress.Behav. Brain Res.2011224230531010.1016/j.bbr.2011.06.007 21699923
    [Google Scholar]
  155. JiangB. LeL. PanH. HuK. XuL. XiaoP. Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells.Brain Res. Bull.201410911712610.1016/j.brainresbull.2014.10.010 25451453
    [Google Scholar]
  156. El-MarasyS.A. AbdallahH.M.I. El-ShenawyS.M. El-KhatibA.S. El-ShabrawyO.A. KenawyS.A. Anti-depressant effect of hesperidin in diabetic rats.Can. J. Physiol. Pharmacol.2014921194595210.1139/cjpp‑2014‑0281 25358020
    [Google Scholar]
  157. AshafaqM. Neuromodulatory effects of hesperidin in mitigating oxidative stress in streptozotocin-induced diabetes.BioMed Res. Int.2014201424903110.1155/2014/249031
    [Google Scholar]
  158. PanY. HongY. ZhangQ.Y. KongL.D. Impaired hypothalamic insulin signaling in CUMS rats: Restored by icariin and fluoxetine through inhibiting CRF system.Psychoneuroendocrinology201338112213410.1016/j.psyneuen.2012.05.007 22663897
    [Google Scholar]
  159. MirshekarM. RoghaniM. KhaliliM. BaluchnejadmojaradT. Chronic oral pelargonidin alleviates learning and memory disturbances in streptozotocin diabetic rats.Iran. J. Pharm. Res.2011103569575 24250390
    [Google Scholar]
  160. MirshekarM. RoghaniM. KhaliliM. BaluchnejadmojaradT. Arab MoazzenS. Chronic oral pelargonidin alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress.Iran. Biomed. J.2010141-23339 20683496
    [Google Scholar]
  161. OlaM.S. AleisaA.M. Al-RejaieS.S. AbuohashishH.M. ParmarM.Y. AlhomidaA.S. AhmedM.M. Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats.Neurol. Sci.20143571003100810.1007/s10072‑014‑1628‑5 24413816
    [Google Scholar]
  162. BachewalP. GunduC. YerraV.G. KalvalaA.K. AretiA. KumarA. Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy.Biofactors201844210912210.1002/biof.1397 29193444
    [Google Scholar]
  163. LiuX. MoY. GongJ. LiZ. PengH. ChenJ. WangQ. KeZ. XieJ. Puerarin ameliorates cognitive deficits in streptozotocin-induced diabetic rats.Metab. Brain Dis.201631241742310.1007/s11011‑015‑9779‑5 26686502
    [Google Scholar]
  164. OlaM.S. AhmedM.M. AhmadR. AbuohashishH.M. Al-RejaieS.S. AlhomidaA.S. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina.J. Mol. Neurosci.201556244044810.1007/s12031‑015‑0561‑2 25929832
    [Google Scholar]
  165. ZhangS. LiH. ZhangL. LiJ. WangR. WangM. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats.Brain Res.2017165735536010.1016/j.brainres.2016.12.009 27998794
    [Google Scholar]
  166. WangJ. WangL. ZhouJ. QinA. ChenZ. The protective effect of formononetin on cognitive impairment in streptozotocin (STZ)-induced diabetic mice.Biomed. Pharmacother.20181061250125710.1016/j.biopha.2018.07.063 30119194
    [Google Scholar]
  167. ChoS.J. KangK.A. PiaoM.J. RyuY.S. FernandoP.D.S.M. ZhenA.X. HyunY.J. AhnM.J. KangH.K. HyunJ.W. 7,8-dihydroxyflavone protects high glucose-damaged neuronal cells against oxidative stress.Biomol. Ther.2019271859110.4062/biomolther.2018.202 30481956
    [Google Scholar]
  168. WangH. SunX. ZhangN. JiZ. MaZ. FuQ. QuR. MaS. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway.Physiol. Behav.20171829310010.1016/j.physbeh.2017.10.001 28988132
    [Google Scholar]
  169. SemamingY. SripetchwandeeJ. Sa-nguanmooP. PintanaH. PannangpetchP. ChattipakornN. ChattipakornS.C. Protocatechuic acid protects brain mitochondrial function in streptozotocin-induced diabetic rats.Appl. Physiol. Nutr. Metab.201540101078108110.1139/apnm‑2015‑0158 26316260
    [Google Scholar]
  170. AdedaraI.A. FasinaO.B. AyeniM.F. AjayiO.M. FarombiE.O. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats.Food Chem. Toxicol.201912517018110.1016/j.fct.2018.12.040 30597223
    [Google Scholar]
/content/journals/npj/10.2174/0122103155295956240529155913
Loading
/content/journals/npj/10.2174/0122103155295956240529155913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test