Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Background

The discharging of crystal violet dye can contaminate water and soil, which causes serious environmental pollution and health problems for human beings. SbO/CaAlO nanoscale composites possess good catalytic performance for crystal violet removal. This study aimed to research the effects of the SbO content, content of the nanoscale composites, and metallic cations on the photocatalytic activity of the SbO/CaAlO nanoscale composites.

Objective

The objective was to synthesize SbO/CaAlO nanoscale composites by a simple route and research the photocatalytic activity for crystal violet degradation.

Methods

SbO/CaAlO nanoscale composites were obtained a simple route using Ca aluminate nanosheets and Sb acetate. The photocatalytic activity of the SbO/CaAlO nanoscale composites was evaluated using crystal violet as a model pollutant.

Results

The obtained nanoscale composites consisted of orthorhombic CaAlO and orthorhombic SbO phases, nanosheets with a thickness of about 50 nm, and nanoparticles with a size of less than 100 nm. SbO enhanced the light absorption ability of the Ca aluminate nanosheets. The nanoscale composites with the SbO content of 20wt.% decreased to 3.03 eV, which is beneficial for improving the photo-degradation ability of the organic pollutants. The reaction ratio constant for crystal violet (CV) degradation was 0.045 min-1 and 0.055 min-1 using the nanoscale composites with SbO content of 10wt.% and 20wt.%, respectively, which was 1.4 and 1.7 times higher than that of the Ca aluminate nanosheets (0.032 min-1). Hydroxyl radicals (OH), hole (h+), and superoxide radicals (O) were reaction-active species for CV removal. SbO/CaAlO nanoscale composites exhibited fast interfacial charge transfer and efficient separation ability of photo-induced electron-hole pairs, which enhanced the photocatalytic activity of the Ca aluminate nanosheets for CV degradation.

Conclusion

The SbO/CaAlO nanoscale composites can be easily separated and reused, showing great potential for practical application in wastewater treatment.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812319718240812112538
2024-08-22
2024-11-29
Loading full text...

Full text loading...

References

  1. MakhloufiR. HachaniS.E. FettahA. TairW. ZekriZ. Synthesis of Sb2S3-Sb4O5Cl2 composite used as a photocatalyst for crystal violet cationic dye degradation.Chem Data Collect20223910086710.1016/j.cdc.2022.100867
    [Google Scholar]
  2. ManiS. BharagavaR.N. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety.Rev. Environ. Contam. Toxicol.20162377110410.1007/978‑3‑319‑23573‑8_426613989
    [Google Scholar]
  3. PeiL.Z. WangS. LinN. LiuH.D. GuoY.H. Vanadium doping of strontium germanate and their visible photocatalytic properties.RSC Advances2014489481444814910.1039/C4RA07324J
    [Google Scholar]
  4. ChenC.S. XieX.D. ZhaoG.J. ZengB. NingX.T. CaoS.Y. XiaoY. MeiY.P. MengX.M. HuangM.X. Graphene/multi-walled carbon nanotube composite as an effective supports to enhance the photocatalytic property of Cu-doped ZnO nanoparticles.Funct. Mater. Lett. (Singap.)201366135006210.1142/S1793604713500628
    [Google Scholar]
  5. HomagaiP.L. PoudelR. PoudelS. BhattaraiA. Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk.Heliyon202284e0926110.1016/j.heliyon.2022.e0926135464698
    [Google Scholar]
  6. Sadri MoghaddamS. Alavi MoghaddamM.R. AramiM. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology.J. Hazard. Mater.20101751-365165710.1016/j.jhazmat.2009.10.05819944532
    [Google Scholar]
  7. ChenJ. XiongY. DuanM. LiX. LiJ. FangS. QinS. ZhangR. Insight into the synergistic effect of adsorption–photocatalysis for the removal of organic dye pollutants by Cr-doped ZnO.Langmuir202036252053310.1021/acs.langmuir.9b0287931886673
    [Google Scholar]
  8. Hojjati-NajafabadiA. MansoorianfarM. LiangT. ShahinK. WenY. BahramiA. KaramanC. ZareN. Karimi-MalehH. VasseghianY. Magnetic-MXene-based nanocomposites for water and wastewater treatment: A review.J. Water Process Eng.20224710269610.1016/j.jwpe.2022.102696
    [Google Scholar]
  9. Kumar SahooS. Kumar PanigrahiG. Prakash DhalJ. Kumar SahooJ. Kumar BiswalS. SahooA. SubhalaxmiS. Mayee SahooD. MohapatraL. Madhusmita MahakulM. SahooA. A greener approach to synthesize magnetically separable and photocatalytic recyclable g-C3N4-Fe3O4 nanomaterial for removing toxic organic dyes from water.Inorg. Chem. Commun.202315411096910.1016/j.inoche.2023.110969
    [Google Scholar]
  10. ChenH. YuC. XueZ. WangP. WangZ. CongQ. PeiL. FanC. Synthesis of Li-doped bismuth oxide nanoplates, Co nanoparticles modification, and good photocatalytic activity toward organic pollutants.Toxicol. Environ. Chem.20201027-835638510.1080/02772248.2020.1798448
    [Google Scholar]
  11. ChenC.S. XieX.D. CaoS.Y. LiuT.G. LinL.W. ChenX.H. LiuQ.C. KuangJ.C. XiaoY. Preparation and photocatalytic activity of multi-walled carbon nanotubes/Mg-doped ZnO nanohybrids.Mater. Sci. Pol.201533346046910.1515/msp‑2015‑0083
    [Google Scholar]
  12. LeeJ. SeongS. JinS. JeongY. NohJ. Synergetic photocatalytic-activity enhancement of lanthanum doped TiO2 on halloysite nanocomposites for degradation of organic dye.J. Mater. Sci. Mater. Electron.2021100126133
    [Google Scholar]
  13. SinJ.C. LamS.M. LeeK.T. MohamedA.R. Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2,4-dichlorophenol degradation.J. Colloid Interface Sci.2013401404910.1016/j.jcis.2013.03.04323618322
    [Google Scholar]
  14. NaeimiA. SharifiA. MontazerghaemL. AbhariA.R. MahmoodiZ. BakrZ.H. SoldatovA.V. AliG.A.M. Transition metals doped WO3 photocatalyst towards high efficiency decolourization of azo dye.J. Mol. Struct.2022125013180010.1016/j.molstruc.2021.131800
    [Google Scholar]
  15. EthirajA.S. UttamP. KV. ChongK.F. AliG.A.M. Photocatalytic performance of a novel semiconductor nanocatalyst: Copper doped nickel oxide for phenol degradation.Mater. Chem. Phys.202024212252010.1016/j.matchemphys.2019.122520
    [Google Scholar]
  16. GiahiM. PathaniaD. AgarwalS. GomaaA.M.A. ChongK.F. GuptaV.K. Preparation of Mg-doped TiO2 nanoparticles for photocatalytic degradation of some organic pollutants.Stud. Univ. Babes-Bolyai Chem.201964171810.24193/subbchem.2019.1.01
    [Google Scholar]
  17. RafiqA. IkramM. AliS. NiazF. KhanM. KhanQ. MaqboolM. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution.J. Ind. Eng. Chem.20219711112810.1016/j.jiec.2021.02.017
    [Google Scholar]
  18. KianiA. NabiyouniG. MasoumiS. GhanbariD. A novel magnetic MgFe2O4–MgTiO3 perovskite nanocomposite: Rapid photo-degradation of toxic dyes under visible irradiation.Compos., Part B Eng.201917510708010.1016/j.compositesb.2019.107080
    [Google Scholar]
  19. Esmaeili-Bafghi-KarimabadA. GhanbariD. Salavati-NiasariM. Nejati-MoghadamL. GholamrezaeiS. Photo-catalyst tin dioxide: Synthesis and characterization different morphologies of SnO2 nanostructures and nanocomposites.J. Mater. Sci. Mater. Electron.20152696970697810.1007/s10854‑015‑3316‑5
    [Google Scholar]
  20. SharifiA. MontazerghaemL. NaeimiA. AbhariA.R. VafaeeM. AliG.A.M. SadeghH. Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation.J. Environ. Manage.201924762463210.1016/j.jenvman.2019.06.09631279139
    [Google Scholar]
  21. SolehudinM. SirimahachaiU. AliG.A.M. ChongK.F. WongnawaS. One-pot synthesis of isotype heterojunction g-C3N4-MU photocatalyst for effective tetracycline hydrochloride antibiotic and reactive orange 16 dye removal.Adv. Powder Technol.20203151891190210.1016/j.apt.2020.02.020
    [Google Scholar]
  22. LaouiniS.E. BouafiaA. SoldatovA.V. AlgarniH. TedjaniM.L. AliG.A.M. BarhoumA. Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of phoenix dactylifera L. and their Azo dye photodegradation.Membranes (Basel)202111746810.3390/membranes1107046834202049
    [Google Scholar]
  23. JeongN. HanS.O. KimH. KimC. HongS. ParkS. JangM. Synthesis of calcium aluminate nanoflakes and nanochains from woody biomass.Mater. Charact.2015110687610.1016/j.matchar.2015.10.022
    [Google Scholar]
  24. LiangJ.M. HeL.L. ShenZ.Q. ZhangD.L. Preparation, characterization and luminescence properties of Eu doped CaAl2O4 nanocones.Mod. Phys. Lett. B20132719134101810.1142/S0217984913410182
    [Google Scholar]
  25. HermanssonL. A review of nanostructured Ca-aluminate based biomaterials within odontology and orthopedics. J. Korean Ceram. J Korean Ceramic Soc20185529510710.4191/kcers.2018.55.2.01
    [Google Scholar]
  26. SunZ. CongQ. WangX. CaiZ. LiJ. LiJ. FanC. PeiL. Facile synthesis and high-efficiency visible-light-driven photocatalytic performance of nanoscale carbon/Ca aluminate nanoplates.J. Electron. Mater.202352107007702010.1007/s11664‑023‑10642‑0
    [Google Scholar]
  27. SunZ. CongQ. WangX. CuiJ. CaiZ. FanC. PeiL. A visible light-sensitive argentous oxide/calcium aluminate nanocomposite photocatalyst.Mater. Sci. Technol.202339183040305210.1080/02670836.2023.2237273
    [Google Scholar]
  28. MadhusudhanaN. YogendraK. MahadevanK.M. NaikS. GopalappaH. Photocatalytic degradation of coralene dark red 2B dye using calcium aluminate (CaAl2O4) catalyst.J. Environ. Sci. (China)2011615916310.13140/RG.2.2.12167.04005
    [Google Scholar]
  29. SunZ.Z. WangX.Y. CongQ.M. ZhangX. FanC.G. PeiL.Z. Facile synthesis of calcium aluminate nanoplates as efficient photocatalysts for the degradation of organic pollutants.Toxicol. Environ. Chem.20221054210.1080/02772248.2023.2203494
    [Google Scholar]
  30. HeG.H. LiangC.J. OuY.D. LiuD.N. FangY.P. XuY.H. Preparation of novel Sb2O3/WO3 photocatalysts and their activities under visible light irradiation.Mater. Res. Bull.20134862244224910.1016/j.materresbull.2013.02.055
    [Google Scholar]
  31. LiuD.N. HeG.H. ZhuL. ZhouW.Y. XuY.H. Enhancement of photocatalytic activity of TiO2 nanoparticles by coupling Sb2O3.Appl. Surf. Sci.2012258208055806010.1016/j.apsusc.2012.04.171
    [Google Scholar]
  32. HuY. ZhangH. YangH. Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method.J. Alloys Compd.20074281-232733110.1016/j.jallcom.2006.03.057
    [Google Scholar]
  33. FriedrichsS. SloanJ. GreenM.L.H. HutchisonJ.L. MeyerR.R. KirklandA.I. Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb2O3/single−walled nanotube composite.Phys. Rev. B Condens. Matter200164404540610.1103/PhysRevB.64.045406
    [Google Scholar]
  34. LiuX. ChenC. Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light.Mater. Lett.202026112712710.1016/j.matlet.2019.127127
    [Google Scholar]
  35. SenobariS. Nezamzadeh-EjhiehA. A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.201819633434310.1016/j.saa.2018.02.04329475182
    [Google Scholar]
  36. DengA. YuC. XueZ. HuangJ. PanH. PeiL. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants.J. Mater. Res. Technol.2022191073108910.1016/j.jmrt.2022.05.104
    [Google Scholar]
  37. HuangJ. TaoF. SunZ. LiF. CaiZ. ZhangY. FanC. PeiL. A facile synthesis route to BiPr composite nanosheets and sensitive electrochemical detection of L-cysteine.Microchem. J.202218210791510.1016/j.microc.2022.107915
    [Google Scholar]
  38. JamilaG.S. SajjadS. LeghariS.A.K. LongM. Nitrogen doped carbon quantum dots and GO modified WO3 nanosheets combination as an effective visible photo catalyst.J. Hazard. Mater.202038212108710.1016/j.jhazmat.2019.12108731476720
    [Google Scholar]
  39. WangH. ZengX. PangL. WangH. LinB. DengZ. QiE.L.X. MiaoN. WangD. HuangP. HuH. LiJ. Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds.Chem. Eng. J.202039612508110.1016/j.cej.2020.125081
    [Google Scholar]
  40. HajipourP. EslamiA. BahramiA. Hosseini-AbariA. SaberF.Y. MohammadiR. Yazdan MehrM. Surface modification of TiO2 nanoparticles with CuO for visible-light antibacterial applications and photocatalytic degradation of antibiotics.Ceram. Int.20214723338753388510.1016/j.ceramint.2021.08.300
    [Google Scholar]
  41. HajipourP. BahramiA. MehrM.Y. van DrielW.D. ZhangK. Facile synthesis of Ag nanowire/TiO2 and Ag nanowire/TiO2/GO nanocomposites for photocatalytic degradation of Rhodamine B.Materials (Basel)202114476310.3390/ma1404076333561955
    [Google Scholar]
  42. XueZ. LiF. YuC. HuangJ. TaoF. CaiZ. PeiL. Synthesis of hexahydroxy strontium stannate nanorods for photocatalytic degradation of organic pollutants.Toxicol. Environ. Chem.2021103432634110.1080/02772248.2021.1999453
    [Google Scholar]
  43. LuoY. ChenJ. LiuJ. ShaoY. LiX. LiD. Hydroxide SrSn(OH) 6 : A new photocatalyst for degradation of benzene and rhodamine B.Appl. Catal. B201618253354010.1016/j.apcatb.2015.09.051
    [Google Scholar]
  44. LvX. HuangW. DingX. HeJ. HuangQ. TanJ. ChengH. FengJ. LiL. Preparation and photocatalytic activity of Fe3O4@ZnO: La.J. Rare Earths202038121288129610.1016/j.jre.2020.04.007
    [Google Scholar]
  45. BortzM. OhuchiF.S. An x-ray photoelectron spectroscopy study of the interfacial relations between titanium and cordierite-based ceramic thin films.J. Appl. Phys.19886442054205810.1063/1.341712
    [Google Scholar]
  46. OhbayashiK. YoshidaK. AnmaM. TakaiY. HayakawaH. Bismuth valence studies of as-grown Ssuperconducting Bi-Sr-Ca-Cu-O thin films with Tc(zero) from 98 K to 66 K.Jpn. J. Appl. Phys.1992317BL95310.1143/JJAP.31.L953
    [Google Scholar]
  47. KohikiS. WadaT. KawashimaS. TakagiH. UchidaS. TanakaS. Photoemission from single-crystalline Bi-Sr-Ca-Cu-O.Phys. Rev. B Condens. Matter198838107051705310.1103/PhysRevB.38.70519945396
    [Google Scholar]
  48. DelobelR. BaussartH. LeroyJ.M. GrimblotJ. GengembreL. X-ray photoelectron spectroscopy study of uranium and antimony mixed metal-oxide catalysts.J. Chem. Soc., Faraday Trans. I198379487910.1039/f19837900879
    [Google Scholar]
  49. MorganW.E. StecW.J. Van WazerJ.R. Binding energy shifts in the x-ray photoelectron spectra of a series of related Group IVa compounds.Inorg. Chem.19731295310.1021/ic50122a054
    [Google Scholar]
  50. ChenC. LiuX. FangQ. ChenX. LiuT. ZhangM. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight.Vacuum202017410919810.1016/j.vacuum.2020.109198
    [Google Scholar]
  51. WangZ. ChenH. QiuF. XueZ. YuC. WangP. CongQ. PeiL. FanC. ZhangY. Facile cetyltrimethylammonium bromide (CTAB)-assisted synthesis of calcium bismuthate nanoflakes with solar light photocatalytic performance.Curr. Nanosci.202117231532610.2174/1573413716999200817120339
    [Google Scholar]
  52. ChenC. MeiW. WangC. YangZ. ChenX. ChenX. LiuT. Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight.J. Alloys Compd.202082615412210.1016/j.jallcom.2020.154122
    [Google Scholar]
  53. NosuhiM. Nezamzadeh-EjhiehA. High catalytic activity of Fe(II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: Experimental design by response surface methodology (RSM).Electrochim. Acta2017223476210.1016/j.electacta.2016.12.011
    [Google Scholar]
  54. GhafourianN. HosseiniS.N. MahmoodiZ. MasnabadiN. ThaljiM.R. AbhariA.R. Al ZoubiW. ChongK.F. AliG.A.M. BakrZ.H. TiO2-mica 450 composite for photocatalytic degradation of methylene blue using UV irradiation.Emergent Materials2023651527153610.1007/s42247‑023‑00552‑6
    [Google Scholar]
  55. NaggarA.H. AhmedA.S.A. El-NasrT.A.S. AlotaibiN.F. ChongK.F. AliG.A.M. Morphological dependence of metal oxide photocatalysts for dye degradation.Inorganics (Basel)2023111248410.3390/inorganics11120484
    [Google Scholar]
  56. Al-AnsariS.H. GomaaH. Abdel-RahimR.D. AliG.A.M. NagiubA.M. Recycled gold-reduced graphene oxide nanocomposite for efficient adsorption and photocatalytic degradation of crystal violet.Sci. Rep.2024141437910.1038/s41598‑024‑54580‑138388699
    [Google Scholar]
  57. MirsalariS.A. Nezamzadeh-EjhiehA. CdS–Ag3PO4 nano-catalyst: A brief characterization and kinetic study towards methylene blue photodegradation.Mater. Sci. Semicond. Process.202112210545510.1016/j.mssp.2020.105455
    [Google Scholar]
  58. XueZ. LiF. YuC. HuangJ. TaoF. CaiZ. ZhangH. PeiL. Low temperature synthesis of SnSr(OH) 6 nanoflowers and photocatalytic performance for organic pollutants.Int. J. Mater. Res.20221131809010.1515/ijmr‑2021‑8333
    [Google Scholar]
  59. PotleV.D. ShirsathS.R. BhanvaseB.A. SaharanV.K. Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye.Optik (Stuttg.)202020816455510.1016/j.ijleo.2020.164555
    [Google Scholar]
  60. KarimiF. RajabiH.R. KavoshiL. Rapid sonochemical water-based synthesis of functionalized zinc sulfide quantum dots: Study of capping agent effect on photocatalytic activity.Ultrason. Sonochem.20195713914610.1016/j.ultsonch.2019.05.01931208609
    [Google Scholar]
  61. AmetaJ. KumarA. AmetaR. SharmaV.K. AmetaS.C. Synthesis and characterization of CeFeO3 photocatalyst used in photocatalytic bleaching of gentian violet.J. Indian Chem. Soc.20096229329910.1007/BF03245837
    [Google Scholar]
  62. ChenC. MaiF. ChenK. WuC. LuC. Photocatalyzed N-de-methylation and degradation of crystal violet in titania dispersions under UV irradiation.Dyes Pigments200775243444210.1016/j.dyepig.2006.06.040
    [Google Scholar]
  63. TaoF. LiF. HuangJ. XueZ. YuC. CaiZ. PeiL. A general hydrothermal growth and photocatalytic performance of barium tin hydroxide/tin dioxide nanorods.Cryst. Res. Technol.2022572210015610.1002/crat.202100156
    [Google Scholar]
  64. FangQ. ChenC. YangZ. ChenX. ChenX. LiuT. Synthetization and electrochemical performance of pomegranate-like ZnMn2O4 porous microspheres.J. Alloys Compd.202082615408410.1016/j.jallcom.2020.154084
    [Google Scholar]
  65. DerikvandiH. Nezamzadeh-EjhiehA. Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS2: Focus on coupling, supporting and nanoparticles.J. Colloid Interface Sci.201749062864110.1016/j.jcis.2016.11.10227940030
    [Google Scholar]
  66. Amani-BeniZ. Nezamzadeh-EjhiehA. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor.Anal. Chim. Acta20181031475910.1016/j.aca.2018.06.00230119743
    [Google Scholar]
  67. PeiL.Z. LinF.F. QiuF.L. WangW.L. ZhangY. FanC.G. Formation of Ba bismuthate nanobelts and sensitive electrochemical determination of tartaric acid.Mater. Res. Express20174707504710.1088/2053‑1591/aa7e04
    [Google Scholar]
  68. PeiL.Z. WeiT. LinN. CaiZ.Y. FanC.G. YangZ. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine.J. Electrochem. Soc.20161632H1H810.1149/2.0041602jes
    [Google Scholar]
  69. QiY. PengH. One-pot synthesis of La2O3-decorated Mg-Al oxides nanosheets for solar-light driven photocatalytic activity.Colloids Surf. A Physicochem. Eng. Asp.202060412531610.1016/j.colsurfa.2020.125316
    [Google Scholar]
  70. ChenH. LiF. TaoF. HuangJ. ZhangY. PeiL. Bismuth oxide/carbon nanodots/indium oxide heterojunctions with enhanced visible light photocatalytic performance.J. Mater. Sci. Mater. Electron.20223397154717110.1007/s10854‑022‑07896‑5
    [Google Scholar]
  71. YousefiA. Nezamzadeh-EjhiehA. Preparation and characterization of SnO2-BiVO4-CuO catalyst and kinetics of phenazopyridine photodegradation.Iran. J. Catal.20211124725910.1016/j.eti.2021.101433
    [Google Scholar]
  72. JinZ. ZhangY. LiuD. DingH. MambaB.B. KuvaregaA.T. GuiJ. Fabrication of a La-doped BiVO4@CN step-scheme heterojunction for effective tetracycline degradation with dual-enhanced molecular oxygen activation.Separ. Purif. Tech.202127711922410.1016/j.seppur.2021.119224
    [Google Scholar]
  73. GuoC.X. YangH.B. ShengZ.M. LuZ.S. SongQ.L. LiC.M. Layered graphene/quantum dots for photovoltaic devices.Angew. Chem. Int. Ed.201049173014301710.1002/anie.20090629120349480
    [Google Scholar]
  74. LiangN. WangM. JinL. HuangS. ChenW. XuM. HeQ. ZaiJ. FangN. QianX. Highly efficient Ag₂O/Bi₂O₂CO₃ p-n heterojunction photocatalysts with improved visible-light responsive activity.ACS Appl. Mater. Interfaces2014614116981170510.1021/am502481z24960443
    [Google Scholar]
  75. LiangN. ZaiJ. XuM. ZhuQ. WeiX. QianX. Novel Bi2S3/Bi2O2CO3 heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment.J. Mater. Chem. A Mater. Energy Sustain.20142124208421610.1039/c3ta13931j
    [Google Scholar]
  76. ShiT. HaoX. MaJ. LiuH. GaiG. ZhangY. Preparation of Ag2O/TiO2/fly-ash cenospheres composite photocatalyst.Mater. Lett.201618344444710.1016/j.matlet.2016.07.079
    [Google Scholar]
  77. KuvaregaA.T. KrauseR.W.M. MambaB.B. Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation.J. Phys. Chem. C201111545221102212010.1021/jp203754j
    [Google Scholar]
  78. WeiN. CuiH. SongQ. ZhangL. SongX. WangK. ZhangY. LiJ. WenJ. TianJ. Ag 2 O nanoparticle/TiO 2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation.Appl. Catal. B2016198839010.1016/j.apcatb.2016.05.040
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812319718240812112538
Loading
/content/journals/nanoasi/10.2174/0122106812319718240812112538
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test