Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Introduction

Green synthesis is the method of producing metal and metal oxide nanoparticles from the extraction of plant materials. This study aims to synthesize iron nanoparticles (FeNPs) using an aqueous extract of leaves as an eco-friendly approach and subsequently characterize the synthesized FeNPs to understand their structural, morphological, compositional and optical properties.

Methods

The aqueous extract of leaves and 0.1M ferric chloride solution were combined at room temperature in a 1:2 volume ratio. The synthesized FeNPs were characterized using analysis methods of Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), UV-visible (UV-vis) and Tacu plot.

Results

SEM images discovered that the particles were in the nanoscale range and their morphology appeared spherical shape. The EDX study was used to identify the composition of the elements of synthesized FeNPs. The crystal structure of the synthesised FeNPs was shown in the XRD spectrum. The FTIR spectrum showed many distinctive bands and the bands revealed active components for functional groups in the synthesized FeNPs. The UV-vis spectrum revealed an absorbance peak range of 240-310 nm for FeNP formation with a maximal peak at 273 nm. The band gap energy of the synthesized FeNPs was found to be 2.07 eV using the Tauc plot method. Also, the synthesized FeNPs exhibited a significant antibacterial effect against bacterial pathogens.

Conclusion

The results of the characterization methods strongly suggest that the aqueous leaf extract of can be used as a reducing and stabilizing agent in the green synthesis of FeNPs.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812320014240823184253
2024-09-03
2024-11-29
Loading full text...

Full text loading...

References

  1. ModiS. PrajapatiR. InwatiG.K. DeepaN. TirthV. YadavV.K. YadavK.K. IslamS. GuptaP. KimD-H. JeonB-H. Recent trends in fascinating applications of nanotechnology in allied health sciences.Crystals (Basel)20211213910.3390/cryst12010039
    [Google Scholar]
  2. MareeduT. PoibaV. VangalapatiM. Green synthesis of iron nanoparticles by green tea and black tea leaves extract.Mater. Today Proc.2021421498150110.1016/j.matpr.2021.01.444
    [Google Scholar]
  3. NarayananK.B. SakthivelN. Biological synthesis of metal nanoparticles by microbes.Adv. Colloid Interface Sci.20101561-211310.1016/j.cis.2010.02.00120181326
    [Google Scholar]
  4. HerlekarM. BarveS. KumarR. Plant-mediated green synthesis of iron nanoparticles.J. Nanoparticles2014114061410.1155/2014/140614
    [Google Scholar]
  5. ThiyagarajanK. BhartiV.K. TyagiS. TyagiP.K. AhujaA. KumarK. RajT. KumarB. Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application.RSC Advances2018841232132910.1039/C8RA03649G
    [Google Scholar]
  6. SaleemH. ZaidiS. Sustainable use of nanomaterials in textiles and their environmental impact.Materials (Basel)20201322513410.3390/ma1322513433203051
    [Google Scholar]
  7. AmjadR. MubeenB. AliS.S. ImamS.S. AlshehriS. GhoneimM.M. AlzareaS.I. RasoolR. UllahI. NadeemM.S. KazmiI. Green synthesis and characterization of copper nanoparticles using Fortunella margarita leaves.Polymers (Basel)20211324436410.3390/polym1324436434960915
    [Google Scholar]
  8. TyagiP.K. QuispeC. HerreraJ. TyagiS. BarbhaiM. KumarM. DabloolA.S. AlghamdiS. BatihaG.E.S. Sharifi-RadJ. RamniwasS. Synthesis of silver and gold nanoparticles: Chemical and green synthesis method and its toxicity evaluation against pathogenic bacteria using the ToxTrak test.J. Nanomaterials 20212021411210.1155/2021/3773943.
    [Google Scholar]
  9. GhafarzadeganR. YaghoobiM. MomtazS. AshooryN. Ghiaci YektaM. HajiaghaeeR. Process optimization for green synthesis of iron nanoparticles by extract of fenugreek ( Trigonella foenum-graecum L.) seeds.Faslnamah-i Giyahan-i Daruyi20222181223210.52547/jmp.21.81.22
    [Google Scholar]
  10. RaiM. BondeS. GolinskaP. Trzcińska-WencelJ. GadeA. Abd-ElsalamK.A. ShendeS. GaikwadS. IngleA.P. Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications.J. Fungi (Basel)20217213910.3390/jof702013933672011
    [Google Scholar]
  11. GourA. JainN.K. Advances in green synthesis of nanoparticles.Artif. Cells Nanomed. Biotechnol.201947184485110.1080/21691401.2019.157787830879351
    [Google Scholar]
  12. PerveenS. NadeemR. RehmanS. AfzalN. AnjumS. NoreenS. SaeedR. AmamiM. Al-MijalliS.H. IqbalM. Green synthesis of iron (Fe) nanoparticles using Plumeria obtusa extract as a reducing and stabilizing agent: Antimicrobial, antioxidant and biocompatibility studies.Arab. J. Chem.202215510376410.1016/j.arabjc.2022.103764
    [Google Scholar]
  13. KumariS.C. DhandV. PadmaP.N. Green synthesis of metallic nanoparticles: A review.Nanomaterials202125928110.1016/B978‑0‑12‑822401‑4.00022‑2
    [Google Scholar]
  14. TyagiP.K. GuptaS. KumarM. TyagiS. PandiselvamR. Durna DaştanS. Sharifi-RadJ. GolaD. AryaA. Green synthesis of iron nanoparticles from spinach leaf and banana peel aqueous extracts and evaluation of antibacterial potential.J. Nanomaterials 202110.1155/2021/3773943.
    [Google Scholar]
  15. JahanI. Işildakİ. Microwave irradiation system for a rapid synthesis of non-toxic metallic copper nanoparticles from green tea.Trak. Univ. J. Nat. Sci.2020212798610.23902/trkjnat.731692
    [Google Scholar]
  16. MadivoliE.S. KareruP.G. MainaE.G. NyabolaA.O. WanakaiS.I. Nyang’auJ.O. Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity.SN Appl Sci20191550010.1007/s42452‑019‑0511‑7
    [Google Scholar]
  17. ShahwanT. Abu SirriahS. NairatM. BoyacıE. EroğluA.E. ScottT.B. HallamK.R. Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes.Chem. Eng. J.2011172125826610.1016/j.cej.2011.05.103
    [Google Scholar]
  18. HaoR. LiD. ZhangJ. JiaoT. Green synthesis of iron nanoparticles using green tea and its removal of hexavalent chromium.Nanomaterials (Basel)202111365010.3390/nano1103065033800123
    [Google Scholar]
  19. YadiM. MostafaviE. SalehB. DavaranS. AliyevaI. KhalilovR. NikzamirM. AkbarzadehA. PanahiY. MilaniM. Current developments in green synthesis of metallic nanoparticles using plant extracts: A review.Artif Cells Nanomed Biotechnol201846S336S34310.1080/21691401.2018.1492931
    [Google Scholar]
  20. MittalJ. Curry Leaf (Murraya koenigii): A spice with medicinal property.MOJ Bio. Med.2017232365610.15406/mojbm.2017.02.00050
    [Google Scholar]
  21. SainiS.C.G.B.S.R. A review on curry leaves (Murraya koenigii): Versatile multi-potential medicinal plant.Oral Biol. Med.20153363368
    [Google Scholar]
  22. FatimahS. RagadhitaR. HusaeniD.F.A. NandiyantoA.B.D. How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method.ASEAN J. Sci. Eng.202121657610.17509/ajse.v2i1.37647
    [Google Scholar]
  23. HaizaH. AzizanA. MohidinA.H. HalinD.S.C. Green synthesis of silver nanoparticles using local honey.Nano Hybrids20134879810.4028/www.scientific.net/NH.4.87
    [Google Scholar]
  24. TruskewyczA. ShuklaR. BallA.S. Iron nanoparticles synthesized using green tea extracts for the fenton-like degradation of concentrated dye mixtures at elevated temperatures.J. Environ. Chem. Eng.2016444409441710.1016/j.jece.2016.10.008
    [Google Scholar]
  25. QasimS. ZafarA. SaifMS. AliZ. NazarM. WaqasM. HaqAU. TariqT. HassanSG. IqbalF. ShuXG. HasanM. Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity.J Photochem Photobiol B202020411178410.1016/j.jphotobiol.2020.111784
    [Google Scholar]
  26. ZangenehA. ZangenehM.M. MoradiR. Ethnomedicinal plant‐extract‐assisted green synthesis of iron nanoparticles using Allium saralicum extract, and their antioxidant, cytotoxicity, antibacterial, antifungal and cutaneous wound‐healing activities.Appl. Organomet. Chem.2020341e524710.1002/aoc.5247
    [Google Scholar]
  27. WangZ. FangC. MallavarapuM. Characterization of iron–polyphenol complex nanoparticles synthesized by Sage (Salvia officinalis) leaves.Environ. Technol. Innov.20154929710.1016/j.eti.2015.05.004
    [Google Scholar]
  28. JainR. MendirattaS. KumarL. SrivastavaA. Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous fenton-like catalyst for the degradation of fuchsin basic dye.Curr. Res. Green Sustain. Chem.202141410008610.1016/j.crgsc.2021.100086
    [Google Scholar]
  29. SamarawickramaR. WijayapalaS. FernandoN. Green Synthesis of iron nanoparticles from aqueous extract of fenugreek seeds (Trigonella foenum-graecum): Synthesis mechanism and characterization.Sri Lankan J. Technol.202203Special Issue813
    [Google Scholar]
  30. Da’naE. TahaA. AfkarE. Green synthesis of iron nanoparticles by Acacia nilotica pods extract and its catalytic, adsorption, and antibacterial activities.Appl. Sci. (Basel)2018810192210.3390/app8101922
    [Google Scholar]
  31. PattanayakM. MohapatraD. NayakP.L. Green synthesis and characterization of zero-valent iron nanoparticles from the leaf extract of Syzygium aromaticum (clove).Middle East J. Sci. Res.201318562362610.5829/idosi.mejsr.2013.18.5.11729
    [Google Scholar]
  32. SablaniaV. BoscoS.J.D. BashirM. Extraction process optimization of Murraya koenigii leaf extracts and antioxidant properties.J. Food Sci. Technol.201956125500550810.1007/s13197‑019‑04022‑y31749498
    [Google Scholar]
  33. SamarawickramaK. WijayapalaU. FernandoC. Green synthesis of iron nanoparticles from long coriander (Eryngium foetidum) Leaves aqueous extract.KDU IRC2022
    [Google Scholar]
  34. JubuP.R. ObasekiO.S. Nathan-AbutuA. YamF.K. YusofY. OchangM.B. Dispensability of the conventional Tauc’s plot for accurate bandgap determination from UV–vis optical diffuse reflectance data.Results in Optics20229May10027310.1016/j.rio.2022.100273
    [Google Scholar]
  35. SolimanT.S. VshivkovS.A. Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films.J. Non-Cryst. Solids2019519April11945210.1016/j.jnoncrysol.2019.05.028
    [Google Scholar]
  36. SidkeyN. Biosynthesis, characterization and antimicrobial activity of iron oxide nanoparticles synthesized by fungi.Al-Azhar J. Pharm. Sci.202062216417910.21608/ajps.2020.118382
    [Google Scholar]
  37. SlavinY.N. AsnisJ. HäfeliU.O. BachH. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity.J. Nanobiotechnol20171516510.1186/s12951‑017‑0308‑z28974225
    [Google Scholar]
  38. AzhaguM.S. VijayakumarS. SripriyaR. RajalakshmiS. Phytochemical screening and GC-MS analysis of bioactive compounds present in ethanolic leaf extract Murraya koenigii .Bull. Environ. Pharmacol. Life Sci.2021104158164
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812320014240823184253
Loading
/content/journals/nanoasi/10.2174/0122106812320014240823184253
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Band gap; FeNPs; FTIR; green synthesis; plant extract; reducing agent; room temperature; XRD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test