Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

Depression is a mental health disorder with high morbidity and disability rates that has harmful effects on public health worldwide. Despite many hypotheses about its mechanism have been put forward, its deeper mechanism is still unclear. Nowadays, there are many antidepressants developed by pharmaceutical companies, such as fluoxetine, ketamine, and paroxetine used in clinical practice, but the therapeutic effects are not satisfactory, with serious adverse reactions and drug addiction.

Objective

Ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides extracted from Panax ginseng that has been conducted for the treatment of many inflammatory diseases. However, the possible mechanisms of G-Rh2 involved in these neuroprotective effects on neuroinflammation are currently unclear.

Methods

We established a CSDS depression model in normal mice, and then the depressive symptoms of mice were evaluated by a series of behavioral testing. Finally, molecular biology experiments were conducted to demonstrate that G-Rh2 had anti-inflammatory and antidepressant effects.

Results

We showed that G-Rh2 (30 mg/kg) significantly relieved depressive behavior in mice attenuating oxidative stress injury and release of proinflammatory cytokines. Moreover, G-Rh2 reduced impaired neurogenesis in the hippocampus of CSDS-induced mice.

Conclusion

We demonstrated the anti-inflammatory and antioxidative effects of G-Rh2 to alleviate depression through improved neurogenesis in depressive mice for the first time. What's more, we aimed to verify the protective effects of G-Rh2 on neuroinflammation and provide novel insights for understanding the roles of G-Rh2 in the treatment of depression.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155289279240430070314
2025-02-01
2025-01-24
Loading full text...

Full text loading...

References

  1. LoshM. GordonP.C. Quantifying narrative ability in autism spectrum disorder: A computational linguistic analysis of narrative coherence.J. Autism Dev. Disord.201444123016302510.1007/s10803‑014‑2158‑y 24915929
    [Google Scholar]
  2. MarwahaS. PalmerE. SuppesT. ConsE. YoungA.H. UpthegroveR. Novel and emerging treatments for major depression.Lancet20234011037114115310.1016/S0140‑6736(22)02080‑3 36535295
    [Google Scholar]
  3. ParkC. RosenblatJ.D. BrietzkeE. PanZ. LeeY. CaoB. ZuckermanH. KalantarovaA. McIntyreR.S. Stress, epigenetics and depression: A systematic review.Neurosci. Biobehav. Rev.201910213915210.1016/j.neubiorev.2019.04.010 31005627
    [Google Scholar]
  4. QiaoH. LiM.X. XuC. ChenH.B. AnS.C. MaX.M. Dendritic spines in depression: What we learned from animal models.Neural Plast.2016201612610.1155/2016/8056370 26881133
    [Google Scholar]
  5. JesulolaE. MicalosP. BaguleyI.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - Are we there yet?Behav. Brain Res.2018341799010.1016/j.bbr.2017.12.025 29284108
    [Google Scholar]
  6. MénardC. HodesG.E. RussoS.J. Pathogenesis of depression: Insights from human and rodent studies.Neuroscience201632113816210.1016/j.neuroscience.2015.05.053 26037806
    [Google Scholar]
  7. RaisonC.L. CapuronL. MillerA.H. Cytokines sing the blues: Inflammation and the pathogenesis of depression.Trends Immunol.2006271243110.1016/j.it.2005.11.006 16316783
    [Google Scholar]
  8. BritesD. FernandesA. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation.Front. Cell. Neurosci.2015947610.3389/fncel.2015.00476 26733805
    [Google Scholar]
  9. AnzolinA.P. FeitenJ.G. BristotG. PossebonG.M.P. FleckM.P.A. CaldieraroM.A. Sant’AnnaK.M. Earlier age of onset is associated with a pro-inflammatory state in major depressive disorder.Psychiatry Res.202231411460110.1016/j.psychres.2022.114601 35749859
    [Google Scholar]
  10. LuS. WuC. JiaL. FangZ. LuJ. MouT. HuS. HeH. HuangM. XuY. Increased plasma levels of IL-6 are associated with striatal structural atrophy in major depressive disorder patients with anhedonia.Front. Psychiatry202213101673510.3389/fpsyt.2022.1016735 36405925
    [Google Scholar]
  11. HuestonC.M. O’LearyJ.D. HobanA.E. KozarevaD.A. PawleyL.C. O’LearyO.F. CryanJ.F. NolanY.M. Chronic interleukin-1β in the dorsal hippocampus impairs behavioural pattern separation.Brain Behav. Immun.20187425226410.1016/j.bbi.2018.09.015 30217534
    [Google Scholar]
  12. RanaT. BehlT. SehgalA. SrivastavaP. BungauS. Unfolding the role of BDNF as a biomarker for treatment of depression.J. Mol. Neurosci.202171102008202110.1007/s12031‑020‑01754‑x 33230708
    [Google Scholar]
  13. SiddiquiS.A. Ali RedhaA. SnoeckE.R. SinghS. GandaraS.J. IbrahimS.A. JafariS.M. Anti-depressant properties of crocin molecules in saffron.Molecules2022277207610.3390/molecules27072076 35408474
    [Google Scholar]
  14. LiaqatH. ParveenA. KimS.Y. Antidepressive effect of natural products and their derivatives targeting BDNF-TrkB in gut–brain axis.Int. J. Mol. Sci.202223231496810.3390/ijms232314968 36499295
    [Google Scholar]
  15. HussainG. HuangJ. RasulA. AnwarH. ImranA. MaqboolJ. RazzaqA. AzizN. MakhdoomE.H. KonukM. SunT. Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: An updated review.Molecules20192412221310.3390/molecules24122213 31200495
    [Google Scholar]
  16. KimY.J. PerumalsamyH. AceitunoC.V. KimD. MarkusJ. LeeS. KimS. LiuY. YangD.C. Photoluminescent and self-assembled hyaluronic acid-zinc oxide-ginsenoside Rh2 nanoparticles and their potential caspase-9 apoptotic mechanism towards cancer cell lines.Int. J. Nanomedicine2019148195820810.2147/IJN.S221328 31632027
    [Google Scholar]
  17. HouJ. YunY. CuiC. KimS. Ginsenoside Rh2 mitigates doxorubicin‐induced cardiotoxicity by inhibiting apoptotic and inflammatory damage and weakening pathological remodelling in breast cancer‐bearing mice.Cell Prolif.2022556e1324610.1111/cpr.13246 35534947
    [Google Scholar]
  18. ShiL.S. JiC.H. LiuY. GuJ.H. TangW.Q. ZhangW. GuanW. Ginsenoside Rh2 administration produces crucial antidepressant‐like effects in a CUMS‐induced mice model of depression.Brain Behav.2022128e270510.1002/brb3.2705 35848938
    [Google Scholar]
  19. KilkennyC. BrowneW. CuthillI.C. EmersonM. AltmanD.G. Animal research: Reporting in vivo experiments--the ARRIVE guidelines.J. Cereb. Blood Flow Metab.201131499199310.1038/jcbfm.2010.220 21206507
    [Google Scholar]
  20. KhandelwalN. DeyS.K. ChakravartyS. KumarA. miR-30 family miRNAs mediate the effect of chronic social defeat stress on hippocampal neurogenesis in mouse depression model.Front. Mol. Neurosci.20191218810.3389/fnmol.2019.00188 31440139
    [Google Scholar]
  21. GoldenS.A. CovingtonH.E.III BertonO. RussoS.J. A standardized protocol for repeated social defeat stress in mice.Nat. Protoc.2011681183119110.1038/nprot.2011.361 21799487
    [Google Scholar]
  22. FangW. ZhangJ. HongL. HuangW. DaiX. YeQ. ChenX. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation.J. Affect. Disord.202026030231310.1016/j.jad.2019.09.013 31521867
    [Google Scholar]
  23. ChenL. QiZ. ShaoZ. LiS. QiY. GaoK. LiuS. LiZ. SunY. LiP. Study on antidepressant activity of pseudo-ginsenoside HQ on depression-like behavior in mice.Molecules201924587010.3390/molecules24050870 30823679
    [Google Scholar]
  24. LapmaneeS. CharoenphandhuJ. CharoenphandhuN. Beneficial effects of fluoxetine, reboxetine, venlafaxine, and voluntary running exercise in stressed male rats with anxiety- and depression-like behaviors.Behav. Brain Res.201325031632510.1016/j.bbr.2013.05.018 23707245
    [Google Scholar]
  25. XuX. PiaoH.N. AosaiF. ZengX.Y. ChengJ.H. CuiY.X. LiJ. MaJ. PiaoH.R. JinX. PiaoL.X. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF‐κB and TNF‐α/TNFR1/NF‐κB pathways.Br. J. Pharmacol.2020177225224524510.1111/bph.15261 32964428
    [Google Scholar]
  26. JiangN. ZhangB.Y. DongL.M. LvJ.W. LuC. WangQ. FanL.X. ZhangH.X. PanR.L. LiuX.M. Antidepressant effects of dammarane sapogenins in chronic unpredictable mild stress‐induced depressive mice.Phytother. Res.20183261023102910.1002/ptr.6040 29468732
    [Google Scholar]
  27. SlatteryD.A. CryanJ.F. Using the rat forced swim test to assess antidepressant-like activity in rodents.Nat. Protoc.2012761009101410.1038/nprot.2012.044 22555240
    [Google Scholar]
  28. RossiS. StuderV. MottaC. PolidoroS. PeruginiJ. MacchiaruloG. GiovannettiA.M. GutierrezP.L. CalòA. ColonnaI. FurlanR. MartinoG. CentonzeD. Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis.Neurology201789131338134710.1212/WNL.0000000000004411 28842450
    [Google Scholar]
  29. LindqvistD. DhabharF.S. JamesS.J. HoughC.M. JainF.A. BersaniF.S. ReusV.I. VerhoevenJ.E. EpelE.S. MahanL. RosserR. WolkowitzO.M. MellonS.H. Oxidative stress, inflammation and treatment response in major depression.Psychoneuroendocrinology20177619720510.1016/j.psyneuen.2016.11.031 27960139
    [Google Scholar]
  30. ShenF. SongZ. XieP. LiL. WangB. PengD. ZhuG. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage.J. Ethnopharmacol.202127511416410.1016/j.jep.2021.114164 33932516
    [Google Scholar]
  31. HuY. LiuY. LiS. Effect of acute cold stress on neuroethology in mice and establishment of its model.Animals20221219267110.3390/ani12192671 36230412
    [Google Scholar]
  32. WainwrightS.R. GaleaL.A.M. The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus.Neural Plast.2013201311410.1155/2013/805497 23691371
    [Google Scholar]
  33. HansonN.D. OwensM.J. NemeroffC.B. Depression, antidepressants, and neurogenesis: A critical reappraisal.Neuropsychopharmacology201136132589260210.1038/npp.2011.220 21937982
    [Google Scholar]
  34. KesslerR.C. The costs of depression.Psychiatr. Clin. North Am.201235111410.1016/j.psc.2011.11.005 22370487
    [Google Scholar]
  35. TaylorA.M. HolscherH.D. A review of dietary and microbial connections to depression, anxiety, and stress.Nutr. Neurosci.202023323725010.1080/1028415X.2018.1493808 29985786
    [Google Scholar]
  36. TroubatR. BaroneP. LemanS. DesmidtT. CressantA. AtanasovaB. BrizardB. El HageW. SurgetA. BelzungC. CamusV. Neuroinflammation and depression: A review.Eur. J. Neurosci.202153115117110.1111/ejn.14720 32150310
    [Google Scholar]
  37. LiuC.H. ZhangG.Z. LiB. LiM. WoelferM. WalterM. WangL. Role of inflammation in depression relapse.J. Neuroinflammation20191619010.1186/s12974‑019‑1475‑7 30995920
    [Google Scholar]
  38. LiaqatH. ParveenA. KimS.Y. Neuroprotective natural products’ regulatory effects on depression via gut–brain axis targeting tryptophan.Nutrients20221416327010.3390/nu14163270 36014776
    [Google Scholar]
  39. ZhangY. LongY. YuS. LiD. YangM. GuanY. ZhangD. WanJ. LiuS. ShiA. LiN. PengW. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder.Pharmacol. Res.202116410537610.1016/j.phrs.2020.105376 33316383
    [Google Scholar]
  40. ChenY.Y. LiuQ.P. AnP. JiaM. LuanX. TangJ.Y. ZhangH. Ginsenoside Rd: A promising natural neuroprotective agent.Phytomedicine20229515388310.1016/j.phymed.2021.153883 34952508
    [Google Scholar]
  41. SongA.Q. GaoB. FanJ.J. ZhuY.J. ZhouJ. WangY.L. XuL.Z. WuW.N. NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice.J. Neuroinflammation202017117810.1186/s12974‑020‑01848‑8 32513185
    [Google Scholar]
  42. LiW. AliT. HeK. LiuZ. ShahF.A. RenQ. LiuY. JiangA. LiS. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression.Brain Behav. Immun.202192102410.1016/j.bbi.2020.11.008 33181270
    [Google Scholar]
  43. WangY. GaoC. GaoT. ZhaoL. ZhuS. GuoL. Plasma exosomes from depression ameliorate inflammation-induced depressive-like behaviors via sigma-1 receptor delivery.Brain Behav. Immun.20219422523410.1016/j.bbi.2021.02.004 33607235
    [Google Scholar]
  44. WohlebE.S. FranklinT. IwataM. DumanR.S. Integrating neuroimmune systems in the neurobiology of depression.Nat. Rev. Neurosci.201617849751110.1038/nrn.2016.69 27277867
    [Google Scholar]
  45. HiragaS. ItokazuT. HoshikoM. TakayaH. NishibeM. YamashitaT. Microglial depletion under thalamic hemorrhage ameliorates mechanical allodynia and suppresses aberrant axonal sprouting.JCI Insight202053e13180110.1172/jci.insight.131801 32051342
    [Google Scholar]
  46. LeesJ.G. FivelmanB. DuffyS.S. MakkerP.G.S. PereraC.J. TaylorM.G. Cytokines in neuropathic pain and associated depression.Modern Trends in Psychiatry201530516610.1159/000435932 26437375
    [Google Scholar]
  47. LiuQ. LiR. YangW. CuiR. LiB. Role of neuroglia in neuropathic pain and depression.Pharmacol. Res.202117410595710.1016/j.phrs.2021.105957 34688904
    [Google Scholar]
  48. InfantinoR. SchianoC. LuongoL. PainoS. MansuetoG. BoccellaS. GuidaF. RicciardiF. IannottaM. BelardoC. MarabeseI. PierettiG. SerraN. NapoliC. MaioneS. MED1/BDNF/TrkB pathway is involved in thalamic hemorrhage-induced pain and depression by regulating microglia.Neurobiol. Dis.202216410561110.1016/j.nbd.2022.105611 34995755
    [Google Scholar]
  49. ChenZ. GuJ. LinS. XuZ. XuH. ZhaoJ. FengP. TaoY. ChenS. WangP. Saffron essential oil ameliorates CUMS-induced depression-like behavior in mice via the MAPK-CREB1-BDNF signaling pathway.J. Ethnopharmacol.202330011571910.1016/j.jep.2022.115719 36126781
    [Google Scholar]
  50. JuruenaM.F. ErorF. CleareA.J. YoungA.H. The role of early life stress in HPA axis and anxiety.Adv. Exp. Med. Biol.2020119114115310.1007/978‑981‑32‑9705‑0_9 32002927
    [Google Scholar]
  51. PayneJ.L. MaguireJ. Pathophysiological mechanisms implicated in postpartum depression.Front. Neuroendocrinol.20195216518010.1016/j.yfrne.2018.12.001 30552910
    [Google Scholar]
  52. LeistnerC. MenkeA. Hypothalamic–pituitary–adrenal axis and stress.Handb. Clin. Neurol.2020175556410.1016/B978‑0‑444‑64123‑6.00004‑7 33008543
    [Google Scholar]
  53. ZhouX. LuJ. WeiK. WeiJ. TianP. YueM. WangY. HongD. LiF. WangB. ChenT. FangX. Neuroprotective effect of ceftriaxone on MPTP-induced parkinson’s disease mouse model by regulating inflammation and intestinal microbiota.Oxid. Med. Cell. Longev.2021202111510.1155/2021/9424582 34938384
    [Google Scholar]
  54. WangH. HeY. SunZ. RenS. LiuM. WangG. YangJ. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression.J. Neuroinflammation202219113210.1186/s12974‑022‑02492‑0 35668399
    [Google Scholar]
  55. HuangX. LiN. PuY. ZhangT. WangB. Neuroprotective effects of ginseng phytochemicals: Recent perspectives.Molecules20192416293910.3390/molecules24162939 31416121
    [Google Scholar]
/content/journals/npj/10.2174/0122103155289279240430070314
Loading
/content/journals/npj/10.2174/0122103155289279240430070314
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CSDS; Depression; expression; G-Rh2; neurogenesis; neuroinflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test