Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

n-Butylidene phthalide (N-BP) is a natural derivative obtained from the chloroform extract of . In conventional medicine, it treats different ailments. Various pharmacological properties are associated with it, including anticancer, anti-inflammatory, and neuroprotective properties. Based on its reported pharmacokinetic profile, n-BP has low oral bioavailability and is rapidly absorbed and eliminated from the body. The compound has diverse pharmacological effects with lower stability, bioavailability, rapid absorption, and elimination. Furthermore, a targeted drug delivery system using a nanocarrier can improve pharmacokinetic-molecular profiling, specificity, efficacy, personal approach, and drug resistance. This review summarizes and emphasizes the pharmacokinetics, and pharmacology of n-butylidene phthalide, and the molecular targeting approach to treat cancer, inflammation, Parkinsonism, excitotoxicity, and Alzheimer’s.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155287645240528114302
2024-06-06
2025-01-19
Loading full text...

Full text loading...

References

  1. KoW.C. A newly isolated antispasmodic--butylidenephthalide.Jpn. J. Pharmacol.1980301859110.1254/jjp.30.85 7401411
    [Google Scholar]
  2. LinL.C. WangC.B. KohV.C. KoW.C. Synthesis, properties and molecular structure of alkylidenephthalides.J. Instit. Chem. Academia Sinica.198431915
    [Google Scholar]
  3. YenS.Y. ChuangH.M. HuangM.H. LinS.Z. ChiouT.W. HarnH.J. n-Butylidenephthalide Regulated Tumor Stem Cell Genes EZH2/AXL and Reduced Its Migration and Invasion in Glioblastoma.Int. J. Mol. Sci.201718237210.3390/ijms18020372 28208648
    [Google Scholar]
  4. HsuehK.W. ChiouT.W. ChiangS.F. YamashitaT. AbeK. BorlonganC.V. SanbergP.R. HuangA.Y.H. LinS.Z. HarnH.J. Autophagic down-regulation in motor neurons remarkably prolongs the survival of ALS mice.Neuropharmacology201610815216010.1016/j.neuropharm.2016.03.035 27059126
    [Google Scholar]
  5. ChuangH.M. SuH.L. LiC. LinS.Z. YenS.Y. HuangM.H. HoL.I. ChiouT.W. HarnH.J. The role of butylidenephthalide in targeting the microenvironment which contributes to liver fibrosis amelioration.Front. Pharmacol.2016711210.3389/fphar.2016.00112 27199755
    [Google Scholar]
  6. WuY.C. HsiehC.L. Pharmacological effects of Radix Angelica Sinensis (Danggui) on cerebral infarction.Chin. Med.2011613210.1186/1749‑8546‑6‑32 21867503
    [Google Scholar]
  7. MoisanA. LeeY.K. ZhangJ.D. HudakC.S. MeyerC.A. PrummerM. ZoffmannS. TruongH.H. EbelingM. KiialainenA. GérardR. XiaF. SchinzelR.T. AmreinK.E. CowanC.A. White-to-brown metabolic conversion of human adipocytes by JAK inhibition.Nat. Cell Biol.2015171576710.1038/ncb3075 25487280
    [Google Scholar]
  8. GnadT. ScheiblerS. von KügelgenI. ScheeleC. KilićA. GlödeA. HoffmannL.S. Reverte-SalisaL. HornP. MutluS. El-TayebA. KranzM. Deuther-ConradW. BrustP. LidellM.E. BetzM.J. EnerbäckS. SchraderJ. YegutkinG.G. MüllerC.E. PfeiferA. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors.Nature2014516753139539910.1038/nature13816 25317558
    [Google Scholar]
  9. YehJ.C. Cindrova-DaviesT. BelleriM. MorbidelliL. MillerN. ChoC.W.C. ChanK. WangY.T. LuoG.A. ZicheM. PrestaM. Charnock-JonesD.S. FanT.P. The natural compound n-butylidenephthalide derived from the volatile oil of Radix Angelica sinensis inhibits angiogenesis in vitro and in vivo.Angiogenesis201114218719710.1007/s10456‑011‑9202‑8 21327473
    [Google Scholar]
  10. LiuW.S. LinP.C. ChangL.F. HarnH.J. ShiuanD. ChiouT.W. JengJ.R. Inhibitory effect of n-butylidenephthalide on neointimal hyperplasia in balloon injured rat carotid artery.Phytother. Res.201125101494150210.1002/ptr.3377 21365711
    [Google Scholar]
  11. FuR.H. HranH.J. ChuC.L. HuangC.M. LiuS.P. WangY.C. LinY.H. ShyuW.C. LinS.Z. Lipopolysaccharide-stimulated activation of murine DC2.4 cells is attenuated by n-butylidenephthalide through suppression of the NF-κB pathway.Biotechnol. Lett.201133590391010.1007/s10529‑011‑0528‑5 21267764
    [Google Scholar]
  12. Che-MingTeng Wen-YingChen Wun-ChangKo OuyangC Antiplatelet effect of butylidenephthalide.Biochim. Biophys. Acta, Gen. Subj.1987924337538210.1016/0304‑4165(87)90151‑6 3109495
    [Google Scholar]
  13. ChanS.S.K. JonesR.L. LinG. Synergistic interaction between the Ligusticum chuanxiong constituent butylidenephthalide and the nitric oxide donor sodium nitroprusside in relaxing rat isolated aorta.J. Ethnopharmacol.2009122230831210.1016/j.jep.2009.01.002 19186210
    [Google Scholar]
  14. KoW.C. LiaoC.C. ShihC.H. LeiC.B. ChenC.M. Relaxant effects of butylidenephthalide in isolated dog blood vessels.Planta Med.200268111004100910.1055/s‑2002‑35671 12451491
    [Google Scholar]
  15. ChanS.S.K. ChoiA.O.K. JonesR.L. LinG. Mechanisms underlying the vasorelaxing effects of butylidenephthalide, an active constituent of Ligusticum chuanxiong, in rat isolated aorta.Eur. J. Pharmacol.20065371-311111710.1016/j.ejphar.2006.03.015 16624277
    [Google Scholar]
  16. MimuraY. KobayashiS. NaitohT. KimuraI. KimuraM. The structure-activity relationship between synthetic butylidenephthalide derivatives regarding the competence and progression of inhibition in primary cultures proliferation of mouse aorta smooth muscle cells.Biol. Pharm. Bull.19951891203120610.1248/bpb.18.1203 8845805
    [Google Scholar]
  17. WeiC. LinC. YuY. LinC. LinP. WuM. ChenC. ChangW. LinS. ChenY.S. HarnH. n-Butylidenephthalide induced apoptosis in the A549 human lung adenocarcinoma cell line by coupled down-regulation of AP-2α and telomerase activity.Acta Pharmacol. Sin.20093091297130610.1038/aps.2009.124 19701232
    [Google Scholar]
  18. HuangM.H. LinS.Z. LinP.C. ChiouT.W. HarnY.W. HoL.I. ChanT.M. ChouC.W. ChuangC.H. SuH.L. HarnH.J. Brain tumor senescence might be mediated by downregulation of S-phase kinase-associated protein 2 via butylidenephthalide leading to decreased cell viability.Tumour Biol.20143554875488410.1007/s13277‑014‑1639‑0 24464249
    [Google Scholar]
  19. PangC.Y. ChiuS.C. HarnH.J. ZhaiW.J. LinS.Z. YangH.H. Proteomic-based identification of multiple pathways underlying n-butylidenephthalide-induced apoptosis in LNCaP human prostate cancer cells.Food Chem. Toxicol.20135928128810.1016/j.fct.2013.05.045 23770345
    [Google Scholar]
  20. ChiuS.C. ChenS.P. HuangS.Y. WangM.J. LinS.Z. HarnH.J. PangC.Y. Induction of apoptosis coupled to endoplasmic reticulum stress in human prostate cancer cells by n-butylidenephthalide.PLoS One201273e3374210.1371/journal.pone.0033742 22470469
    [Google Scholar]
  21. ZhouQ.M. ZhangJ.J. LiS. ChenS. LeW.D. n ‐butylidenephthalide treatment prolongs life span and attenuates motor neuron loss in SOD 1 G93A mouse model of amyotrophic lateral sclerosis.CNS Neurosci. Ther.201723537538510.1111/cns.12681 28229532
    [Google Scholar]
  22. ChenX.Q. QiuK. LiuH. HeQ. BaiJ.H. LuW. Application and prospects of butylphthalide for the treatment of neurologic diseases.Chin. Med. J.2019132121467147710.1097/CM9.0000000000000289 31205106
    [Google Scholar]
  23. LinY.L. LiuY.K. TsaiN.M. HsiehJ.H. ChenC.H. LinC.M. LiaoK.W. A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells.Nanomedicine20128331832710.1016/j.nano.2011.06.011 21704596
    [Google Scholar]
  24. ChaoW.W. LinB.F. Bioactivities of major constituents isolated from Angelica sinensis (Danggui).Chin. Med.2011612910.1186/1749‑8546‑6‑29 21851645
    [Google Scholar]
  25. Swati.; Pandey, H.K.; Singh, A. Chemical Composition and in vitro Antioxidant Activity of Pleurospermum angelicoides Collected from Western Himalayan Region.J. Essent. Oil-Bear. Plants20204843848
    [Google Scholar]
  26. LeeJ.H. LinS.Y. LiuJ.W. LinS.Z. HarnH.J. ChiouT.W. n-Butylidenephthalide Modulates Autophagy to Ameliorate Neuropathological Progress of Spinocerebellar Ataxia Type 3 through mTOR Pathway.Int. J. Mol. Sci.20212212633910.3390/ijms22126339 34199295
    [Google Scholar]
  27. KaouadjiM. De PachtereF. PougetC. ChuliaA.J. LavaitteS. Three additional phthalide derivatives, an epoxymonomer and two dimers, from Ligusticumwallichii rhizomes.J. Nat. Prod.198649587287710.1021/np50047a018
    [Google Scholar]
  28. LuoC. LiD.L. WangY. GuoS.S. DuS.S. Bioactivities of 3-Butylidenephthalide and n-Butylbenzene from the Essential Oil of Ligusticum jeholense against Stored-product Insects.J. Oleo Sci.201968993193710.5650/jos.ess19080 31413242
    [Google Scholar]
  29. LeeH.W. ChoiJ.H. ParkS.Y. ChooB.K. ChunJ.M. LeeA. KimH.K. Constituents comparison of components in native and cultivated species of Angelica tenuissima Nakai.Hanguk Yakyong Changmul Hakhoe Chi2008163168172
    [Google Scholar]
  30. AdilM. RenX. JeongB.R. Light elicited growth, antioxidant enzymes activities and production of medicinal compounds in callus culture of Cnidium officinale Makino.J. Photochem. Photobiol. B201919611150910.1016/j.jphotobiol.2019.05.006 31128431
    [Google Scholar]
  31. SunX. NiuL. LiX. LuX. LiF. Characterization of metabolic profile of mosapride citrate in rat and identification of two new metabolites: Mosapride N-oxide and morpholine ring-opened mosapride by UPLC–ESI-MS/MS.J. Pharm. Biomed. Anal.2009501273410.1016/j.jpba.2009.03.011 19362796
    [Google Scholar]
  32. ChenX. KongL. SuX. FuH. NiJ. ZhaoR. ZouH. Separation and identification of compounds in Rhizoma chuanxiong by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry.J. Chromatogr. A20041040216917810.1016/j.chroma.2004.04.002 15230523
    [Google Scholar]
  33. LaoS.C. LiS.P. KanK.K.W. LiP. WanJ.B. WangY.T. DongT.T.X. TsimK.W.K. Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography–mass spectrometry coupled with pressurized liquid extraction.Anal. Chim. Acta2004526213113710.1016/j.aca.2004.09.050
    [Google Scholar]
  34. LiH.X. DingM.Y. YuJ.Y. Separation and identification of the phthalic anhydride derivatives of Liqusticum Chuanxiong Hort by GC-MS, TLC, HPLC-DAD, and HPLC-MS.J. Chromatogr. Sci.200240315616110.1093/chromsci/40.3.156 11954653
    [Google Scholar]
  35. GauvinA. RavaomanarivoH. SmadjaJ. Comparative analysis by gas chromatography-mass spectrometry of the essential oils from bark and leaves of Cedrelopsis grevei Baill, an aromatic and medicinal plant from Madagascar.J. chromat.20041029279282
    [Google Scholar]
  36. GachJ. OlejniczakT. KrężelP. BoratyńskiF. Microbial Synthesis and Evaluation of Fungistatic Activity of 3-Butyl-3-hydroxyphthalide, the Mammalian Metabolite of 3-n-Butylidenephthalide.Int. J. Mol. Sci.20212214760010.3390/ijms22147600 34299220
    [Google Scholar]
  37. WangS. ShiY. ChenQ. HeL. A GC-SIM-MS method for the determination of butylidenephthalide in rat plasma and tissue: application to the pharmacokinetic and tissue distribution study.Anal. Lett.200841111975198710.1080/00032710802209243
    [Google Scholar]
  38. YanR. Ling KoN. MaB. Kau TamY. LinG. Metabolic conversion from co-existing ingredient leading to significant systemic exposure of Z-butylidenephthalide, a minor ingredient in Chuanxiong Rhizoma in rats.Curr. Drug Metab.201213552453410.2174/1389200211209050524 22554277
    [Google Scholar]
  39. YanR. KoN.L. LiS.L. TamY.K. LinG. Pharmacokinetics and metabolism of ligustilide, a major bioactive component in Rhizoma Chuanxiong, in the rat.Drug Metab. Dispos.200836240040810.1124/dmd.107.017707 18039808
    [Google Scholar]
  40. ZhaoH.R. FengS.X. Pharmacokinetics of butylidene phthalide in the volatile oil from Angelica sinensis (Oliv.) Diels in rabbits.Huaxi Yaoxue Zazhi2009242162164
    [Google Scholar]
  41. TsaiN.M. ChenY.L. LeeC.C. LinP.C. ChengY.L. ChangW.L. LinS.Z. HarnH.J. The natural compound n ‐butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo.J. Neurochem.20069941251126210.1111/j.1471‑4159.2006.04151.x 16987298
    [Google Scholar]
  42. NamK.N. KimK.P. ChoK.H. JungW.S. ParkJ.M. ChoS.Y. ParkS.K. ParkT.H. KimY.S. LeeE.H. Prevention of inflammation‐mediated neurotoxicity by butylidenephthalide and its role in microglial activation.Cell Biochem. Funct.201331870771210.1002/cbf.2959 23400915
    [Google Scholar]
  43. ChangK.F. HuangX.F. LinY.L. LiaoK.W. HsiehM.C. ChangJ.T. TsaiN.M. Positively Charged Nanoparticle Delivery of n-Butylidenephthalide Enhances Antitumor Effect in Hepatocellular Carcinoma.BioMed Res. Int.2021202111410.1155/2021/8817875 33791383
    [Google Scholar]
  44. LiuS.P. HarnH.J. ChienY.J. ChangC.H. HsuC.Y. FuR.H. HuangY.C. ChenS.Y. ShyuW.C. LinS.Z. n-Butylidenephthalide (BP) maintains stem cell pluripotency by activating Jak2/Stat3 pathway and increases the efficiency of iPS cells generation.PLoS One201279e4402410.1371/journal.pone.0044024 22970157
    [Google Scholar]
  45. SuY.J. HuangS.Y. NiY.H. LiaoK.F. ChiuS.C. Anti-tumor and radiosensitization effects of N-butylidenephthalide on human breast cancer cells.Molecules201823224010.3390/molecules23020240 29370116
    [Google Scholar]
  46. PanY-H. LinS-Z. ChiuT-L. Biodegradable controlled-release polymer containing butylidenephthalide to treat a recurrent cervical spine glioblastoma with promising result: A compassionate trial report.Anticancer Drugs202233439439910.1097/CAD.0000000000001275
    [Google Scholar]
  47. LiaoK.F. ChiuT.L. HuangS.Y. HsiehT.F. ChangS.F. RuanJ.W. ChenS.P. PangC.Y. ChiuS.C. Anti-Cancer Effects of Radix Angelica Sinensis (Danggui) and N-Butylidenephthalide on Gastric Cancer: Implications for REDD1 Activation and mTOR Inhibition.Cell. Physiol. Biochem.20184862231224610.1159/000492641 30114701
    [Google Scholar]
  48. SarmaK. AktherM.H. AhmadI. AfzalO. AltamimiA.S.A. AlossaimiM.A. JaremkoM. EmwasA.H. GautamP. Adjuvant novel nanocarrier-based targeted therapy for lung cancer.Molecules2024295107610.3390/molecules29051076 38474590
    [Google Scholar]
  49. ChiuS.C. ChiuT.L. HuangS.Y. ChangS.F. ChenS.P. PangC.Y. HsiehT.F. Potential therapeutic effects of N-butylidenephthalide from Radix Angelica Sinensis (Danggui) in human bladder cancer cells.BMC Complement. Altern. Med.201717152310.1186/s12906‑017‑2034‑3 29207978
    [Google Scholar]
  50. FallsK.C. SharmaR.A. LawrenceY.R. AmosR.A. AdvaniS.J. AhmedM.M. VikramB. ColemanC.N. PrasannaP.G. Radiation-drug combinations to improve clinical outcomes and reduce normal tissue toxicities: Current challenges and new approaches: Report of the symposium held at the 63rd annual meeting of the radiation research society, 15–18 October 2017; Cancun, Mexico.Radiat. Res.2018190435036010.1667/RR15121.1 30280985
    [Google Scholar]
  51. MajeedH. GuptaV. Adverse effects of radiation therapy.Treasure Island, FL, USAStatPearls Publishing2023
    [Google Scholar]
  52. LiuC.A. HarnH.J. ChenK.P. LeeJ.H. LinS.Z. ChiuT.L. Targeting the Axl and mTOR Pathway Synergizes Immunotherapy and Chemotherapy to Butylidenephthalide in a Recurrent GBM.J. Oncol.2022202211410.1155/2022/3236058 35646111
    [Google Scholar]
  53. StevenA. FisherS.A. RobinsonB.W. Immunotherapy for lung cancer.Respirology201621582183310.1111/resp.12789 27101251
    [Google Scholar]
  54. SharmaK. Lung Cancer Therapy: Synergistic Potential of PD-1/PD-L1 and CTLA-4 Inhibitors.Immunotherapy Against Lung Cancer; Bhatt, S.; Eri, R.E.; Goh, B.H.; Paudel, K.R.; Andreoli Pinto, T.J. DuaK. SingaporeSpringer202410.1007/978‑981‑99‑7141‑1_15
    [Google Scholar]
  55. SinghA.P. BiswasA. ShuklaA. MaitiP. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles.Signal Transduct. Target. Ther.2019413310.1038/s41392‑019‑0068‑3 31637012
    [Google Scholar]
  56. WangJ. SeebacherN. ShiH. KanQ. DuanZ. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer.Oncotarget2017848845598457110.18632/oncotarget.19187 29137448
    [Google Scholar]
  57. ChamundeeswariM. JeslinJ. VermaM.L. Nanocarriers for drug delivery applications.Environ. Chem. Lett.201917284986510.1007/s10311‑018‑00841‑1
    [Google Scholar]
  58. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.00286 26648870
    [Google Scholar]
  59. Skupin-MrugalskaP. Liposome-based drug delivery for lung cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer.Academic Press201912316010.1016/B978‑0‑12‑815720‑6.00006‑X
    [Google Scholar]
  60. LinY-L Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme201510.2147/IJN.S85790
    [Google Scholar]
  61. GaoH.W. ChangK.F. HuangX.F. LinY.L. WengJ.C. LiaoK.W. TsaiN.M. Antitumor effect of n-butylidenephthalide encapsulated on B16/F10 melanoma cells in vitro with a polycationic liposome containing PEI and polyethylene glycol complex.Molecules20182312322410.3390/molecules23123224 30563276
    [Google Scholar]
  62. ThangamR. PatelK.D. KangH. PaulmuruganR. Advances in engineered polymer nanoparticle tracking platforms towards cancer immunotherapy—current status and future perspectives.Vaccines (Basel)20219893510.3390/vaccines9080935 34452059
    [Google Scholar]
  63. HuangX.F. ChenP.T. LinY.L. LeeM.S. ChangK.F. LiaoK.W. SheuG.T. HsiehM.C. TsaiN.M. Enhanced anticancer activity and endocytic mechanisms by polymeric nanocarriers of n-butylidenephthalide in leukemia cells.Clin. Transl. Oncol.20212361142115110.1007/s12094‑020‑02500‑w 32989675
    [Google Scholar]
  64. YenS.Y. ChenS.R. HsiehJ. Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion.Oncogene2016352156216510.1038/onc.2015.277
    [Google Scholar]
  65. HsiehM.T. WuC.R. LinL.W. HsiehC.C. TsaiC.H. Reversal caused by n-butylidenephthalide from the deficits of inhibitory avoidance performance in rats.Planta Med.2001671384210.1055/s‑2001‑10631 11270720
    [Google Scholar]
  66. ChenM. KoW.C. Lack of effect of Z-butylidenephthalide on presynaptic N-type Ca2+ channels in isolated guinea-pig ileum.Naunyn Schmiedebergs Arch. Pharmacol.2016389215916610.1007/s00210‑015‑1183‑5 26497186
    [Google Scholar]
  67. KostB. BrzezińskiM. CieślakM. Królewska-GolińskaK. MakowskiT. SockaM. BielaT. Stereocomplexed micelles based on polylactides with β-cyclodextrin core as anti-cancer drug carriers.Eur. Polym. J.201912010927110.1016/j.eurpolymj.2019.109271
    [Google Scholar]
  68. ChiouT-W. HarnH-J. LinS-Z. Anticancer formulation.US Patent 9585864B22017
  69. AskarM.A. ThabetN.M. El-sayyadG.S. El-Batal. A. I., kodous, M. A. E., et al., Dual Hyaluronic Acid and Folic Acid Targeting pHSensitive Multifunctional 2DG@DCA@MgO-NanoCore-Shell-Radiosensitizer for Breast Cancer TherapyResearch Square202110.21203/rs.3.rs‑910507/v1
    [Google Scholar]
  70. ChenY.S. ChiuY.H. LiY.S. LinE.Y. HsiehD.K. LeeC.H. HuangM.H. ChuangH.M. LinS.Z. HarnH.J. ChiouT.W. Integration of PEG 400 into a self-nanoemulsifying drug delivery system improves drug loading capacity and nasal mucosa permeability and prolongs the survival of rats with malignant brain tumors.Int. J. Nanomedicine2019143601361310.2147/IJN.S193617 31190814
    [Google Scholar]
  71. Dobson; Yiu, H.H.; Dobson, J. Magnetic nanoparticles for gene and drug delivery.Int. J. Nanomedicine20083216918010.2147/IJN.S1608 18686777
    [Google Scholar]
  72. WuC-Y. ChenY-C. Riboflavin immobilized Fe3O4 magnetic nanoparticles carried with n-butylidenephthalide as targeting-based anticancer agents.Nanomed. Biotechnology201947121022010.1080/21691401.2018.1548473
    [Google Scholar]
  73. Neha Desai, ; Momin, M.; Khan, T.; Gharat, S.; Ningthoujam, R.S.; Omri, A. Metallic nanoparticles as drug delivery system for the treatment of cancer.Expert Opin. Drug Deliv.20211891261129010.1080/17425247.2021.1912008 33793359
    [Google Scholar]
  74. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems.Emergent mater.2022561593161510.1007/s42247‑021‑00335‑x
    [Google Scholar]
  75. HsingM.T. HsuH.T. ChangC.H. ChangK.B. ChengC.Y. LeeJ.H. HuangC.L. YangM.Y. YangY.C. LiuS.Y. YenC.M. YangS.F. HungH.S. Improved delivery performance of n-butylidenephthalide-polyethylene glycol-gold nanoparticles efficient for enhanced anti-cancer activity in brain tumor.Cells20221114217210.3390/cells11142172 35883615
    [Google Scholar]
  76. ChouY.Y. ChienJ.Y. CiouJ.W. HuangS.P. The Protective Effects of n-Butylidenephthalide on Retinal Ganglion Cells during Ischemic Injury.Int. J. Mol. Sci.2022234209510.3390/ijms23042095 35216208
    [Google Scholar]
  77. LinY.L. HuangX.F. ChangK.F. LiaoK.W. TsaiN.M. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood–Brain Barrier and Suppresses Growth of Glioblastoma.Int. J. Nanomedicine20201574976010.2147/IJN.S235815 32099363
    [Google Scholar]
  78. OrtegaM.J. Parra-TorrejónB. Cano-CanoF. Gómez-JaramilloL. González-MontelongoM.C. ZubíaE. Synthesis and Antioxidant/Anti-Inflammatory Activity of 3-Arylphthalides.Pharmaceuticals (Basel)202215558810.3390/ph15050588 35631414
    [Google Scholar]
  79. WangH. ZhouY. SunQ. ZhouC. HuS. LenahanC. XuW. DengY. LiG. TaoS. Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment.Front. Bioeng. Biotechnol.2021963035210.3389/fbioe.2021.630352 33681167
    [Google Scholar]
  80. BrusiniR. VarnaM. CouvreurP. Advanced nanomedicines for the treatment of inflammatory diseases.Adv. Drug Deliv. Rev.202015716117810.1016/j.addr.2020.07.010 32697950
    [Google Scholar]
  81. ChengG. LiuY. MaR. ChengG. GuanY. ChenX. WuZ. ChenT. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood–Brain Barrier and Nano-Biological Effects of Nanomaterials.Nano-Micro Lett.202214110510.1007/s40820‑022‑00847‑z 35426525
    [Google Scholar]
  82. FuR.H. HarnH.J. LiuS.P. ChenC.S. ChangW.L. ChenY.M. HuangJ.E. LiR.J. TsaiS.Y. HungH.S. ShyuW.C. LinS.Z. WangY.C. n-butylidenephthalide protects against dopaminergic neuron degeneration and α-synuclein accumulation in Caenorhabditis elegans models of Parkinson’s disease.PLoS One201491e8530510.1371/journal.pone.0085305 24416384
    [Google Scholar]
  83. ChiK. FuR.H. HuangY.C. ChenS.Y. HsuC.J. LinS.Z. TuC.T. ChangL.H. WuP.A. LiuS.P. Adipose-derived Stem Cells Stimulated with n -Butylidenephthalide Exhibit Therapeutic Effects in a Mouse Model of Parkinson’s Disease.Cell Transplant.201827345647010.1177/0963689718757408 29756519
    [Google Scholar]
  84. SilvaS. AlmeidaA. ValeN. Importance of Nanoparticles for the Delivery of Antiparkinsonian Drugs.Pharmaceutics202113450810.3390/pharmaceutics13040508 33917696
    [Google Scholar]
  85. KuoY.C. RajeshR. Current development of nanocarrier delivery systems for Parkinson’s disease pharmacotherapy.J. Taiwan Inst. Chem. Eng.201887152510.1016/j.jtice.2018.03.028
    [Google Scholar]
  86. JagaranK. SinghM. Lipid Nanoparticles: Promising Treatment Approach for Parkinson’s Disease.Int. J. Mol. Sci.20222316936110.3390/ijms23169361 36012619
    [Google Scholar]
  87. MishraN. AshiqueS. GargA. RaiV.K. DuaK. GoyalA. BhattS. Role of siRNA-based nanocarriers for the treatment of neurodegenerative diseases.Drug Discov. Today20222751431144010.1016/j.drudis.2022.01.003 35017085
    [Google Scholar]
  88. BukkeV.N. ArchanaM. VillaniR. RomanoA.D. WawrzyniakA. BalawenderK. OrkiszS. BeggiatoS. ServiddioG. CassanoT. The Dual Role of Glutamatergic Neurotransmission in Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy.Int. J. Mol. Sci.20202120745210.3390/ijms21207452 33050345
    [Google Scholar]
  89. ChangC.Y. ChenS.M. LuH.E. LaiS.M. LaiP.S. ShenP.W. ChenP.Y. ShenC.I. HarnH.J. LinS.Z. HwangS.M. SuH.L. N-butylidenephthalide attenuates Alzheimer’s disease-like cytopathy in Down syndrome induced pluripotent stem cell-derived neurons.Sci. Rep.201551874410.1038/srep08744 25735452
    [Google Scholar]
  90. WangR. ReddyP.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease.J. Alzheimers Dis.20175741041104810.3233/JAD‑160763 27662322
    [Google Scholar]
  91. Baracaldo-SantamaríaD. Avendaño-LopezS.S. Ariza-SalamancaD.F. Rodriguez-GiraldoM. Calderon-OspinaC.A. González-ReyesR.E. Nava-MesaM.O. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer’s Disease.Int. J. Mol. Sci.20232410906710.3390/ijms24109067 37240413
    [Google Scholar]
  92. PenneyJ. RalveniusW.T. TsaiL.H. Modeling Alzheimer’s disease with iPSC-derived brain cells.Mol. Psychiatry202025114816710.1038/s41380‑019‑0468‑3 31391546
    [Google Scholar]
  93. YangH.H. ChiangI.T. LiuJ.W. HsiehJ. LeeJ.H. LuH.E. TsoH.S. DengY.C. KaoJ.C. WuJ.R. HarnH.J. ChiouT.W. Anti-Excitotoxic Effects of N-Butylidenephthalide Revealed by Chemically Insulted Purkinje Progenitor Cells Derived from SCA3 iPSCs.Int. J. Mol. Sci.2022233139110.3390/ijms23031391 35163312
    [Google Scholar]
  94. LongY. LiD. YuS. ShiA. DengJ. WenJ. LiX. MaY. ZhangY. LiuS. WanJ. LiN. YangM. HanL. Medicine–food herb: Angelica sinensis, a potential therapeutic hope for Alzheimer’s disease and related complications.Food Funct.202213178783880310.1039/D2FO01287A 35983893
    [Google Scholar]
/content/journals/npj/10.2174/0122103155287645240528114302
Loading
/content/journals/npj/10.2174/0122103155287645240528114302
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test