Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

Plants have always been an important source of food and drugs, in addition to their application in medical and cosmetic sectors. The popularity of herbal remedies has increased in many countries in recent decades. Herbal medicines contain numerous active phytocomponents with different biological activities. Alkaloid class phytochemicals have diverse chemical structures and pharmacological activities in nature. Additionally, Aporphinoids are an important class of plant secondary metabolites that have been used for the treatment of numerous human disorders for a long time in traditional medicine. Dicentrine is an aporphine class phytochemical isolated from numerous medicinal plants, including and .

Methods

The biological potential of dicentrine, an aporphine alkaloid derivative, has been described in the present work. Scientific data on dicentrine were collected here from different scientific databases and presented in this paper in order to know the biological importance of dicentrine in medicine for the treatment of human complications. Further, detailed pharmacological activities and scientific data on dicentrine were also analyzed in order to determine its therapeutic potential in medicine. Moreover, its analytical aspects were also described in this work to understand its separation and isolation methods.

Results

The present work described the biological potential of dicentrine in medicine and its analytical aspects. It signified the biological potential of dicentrine in cancer, breast cancer, oral squamous cell carcinoma, lung adenocarcinoma, blood pressure, inflammatory disorders, hyperlipidaemia, arrhythmia, stomach muscle, and glomerulonephropathy. Further, its effectiveness in medicine was found to be mainly because of its antiplatelet, alpha 1-adrenoceptor, epidermal growth factor, antiprotozoal, larvicidal, antimicrobial, topoisomerase II, and acetylcholinesterase inhibitory potential. Moreover, other scientific data also signified its metabolism and pharmacokinetic parameters in terms of its analytical aspects in medicine.

Conclusion

The present review gives us an updated summary of the scientific information for pharmacological activities and analytical aspects of dicentrine in medicine. It also signified the potential contribution of dicentrine in medicine for the development of a newer class of drug molecules for human disorders.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155280229240404041828
2025-02-01
2024-11-26
Loading full text...

Full text loading...

References

  1. PatelD.K. PatelK. An overview of medicinal importance, pharmacological activities and analytical aspects of fraxin from cortex fraxinus.Curr. Tradit. Med.202395e19092220892110.2174/2215083808666220919114652
    [Google Scholar]
  2. PatelD.K. PatelK. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects.Pharma. Res. Mod. Chin. Med.2022510017510.1016/j.prmcm.2022.100175
    [Google Scholar]
  3. ShaoZ.H. LiC.Q. BeckerL.B. Vanden HoekT.L. SchumackerP.T. AtteleA.S. ZhangL. XieJ.T. YuanC.S. Qian-Kun-Nin, a Chinese herbal medicine formulation, attenuates mitochondrial oxidant stress in cardiomyocytes.J. Ethnopharmacol.2001741636810.1016/S0378‑8741(00)00343‑3 11137349
    [Google Scholar]
  4. PatelD.K. Grandisin and its therapeutic potential and pharmacological activities: A review.Pharma. Res. Mod. Chin. Med.20225100176
    [Google Scholar]
  5. PatelD.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits.Cardiovasc. Hematol. Disord. Drug Targets202121210411410.2174/1871529X21666210812111931 34387174
    [Google Scholar]
  6. PatelD.K. PatelK. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects.Curr. Cancer Ther. Rev.2022181415010.2174/1573394717666210831163322
    [Google Scholar]
  7. OhS.J. ChoJ.H. SonC.G. Systematic review of the incidence of herbal drug-induced liver injury in Korea.J. Ethnopharmacol.201515925325610.1016/j.jep.2014.11.027 25460587
    [Google Scholar]
  8. JiangZ.M. WangL. PangH. GuoY. XiaoP.T. ChuC. GuoL. LiuE.H. Rapid profiling of alkaloid analogues in Sinomenii Caulis by an integrated characterization strategy and quantitative analysis.J. Pharm. Biomed. Anal.201917437638510.1016/j.jpba.2019.06.011 31202880
    [Google Scholar]
  9. AnthoonsB. KaramichaliI. Schrøder-NielsenA. DrouzasA.D. de BoerH. MadesisP. Metabarcoding reveals low fidelity and presence of toxic species in short chain-of-commercialization of herbal products.J. Food Compos. Anal.20219710376710.1016/j.jfca.2020.103767
    [Google Scholar]
  10. YangX.X. XuF. WangD. YangZ.W. TanH.R. ShangM.Y. WangX. CaiS.Q. Development of a mitochondria-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry method for screening mitochondria-targeted bioactive constituents from complex matrixes: Herbal medicines as a case study.J. Chromatogr. A20151413334610.1016/j.chroma.2015.08.014 26306914
    [Google Scholar]
  11. HeymanH.M. MeyerJ.J.M. NMR-based metabolomics as a quality control tool for herbal products.S. Afr. J. Bot.201282213210.1016/j.sajb.2012.04.001
    [Google Scholar]
  12. NsimbaM.M. LamiJ.N. HayakawaY. YamamotoC. KajiT. Decreased thrombin activity by a Congolese herbal medicine used in sickle cell anemia.J. Ethnopharmacol.2013148389590010.1016/j.jep.2013.05.038 23711829
    [Google Scholar]
  13. ZhengL. LuY. CaoX. HuangY. LiuY. TangL. LiaoS.G. WangA.M. LiY.J. LanY.Y. WangY.L. Evaluation of the impact of Polygonum capitatum, a traditional Chinese herbal medicine, on rat hepatic cytochrome P450 enzymes by using a cocktail of probe drugs.J. Ethnopharmacol.2014158Pt A27628210.1016/j.jep.2014.10.031 25446640
    [Google Scholar]
  14. OhM.H. HoughtonP.J. WhangW.K. ChoJ.H. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity.Phytomedicine200411654454810.1016/j.phymed.2004.03.001 15500267
    [Google Scholar]
  15. XuJ.D. MaoQ. ShenH. ZhuL.Y. LiS.L. YanR. Ultra-high performance liquid chromatography coupled with photo-diode array and quadrupole/time-of-flight mass spectrometry based chemical profiling approach to evaluate the influence of preparation methods on the holistic quality of Qiong-Yu-Gao, a traditional complex herbal medicine.J. Chromatogr. A2013130415416810.1016/j.chroma.2013.07.023 23880467
    [Google Scholar]
  16. HuoH. LiuY. LiuW. SunJ. ZhangQ. ZhaoY. ZhengJ. TuP. SongY. LiJ. A full solution for multi-component quantification-oriented quality assessment of herbal medicines, Chinese agarwood as a case.J. Chromatogr. A20181558374910.1016/j.chroma.2018.05.018 29773341
    [Google Scholar]
  17. IkedaH. NagashimaK. YanaseM. TomiyaT. AraiM. InoueY. TejimaK. NishikawaT. WatanabeN. KitamuraK. IsonoT. YahagiN. NoiriE. InaoM. MochidaS. KumeY. YatomiY. NakaharaK. OmataM. FujiwaraK. The herbal medicine inchin-ko-to (TJ-135) induces apoptosis in cultured rat hepatic stellate cells.Life Sci.200678192226223310.1016/j.lfs.2005.09.024 16280138
    [Google Scholar]
  18. KurokawaM. TsuritaM. BrownJ. FukudaY. ShirakiK. Effect of interleukin-12 level augmented by Kakkon-to, a herbal medicine, on the early stage of influenza infection in mice.Antiviral Res.200256218318810.1016/S0166‑3542(02)00104‑3 12367723
    [Google Scholar]
  19. ShendeP. NarvenkerR. Herbal nanotherapy: A new paradigm over conventional obesity treatment.J. Drug Deliv. Sci. Technol.20216110229110.1016/j.jddst.2020.102291
    [Google Scholar]
  20. DeevanhxayP. SuzukiM. MaeshibuN. LiH. TanakaK. HiroseS. Simultaneous characterization of quaternary alkaloids, 8-oxoprotoberberine alkaloids, and a steroid compound in Coscinium fenestratum by liquid chromatography hybrid ion trap time-of-flight mass spectrometry.J. Pharm. Biomed. Anal.200950341342510.1016/j.jpba.2009.05.023 19539442
    [Google Scholar]
  21. GuoK. TongC. FuQ. XuJ. ShiS. XiaoY. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC‒DAD‒QTOF-MS/MS.J. Pharm. Biomed. Anal.201917015316010.1016/j.jpba.2019.03.044 30925272
    [Google Scholar]
  22. BaiR. YaoC. ZhongZ. GeJ. BaiZ. YeX. XieT. XieY. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation.Eur. J. Med. Chem.202121311316510.1016/j.ejmech.2021.113165 33454546
    [Google Scholar]
  23. PlazasE. AvilaM. M.C.; Muñoz, D.R.; Cuca S, L.E. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases.Pharmacol. Res.202217710612610.1016/j.phrs.2022.106126 35151857
    [Google Scholar]
  24. AvciF.G. SayarN.A. Sariyar AkbulutB. An OMIC approach to elaborate the antibacterial mechanisms of different alkaloids.Phytochemistry201814912313110.1016/j.phytochem.2017.12.023 29494814
    [Google Scholar]
  25. SinghS. PathakN. FatimaE. NegiA.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine.Eur. J. Med. Chem.202122611383910.1016/j.ejmech.2021.113839 34536668
    [Google Scholar]
  26. YuY. WeiX. LiuY. DongG. HaoC. ZhangJ. JiangJ. ChengJ. LiuA. ChenS. Identification and quantification of oligomeric proanthocyanidins, alkaloids, and flavonoids in lotus seeds: A potentially rich source of bioactive compounds.Food Chem.202237913212410.1016/j.foodchem.2022.132124 35065486
    [Google Scholar]
  27. CometaM.F. FortunaS. PalazzinoG. VolpeM.T. Rengifo SalgadoE. NicolettiM. TomassiniL. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Abuta grandifolia.Fitoterapia201283347648010.1016/j.fitote.2011.12.015 22230193
    [Google Scholar]
  28. Menéndez-PerdomoI.M. FacchiniP.J. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera).J. Biol. Chem.202029561598161210.1074/jbc.RA119.011547 31914404
    [Google Scholar]
  29. Mora-VásquezS. Wells-AbascalG.G. Espinosa-LealC. CardineauG.A. García-LaraS. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants.Metab. Eng. Commun.202214e0019410.1016/j.mec.2022.e00194 35242556
    [Google Scholar]
  30. MorenoL. CabedoN. IvorraM.D. SanzM.J. CastelA.L. Carmen ÁlvarezM. CortesD. 3,4-Dihydroxy- and 3,4-methylenedioxy- phenanthrene-type alkaloids with high selectivity for D2 dopamine receptor.Bioorg. Med. Chem. Lett.201323174824482710.1016/j.bmcl.2013.06.078 23886690
    [Google Scholar]
  31. PonnalaS. ChaudharyS. González-SarriasA. SeeramN.P. HardingW.W. Cytotoxicity of aporphines in human colon cancer cell lines HCT-116 and Caco-2: An SAR study.Bioorg. Med. Chem. Lett.201121154462446410.1016/j.bmcl.2011.06.005 21724394
    [Google Scholar]
  32. YanQ. LiR. XinA. HanY. ZhangY. LiuJ. LiW. DiD. Design, synthesis, and anticancer properties of isocorydine derivatives.Bioorg. Med. Chem.201725246542655310.1016/j.bmc.2017.10.027 29103873
    [Google Scholar]
  33. StévignyC. BaillyC. Quetin-LeclercqJ. Cytotoxic and antitumor potentialities of aporphinoid alkaloids.Curr. Med. Chem. Anticancer Agents20055217318210.2174/1568011053174864 15777224
    [Google Scholar]
  34. ZhaoQ. ZhaoY. WangK. Antinociceptive and free radical scavenging activities of alkaloids isolated from Lindera angustifolia Chen.J. Ethnopharmacol.2006106340841310.1016/j.jep.2006.01.019 16513307
    [Google Scholar]
  35. PonnalaS. GonzalesJ. KapadiaN. NavarroH.A. HardingW.W. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: Identification of a new aporphine with 5-HT2A antagonist activity.Bioorg. Med. Chem. Lett.20142471664166710.1016/j.bmcl.2014.02.066 24630561
    [Google Scholar]
  36. PonnalaS. KapadiaN. MadapaS. AlbertsI.L. HardingW.W. Synthesis and evaluation of aporphine analogs containing C1 allyl isosteres at the h5-HT2A receptor.Bioorg. Med. Chem. Lett.201525225102510610.1016/j.bmcl.2015.10.012 26475518
    [Google Scholar]
  37. BraccaA.B.J. KaufmanT.S. Synthetic approaches to carnegine, a simple tetrahydroisoquinoline alkaloid.Tetrahedron20046047105751061010.1016/j.tet.2004.08.033
    [Google Scholar]
  38. XuY. SromekA.W. NeumeyerJ.L. Identification of fluorinated (R)-(−)-aporphine derivatives as potent and selective ligands at serotonin 5-HT2C receptor.Bioorg. Med. Chem. Lett.201929223023310.1016/j.bmcl.2018.11.050 30545651
    [Google Scholar]
  39. KarkiA. JuarezR. NamballaH.K. AlbertsI. HardingW.W. Identification of C10 nitrogen-containing aporphines with dopamine D1 versus D5 receptor selectivity.Bioorg. Med. Chem. Lett.202030812705310.1016/j.bmcl.2020.127053 32107165
    [Google Scholar]
  40. LinC.J. ChenC.H. LiuF.W. KangJ.J. ChenC.K. LeeS.L. LeeS.S. Inhibition of intestinal glucose uptake by aporphines and secoaporphines.Life Sci.200679214415310.1016/j.lfs.2005.12.031 16426640
    [Google Scholar]
  41. PerecimG.P. DeflonV.M. MartinsG.R. PintoL.M.C. CasagrandeG.A. Oliveira-SilvaD. RaminelliC. Stereoselective total synthesis of (S)- and (R)-nuciferine using benzyne chemistry.Tetrahedron2020763813146110.1016/j.tet.2020.131461
    [Google Scholar]
  42. SinghO.V. HuangW.J. ChenC.H. LeeS.S. Manganese(III) acetate mediated oxidation of aporphines: A convenient and useful synthesis of oxoaporphines.Tetrahedron Lett.200748468166816910.1016/j.tetlet.2007.09.096
    [Google Scholar]
  43. LiuZ. ChenX. YuL. ZhenX. ZhangA. Synthesis and pharmacological investigation of novel 2-aminothiazole-privileged aporphines.Bioorg. Med. Chem.200816146675668110.1016/j.bmc.2008.05.077 18562201
    [Google Scholar]
  44. RibeiroR.A. LeiteJ.R. Nantenine alkaloid presents anticonvulsant effect on two classical animal models.Phytomedicine2003106-756356810.1078/094471103322331557 13678244
    [Google Scholar]
  45. TsaiT.H. TsaiT.R. ChouC.J. ChenC.F. Determination of dicentrine in rat plasma by high-performance liquid chromatography and its application to pharmacokinetics.J. Chromatogr., Biomed. Appl.1996681227728110.1016/0378‑4347(95)00553‑6 8811437
    [Google Scholar]
  46. de WetH. van HeerdenF.R. van WykB.E. Alkaloids of Antizoma miersiana (Menispermaceae).Biochem. Syst. Ecol.200533879980710.1016/j.bse.2004.12.014
    [Google Scholar]
  47. KonkimallaV.B. EfferthT. Inhibition of epidermal growth factor receptor over-expressing cancer cells by the aphorphine-type isoquinoline alkaloid, dicentrine.Biochem. Pharmacol.20107981092109910.1016/j.bcp.2009.11.025 20005213
    [Google Scholar]
  48. BaiR.R. WuX.M. XuJ.Y. Current natural products with antihypertensive activity.Chin. J. Nat. Med.2015131072172910.1016/S1875‑5364(15)30072‑8 26481372
    [Google Scholar]
  49. LaiY.C. KuoT.F. ChenC.K. TsaiH.J. LeeS.S. Metabolism of dicentrine: Identification of the phase I and phase II metabolites in miniature pig urine.Drug Metab. Dispos.201038101714172210.1124/dmd.110.033795 20622045
    [Google Scholar]
  50. WooS.H. SunN.J. CassadyJ.M. SnapkaR.M. Topoisomerase II inhibition by aporphine alkaloids.Biochem. Pharmacol.199957101141114510.1016/S0006‑2952(99)00018‑0 11230801
    [Google Scholar]
  51. AkaberiT. ShourgashtiK. EmamiS.A. AkaberiM. Phytochemistry and pharmacology of alkaloids from Glaucium spp.Phytochemistry202119111292310.1016/j.phytochem.2021.112923 34454171
    [Google Scholar]
  52. DalgaardL. Comparison of minipig, dog, monkey and human drug metabolism and disposition.J. Pharmacol. Toxicol. Methods201574809210.1016/j.vascn.2014.12.005 25545337
    [Google Scholar]
  53. KitisripanyaT. KomaikulJ. TawinkanN. AtsawinkowitC. PutalunW. Dicentrine production in callus and cell suspension cultures of stephania venosa.Nat. Prod. Commun.20138444344510.1177/1934578X1300800408
    [Google Scholar]
  54. MontrucchioD. MiguelO. ZaninS. da SilvaG. CardozoA. SantosA. Antinociceptive effects of a chloroform extract and the alkaloid dicentrine isolated from fruits of Ocotea puberula.Planta Med.201278141543154810.1055/s‑0032‑1315026 22815198
    [Google Scholar]
  55. MontrucchioD.P. CórdovaM.M. Soares SantosA.R. Plant derived aporphinic alkaloid S-(+)-dicentrine induces antinociceptive effect in both acute and chronic inflammatory pain models: evidence for a role of TRPA1 channels.PLoS One201387e6773010.1371/journal.pone.0067730 23861794
    [Google Scholar]
  56. OoppachaiC. Limtrakul DejkriengkraikulP. YodkeereeS. Dicentrine potentiates TNF-α-induced apoptosis and suppresses invasion of A549 lung adenocarcinoma cells via modulation of NF-κB and AP-1 activation.Molecules20192422410010.3390/molecules24224100 31766230
    [Google Scholar]
  57. PutalunW. YusakulG. PatanasethanontD. Dicentrine production from a hairy roots culture of Stephania suberosa.Z. Naturforsch. C J. Biosci.2009649-1069269610.1515/znc‑2009‑9‑1014 19957438
    [Google Scholar]
  58. YoungM.L. SuM.J. WuM.H. ChenC.C. The electrophysiological effects of dicentrine on the conduction system of rabbit heart.Br. J. Pharmacol.19941131697610.1111/j.1476‑5381.1994.tb16175.x 7812635
    [Google Scholar]
  59. TadakiS. NozakaT. YamadaS. IshinoM. MorimotoI. TanakaA. KunitomoJ. Clastogenicity of aporphine alkaloids in vitro.J. Pharmacobiodyn.199215950151210.1248/bpb1978.15.501 1287184
    [Google Scholar]
  60. GuterresZ.R. da SilvaA.F.G. GarcezW.S. GarcezF.R. FernandesC.A. GarcezF.R. Mutagenicity and recombinagenicity of Ocotea acutifolia (Lauraceae) aporphinoid alkaloids.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20137571919610.1016/j.mrgentox.2013.07.004 23892138
    [Google Scholar]
  61. KondaY. ImaiY. HojoH. EndoT. NozoeS. Suppression of tumor cell growth and mitogen response by aporphine alkaloids, dicentrine, glaucine, corydine, and apomorphine.J. Pharmacobiodyn.199013742643110.1248/bpb1978.13.426 2290126
    [Google Scholar]
  62. LinH.F. HuangH.L. LiaoJ.F. ShenC.C. HuangR.L. Dicentrine analogue-induced G2/M arrest and apoptosis through inhibition of topoisomerase ii activity in human cancer cells.Planta Med.2015811083083710.1055/s‑0035‑1546128 26158522
    [Google Scholar]
  63. HuangR.L. ChenC.C. HuangY.L. OuJ.C. HuC.P. ChenC.F. ChangC. Anti-tumor effects of d-dicentrine from the root of Lindera megaphylla.Planta Med.199864321221510.1055/s‑2006‑957411 9581516
    [Google Scholar]
  64. TiwariS. AwasthiM. SinghS. PandeyV.P. DwivediU.N. Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: A computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment.J. Biomol. Struct. Dyn.201836133376338710.1080/07391102.2017.1388286 28978265
    [Google Scholar]
  65. KonkimallaV.B. SuhasV.L. ChandraN.R. GebhartE. EfferthT. Diagnosis and therapy of oral squamous cell carcinoma.Expert Rev. Anticancer Ther.20077331732910.1586/14737140.7.3.317 17338652
    [Google Scholar]
  66. PlatellaC. GhirgaF. MusumeciD. QuaglioD. ZizzaP. IachettiniS. D’AngeloC. BiroccioA. BottaB. MoriM. MontesarchioD. Selective targeting of cancer-related G-quadruplex structures by the natural compound dicentrine.Int. J. Mol. Sci.2023244407010.3390/ijms24044070 36835480
    [Google Scholar]
  67. KongkiatpaiboonS. DuangdeeN. PrateeptongkumS. ChaijaroenkulW. Acetylcholinesterase inhibitory activity of alkaloids isolated from Stephania venosa.Nat. Prod. Commun.201611121805180610.1177/1934578X1601101208
    [Google Scholar]
  68. DongJ.W. CaiL. FangY.S. XiaoH. LiZ.J. DingZ.T. Proaporphine and aporphine alkaloids with acetylcholinesterase inhibitory activity from Stephania epigaea.Fitoterapia201510410210710.1016/j.fitote.2015.05.019 26028544
    [Google Scholar]
  69. MaP. LiT. JiF. WangH. PangJ. Effect of GABA on blood pressure and blood dynamics of anesthetic rats.Int. J. Clin. Exp. Med.2015881429614302 26550413
    [Google Scholar]
  70. YodkeereeS. OoppachaiC. PompimonW. Limtrakul DejkriengkraikulP. O-methylbulbocapnine and dicentrine suppress lps-induced inflammatory response by blocking NF-κB and AP-1 activation through inhibiting MAPKs and Akt signaling in RAW264.7 macrophages.Biol. Pharm. Bull.20184181219122710.1248/bpb.b18‑00037 30068871
    [Google Scholar]
  71. YuS.M. KangY.F. ChenC.C. TengC.M. Effects of dicentrine on haemodynamic, plasma lipid, lipoprotein level and vascular reactivity in hyperlipidaemic rats.Br. J. Pharmacol.199310841055106110.1111/j.1476‑5381.1993.tb13505.x 8485617
    [Google Scholar]
  72. Sheu-MeeiY. Chien-ChihC. Feng-NienK. Yu-LinH. Tur-FuH. Che-MingT. Dicentrine, a novel antiplatelet agent inhibiting thromboxane formation and increasing the cyclic AMP level of rabbit platelets.Biochem. Pharmacol.199243232332910.1016/0006‑2952(92)90295‑T 1310852
    [Google Scholar]
  73. ChenK.S. WuY.C. TengC.M. KoF.N. WuT.S. Bioactive alkaloids from Illigera luzonensis.J. Nat. Prod.199760664564710.1021/np9700735 9214740
    [Google Scholar]
  74. ChenC. HuangY. OuJ. SuM. YuS. TengC. Bioactive principles from the roots of Lindera megaphylla.Planta Med.199157540640810.1055/s‑2006‑960135 1798790
    [Google Scholar]
  75. ChenK.S. KoF.N. TengC.M. WuY.C. Antiplatelet of vasorelaxing actions of some benzylisoquinoline and phenanthrene alkaloids.J. Nat. Prod.199659553153410.1021/np960354x 8778245
    [Google Scholar]
  76. TengC.M. YuS.M. KoF.N. ChenC.C. HuangY.L. HuangT.F. Dicentrine, a natural vascular α 1 ‐adrenoceptor antagonist, isolated from Lindera megaphylla.Br. J. Pharmacol.1991104365165610.1111/j.1476‑5381.1991.tb12484.x 1686739
    [Google Scholar]
  77. YuS.M. HsuS.Y. KoF.N. ChenC.C. HuangY.L. HuangT.F. TengC.M. Haemodynamic effects of dicentrine, a novel α 1 ‐adrenoceptor antagonist: comparison with prazosin in spontaneously hypertensive and normotensive Wistar‐Kyoto rats.Br. J. Pharmacol.1992106479780110.1111/j.1476‑5381.1992.tb14415.x 1356567
    [Google Scholar]
  78. SuM.J. NiehY.C. HuangH.W. ChenC.C. Dicentrine, an alpha-adrenoceptor antagonist with sodium and potassium channel blocking activities.Naunyn Schmiedebergs Arch. Pharmacol.199434914249 7908125
    [Google Scholar]
  79. MustafaM.R. AchikeF.I. Dicentrine is preferentially antagonistic to rat aortic than splenic alpha 1-adrenoceptor stimulation.Acta Pharmacol. Sin.2000211211651168 11603294
    [Google Scholar]
  80. HengH.L. CheeC.F. ThyC.K. TeeJ.T. ChinS.P. HerrD.R. BuckleM.J.C. PatersonI.C. DoughtyS.W. Abd RahmanN. ChungL.Y. In vitro functional evaluation of isolaureline, dicentrine and glaucine enantiomers at 5-HT2 and α1 receptors.Chem. Biol. Drug Des.201993213213810.1111/cbdd.13390 30216681
    [Google Scholar]
  81. YuS.M. KoF.N. ChuehS.C. ChenJ. ChenS.C. ChenC.C. TengC.M. Effects of dicentrine, a novel α1-adrenoceptor antagonist, on human hyperplastic prostates.Eur. J. Pharmacol.19942521293410.1016/0014‑2999(94)90571‑1 7512043
    [Google Scholar]
  82. ChangK-C. LoH-M. LinF-Y. TsengY-Z. KoF-N. TengC-M. Effects of dicentrine on the mechanical properties of systemic arterial trees in dogs.J. Cardiovasc. Pharmacol.199526176917610.1097/00005344‑199507000‑00026
    [Google Scholar]
  83. LiH.L. ZhangR.P. YeH.T. WangH. [Effect of L-dicentrine on contraction of rat stomach muscle strips].Zhongguo Zhongyao Zazhi2000257426428Effect of L-dicentrine on contraction of rat stomach muscle strips. 12515226
    [Google Scholar]
  84. TsaiT.J. LinR.H. ChangC.C. ChenY.M. ChenC.F. KoF.N. TengC.M. Vasodilator agents modulate rat glomerular mesangial cell growth and collagen synthesis.Nephron J.1995701919910.1159/000188550 7617123
    [Google Scholar]
  85. BarbosaH. Costa-SilvaT.A. Alves ConservaG.A. AraujoA.J. LordelloA.L.L. AntarG.M. AmaralM. SoaresM.G. TemponeA.G. LagoJ.H.G. Aporphine alkaloids from ocotea puberula with anti‐ trypanosoma cruzi potential: Activity of dicentrine‐β‐ N ‐oxide in the plasma membrane electric potentials.Chem. Biodivers.2021184e200102210.1002/cbdv.202001022 33635585
    [Google Scholar]
  86. HoetS. StévignyC. BlockS. OpperdoesF. ColsonP. BaldeyrouB. LansiauxA. BaillyC. Quetin-LeclercqJ. Alkaloids from Cassytha filiformis and related aporphines: antitrypanosomal activity, cytotoxicity, and interaction with DNA and topoisomerases.Planta Med.200470540741310.1055/s‑2004‑818967 15124084
    [Google Scholar]
  87. AyersS. ZinkD. MohnK. PowellJ. BrownC. MurphyT. BrandR. PretoriusS. StevensonD. ThompsonD. SinghS. Anthelmintic activity of aporphine alkaloids from Cissampelos capensis.Planta Med.200773329629710.1055/s‑2007‑967124 17309014
    [Google Scholar]
  88. BarinasJ.A.C. SuárezL.E.C. Chemical constituents of Talauma arcabucoana (Magnoliaceae): Their brine shrimp lethality and antimicrobial activity.Nat. Prod. Res.201125161497150410.1080/14786410903205146 21347974
    [Google Scholar]
  89. GarcezW.S. GarcezF.R. da SilvaL.M.G.E. HamerskiL. Larvicidal activity against Aedes aegypti of some plants native to the West-Central region of Brazil.Bioresour. Technol.2009100246647665010.1016/j.biortech.2009.06.092 19664915
    [Google Scholar]
  90. AroraD. ChaudharyR. SinghA. System biology approach to identify potential receptor for targeting cancer and biomolecular interaction studies of indole[2,1-a]isoquinoline derivative as anticancerous drug candidate against it.Interdiscip. Sci.201911112513410.1007/s12539‑017‑0249‑0 28748401
    [Google Scholar]
  91. DongJ.W. LiX.J. CaiL. ShiJ.Y. LiY.F. YangC. LiZ.J. Simultaneous determination of alkaloids dicentrine and sinomenine in Stephania epigeae by 1H NMR spectroscopy.J. Pharm. Biomed. Anal.201816033033510.1016/j.jpba.2018.08.007 30114611
    [Google Scholar]
  92. ShafieeA. LalezariI. LajevardiS. KhalafiF. Alkaloids of Glaucium flavum grantz, populations isfahan and kazerun.J. Pharm. Sci.197766687387410.1002/jps.2600660636 874792
    [Google Scholar]
  93. RafamantananaM.H. DebrusB. RaoelisonG.E. RozetE. LebrunP. Uverg-RatsimamangaS. HubertP. Quetin-LeclercqJ. Application of design of experiments and design space methodology for the HPLC-UV separation optimization of aporphine alkaloids from leaves of Spirospermum penduliflorum Thouars.J. Pharm. Biomed. Anal.201262233210.1016/j.jpba.2011.12.028 22310553
    [Google Scholar]
  94. De WetH. Van HeerdenF.R. Van WykB.E. Alkaloidal variation in cissampelos capensis (Menispermaceae).Molecules20111643001300910.3390/molecules16043001 21475122
    [Google Scholar]
  95. StévignyC. BlockS. De Pauw-GilletM.C. de HoffmannE. LlabrèsG. AdjakidjéV. Quetin-LeclercqJ. Cytotoxic aporphine alkaloids from Cassytha filiformis.Planta Med.200268111042104410.1055/s‑2002‑35651 12451500
    [Google Scholar]
  96. TsaiT.H. WangG.J. LinL.C. Vasorelaxing alkaloids and flavonoids from Cassytha filiformis.J. Nat. Prod.200871228929110.1021/np070564h 18217715
    [Google Scholar]
  97. ZhouB.N. JohnsonR.K. MatternM.R. WangX. HechtS.M. BeckH.T. OrtizA. KingstonD.G.I. Isolation and biochemical characterization of a new topoisomerase I inhibitor from Ocotea leucoxylon.J. Nat. Prod.200063221722110.1021/np990442s 10691712
    [Google Scholar]
  98. VecchiettiV. CasagrandeC. FerrariG. Alkaloids of Ocotea brachybotra.Farmaco, Sci.19773211767769 923790
    [Google Scholar]
  99. VecchiettiV. CasagrandeC. FerrariG. Severini RiccaG. New aporphine alkaloids of Ocotea minarum.Farmaco, Sci.19793410829840 510527
    [Google Scholar]
  100. LalezariI. ShafieeA. MahjourM. Major alkaloids of glaucium flavum grantz, population ghom.J. Pharm. Sci.197665692392410.1002/jps.2600650633 932983
    [Google Scholar]
  101. ShafieeA. LalezariI. RahimiO. Alkaloids of papaver genus IX. Alkaloids of glaucium vitellinum boiss and buhse, population seerjan and glaucium pulchrum stapf, population elika.Lloydia1977404352355 19671
    [Google Scholar]
/content/journals/npj/10.2174/0122103155280229240404041828
Loading
/content/journals/npj/10.2174/0122103155280229240404041828
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test