Skip to content
2000
Volume 14, Issue 5
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

The capability of lipid-based nanoparticles (LBNs) to revolutionise cancer therapy is examined in this article. The potential of lipid-based nanoparticles (LBNs) to revolutionise cancer therapy is examined in this article. Before moving on to the formulation, characterization, and therapeutic applications of LBN, a brief discussion of the importance of targeted drug delivery is given. Liposomal delivery systems (LBNs), incorporating solid lipid nanoparticles (SLNs), liposomes and nanostructured lipid carriers, offer a versatile platform for accurate drug delivery (NLCs). The article discusses the potential of liquid nanoparticles (LBNs) in cancer therapy, highlighting their stability, storage, and techniques like reverse phase evaporation, thin-film hydration, and microemulsions. It also explores their physical characteristics, drug release studies, and role in tailored treatments. The review highlights manufacturing challenges and regulatory concerns while highlighting the evolving field of LBN applications.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812316387240822075859
2024-08-30
2025-01-27
Loading full text...

Full text loading...

References

  1. HeQ. ShiJ. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility.J. Mater. Chem.201121165845585510.1039/c0jm03851b
    [Google Scholar]
  2. KangB.K. LeeJ.S. ChonS.K. JeongS.Y. YukS.H. KhangG. LeeH.B. ChoS.H. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs.Int. J. Pharm.20042741-2657310.1016/j.ijpharm.2003.12.028 15072783
    [Google Scholar]
  3. GreenA.R. Why do neuroprotective drugs that are so promising in animals fail in the clinic? An industry perspective.Clin. Exp. Pharmacol. Physiol.200229111030103410.1046/j.1440‑1681.2002.03767.x 12366397
    [Google Scholar]
  4. HillaireauH. CouvreurP. Nanocarriers’ entry into the cell: relevance to drug delivery.Cell. Mol. Life Sci.200966172873289610.1007/s00018‑009‑0053‑z 19499185
    [Google Scholar]
  5. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  6. AlmeidaA. SoutoE. Solid lipid nanoparticles as a drug delivery system for peptides and proteins.Adv. Drug Deliv. Rev.200759647849010.1016/j.addr.2007.04.007 17543416
    [Google Scholar]
  7. HuxfordR.C. Della RoccaJ. LinW. Metal–organic frameworks as potential drug carriers.Curr. Opin. Chem. Biol.201014226226810.1016/j.cbpa.2009.12.012 20071210
    [Google Scholar]
  8. PatriA. KukowskalatalloJ. BakerJ.Jr Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex.Adv. Drug Deliv. Rev.200557152203221410.1016/j.addr.2005.09.014 16290254
    [Google Scholar]
  9. HanM. FangX. Difference in oral absorption of ginsenoside Rg1 between in vitro and in vivo models.Acta Pharmacol. Sin.200627449950510.1111/j.1745‑7254.2006.00303.x 16539852
    [Google Scholar]
  10. RawatM. SinghD. SarafS. SarafS. Nanocarriers: promising vehicle for bioactive drugs.Biol. Pharm. Bull.20062991790179810.1248/bpb.29.1790 16946487
    [Google Scholar]
  11. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.200254Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑7 12460720
    [Google Scholar]
  12. VyasS.P. KhatriK. Liposome-based drug delivery to alveolar macrophages.Expert Opin. Drug Deliv.200742959910.1517/17425247.4.2.95 17335407
    [Google Scholar]
  13. MehnertW. MäderK. Solid lipid nanoparticles Production, characterization and applications.Adv. Drug Deliv. Rev.2001472-316519610.1016/S0169‑409X(01)00105‑3 11311991
    [Google Scholar]
  14. LuanJ. ZhangD. HaoL. LiC. QiL. GuoH. LiuX. ZhangQ. Design and characterization of Amoitone B-loaded nanostructured lipid carriers for controlled drug release.Drug Deliv.201320832433010.3109/10717544.2013.835007 24032657
    [Google Scholar]
  15. TangB. ChengG. GuJ.C. XuC.H. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms.Drug Discov. Today20081313-1460661210.1016/j.drudis.2008.04.006 18598917
    [Google Scholar]
  16. HumberstoneA.J. CharmanW.N. Lipid-based vehicles for the oral delivery of poorly water soluble drugs.Adv. Drug Deliv. Rev.199725110312810.1016/S0169‑409X(96)00494‑2
    [Google Scholar]
  17. HaiderM. AbdinS.M. KamalL. OriveG. Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review.Pharmaceutics202012328810.3390/pharmaceutics12030288 32210127
    [Google Scholar]
  18. WeberS. ZimmerA. PardeikeJ. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art.Eur. J. Pharm. Biopharm.201486172210.1016/j.ejpb.2013.08.013
    [Google Scholar]
  19. DasS. NgW.K. TanR.B. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?Eur. J. Pharm. Sci.201247113915110.1016/j.ejps.2012.05.010
    [Google Scholar]
  20. OzpolatB. SoodA.K. Lopez-BeresteinG. Liposomal siRNA nanocarriers for cancer therapy.Adv. Drug Deliv. Rev.20146611011610.1016/j.addr.2013.12.008 24384374
    [Google Scholar]
  21. RamaA.R. Jimenez-LopezJ. CabezaL. Jimenez-LunaC. LeivaM.C. PerazzoliG. HernandezR. ZafraI. OrtizR. MelguizoC. PradosJ. Last advances in nanocarriers-based drug delivery systems for colorectal cancer.Curr. Drug Deliv.201613683083810.2174/1567201813666151203232852 26634791
    [Google Scholar]
  22. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.043 26504751
    [Google Scholar]
  23. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.235156 30065762
    [Google Scholar]
  24. JaspreetK. GurpreetS. Innovative growth in developing new methods for formulating solid lipid nanoparticles and microparticles.J. Drug Deliv. Ther.201225146
    [Google Scholar]
  25. ÜnerM. Characterization and Imaging of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers.Handbook of Nanoparticles. AliofkhazraeiM. ChamSpringer201610.1007/978‑3‑319‑15338‑4_3
    [Google Scholar]
  26. VedantiR. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier.J. Drug Deliv. Sci. Technol.20195125526710.1016/j.jddst.2019.02.017
    [Google Scholar]
  27. SalminenH. WeissJ. Solid lipid nanoparticles and nanostructured lipid carriers.Omega-3 Delivery Systems.Academic Press202110.1016/B978‑0‑12‑821391‑9.00022‑3
    [Google Scholar]
  28. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.021 32373485
    [Google Scholar]
  29. MoralesA. EidingerD. BruceA.W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors.J. Urol.1976116218018210.1016/S0022‑5347(17)58737‑6 820877
    [Google Scholar]
  30. DunnG.P. BruceA.T. IkedaH. OldL.J. SchreiberR.D. Cancer immunoediting: from immunosurveillance to tumor escape.Nat. Immunol.200231199199810.1038/ni1102‑991 12407406
    [Google Scholar]
  31. RosenbergS.A. LotzeM.T. MuulL.M. LeitmanS. ChangA.E. EttinghausenS.E. MatoryY.L. SkibberJ.M. ShiloniE. VettoJ.T. SeippC.A. SimpsonC. ReichertC.M. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer.N. Engl. J. Med.1985313231485149210.1056/NEJM198512053132327 3903508
    [Google Scholar]
  32. SteinitzM. Three decades of human monoclonal antibodies: Past, present and future developments.Hum. Antibodies2009181-211010.3233/HAB‑2009‑0196 19478393
    [Google Scholar]
  33. PastorF. BerraondoP. EtxeberriaI. FrederickJ. SahinU. GilboaE. MeleroI. An RNA toolbox for cancer immunotherapy.Nat. Rev. Drug Discov.2018171075176710.1038/nrd.2018.132 30190565
    [Google Scholar]
  34. SadelainM. CD19 CAR T Cells.Cell20171717147110.1016/j.cell.2017.12.002 29245005
    [Google Scholar]
  35. TopalianS.L. DrakeC.G. PardollD.M. Immune checkpoint blockade: a common denominator approach to cancer therapy.Cancer Cell201527445046110.1016/j.ccell.2015.03.001 25858804
    [Google Scholar]
  36. JuneC.H. O’ConnorR.S. KawalekarO.U. GhassemiS. MiloneM.C. CAR T cell immunotherapy for human cancer.Science201835963821361136510.1126/science.aar6711 29567707
    [Google Scholar]
  37. ZhangH. Thin-film hydration followed by extrusion method for liposome preparation.Methods Mol. Biol.20171522172210.1007/978‑1‑4939‑6591‑5_2 27837527
    [Google Scholar]
  38. XiangB. CaoD.Y. Preparation of Drug Liposomes by Thin-Film Hydration and Homogenization. Liposome-Based Drug Delivery Systems. Biomaterial Engineering; Lu, W.L. QiX.R. Berlin, HeidelbergSpringer201810.1007/978‑3‑662‑49231‑4_2‑1
    [Google Scholar]
  39. TorchilinV. WeisslgV. Eds.; Liposomes: A Practical Approach.Oxford Academic202310.1093/oso/9780199636556.001.0001
    [Google Scholar]
  40. SzokaF.Jr PapahadjopoulosD. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc. Natl. Acad. Sci. USA19787594194419810.1073/pnas.75.9.4194 279908
    [Google Scholar]
  41. PidgeonC. McNeelyS. SchmidtT. JohnsonJ.E. Multilayered vesicles prepared by reverse-phase evaporation: liposome structure and optimum solute entrapment.Biochemistry1987261172910.1021/bi00375a004 3828297
    [Google Scholar]
  42. ShiN.Q. QiX.R. Preparation of Drug Liposomes by Reverse-Phase Evaporation. Liposome-Based Drug Delivery Systems. Biomaterial Engineering; Lu, W.L. QiX.R. Berlin, HeidelbergSpringer201810.1007/978‑3‑662‑49231‑4_3‑1
    [Google Scholar]
  43. LawrenceM.J. ReesG.D. Microemulsion-based media as novel drug delivery systems.Adv. Drug Deliv. Rev.20004518912110.1016/S0169‑409X(00)00103‑4 11104900
    [Google Scholar]
  44. AntonN. BenoitJ.P. SaulnierP. Design and production of nanoparticles formulated from nano-emulsion templates-a review.J. Control. Release2008128318519910.1016/j.jconrel.2008.02.007
    [Google Scholar]
  45. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑4
    [Google Scholar]
  46. CaboiF. LazzariP. PaniL. MonduzziM. Effect of 1-butanol on the microstructure of lecithin/water/tripalmitin system.Chem. Phys. Lipids2005135214715610.1016/j.chemphyslip.2005.02.010 15921975
    [Google Scholar]
  47. BallR. BajajP. WhiteheadK. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization.Int. J. Nanomedicine20161230531510.2147/IJN.S123062 28115848
    [Google Scholar]
  48. ZhaoP. HouX. YanJ. DuS. XueY. LiW. XiangG. DongY. Long-term storage of lipid-like nanoparticles for mRNA delivery.Bioact. Mater.20205235836310.1016/j.bioactmat.2020.03.001 32206737
    [Google Scholar]
  49. CrommelinD.J.A. AnchordoquyT.J. VolkinD.B. JiskootW. MastrobattistaE. Addressing the Cold Reality of mRNA Vaccine Stability.J. Pharm. Sci.20211103997100110.1016/j.xphs.2020.12.006 33321139
    [Google Scholar]
  50. SyamaK. JakubekZ.J. ChenS. ZaifmanJ. TamY.Y.C. ZouS. Development of lipid nanoparticles and liposomes reference materials (II): cytotoxic profiles.Sci. Rep.20221211807110.1038/s41598‑022‑23013‑2 36302886
    [Google Scholar]
  51. Di ColaE. GrilloI. RistoriS. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes.Pharmaceutics2016821010.3390/pharmaceutics8020010 27043614
    [Google Scholar]
  52. CalandraP. CascheraD. Turco LiveriV. LombardoD. How self-assembly of amphiphilic molecules can generate complexity in the nanoscale.Colloids Surf. A Physicochem. Eng. Asp.201548416418310.1016/j.colsurfa.2015.07.058
    [Google Scholar]
  53. LombardoD. CalandraP. PasquaL. MagazùS. Self-Assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications.Materials (Basel)2020135104810.3390/ma13051048 32110877
    [Google Scholar]
  54. YadavS. SharmaA.K. KumarP. Nanoscale Self-Assembly for Therapeutic Delivery.Front. Bioeng. Biotechnol.2020812710.3389/fbioe.2020.00127 32158749
    [Google Scholar]
  55. MohammedA.R. WestonN. CoombesA.G.A. FitzgeraldM. PerrieY. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability.Int. J. Pharm.20042851-2233410.1016/j.ijpharm.2004.07.010 15488676
    [Google Scholar]
  56. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  57. ApetohL. GhiringhelliF. TesniereA. ObeidM. OrtizC. CriolloA. MignotG. MaiuriM.C. UllrichE. SaulnierP. YangH. AmigorenaS. RyffelB. BarratF.J. SaftigP. LeviF. LidereauR. NoguesC. MiraJ.P. ChompretA. JoulinV. Clavel-ChapelonF. BourhisJ. AndréF. DelalogeS. TurszT. KroemerG. ZitvogelL. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy.Nat. Med.20071391050105910.1038/nm1622 17704786
    [Google Scholar]
  58. AlizadehD. TradM. HankeN.T. LarmonierC.B. JanikashviliN. BonnotteB. KatsanisE. LarmonierN. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer.Cancer Res.201474110411810.1158/0008‑5472.CAN‑13‑1545 24197130
    [Google Scholar]
  59. MaY. ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy.OncoImmunology201326e2456810.4161/onci.24568
    [Google Scholar]
  60. EralpY. WangX. WangJ.P. MaughanM.F. PoloJ.M. LachmanL.B. Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model.Breast Cancer Res.200464R275R28310.1186/bcr787
    [Google Scholar]
  61. PanisC. LemosL. VictorinoV. HerreraA. CamposF. SimãoA. Pinge-FilhoP. CecchiniA. CecchiniR. Immunological effects of Taxol and Adryamicin in breast cancer patients.Cancer immunol. immunoth.201161481488
    [Google Scholar]
  62. ImaiH. DansakoH. UedaY. SatohS. KatoN. Daunorubicin, a topoisomerase II poison, suppresses viral production of hepatitis B virus by inducing cGAS-dependent innate immune response.Biochem. Biophys. Res. Commun.2018504467267810.1016/j.bbrc.2018.08.195 30209005
    [Google Scholar]
  63. SauterK.A.D. WoodL.J. WongJ. IordanovM. MagunB.E. Doxorubicin and daunorubicin induce processing and release of interleukin-1β through activation of the NLRP3 inflammasome.Cancer Biol. Ther.201111121008101610.4161/cbt.11.12.15540 21464611
    [Google Scholar]
  64. CaoC. HanY. RenY. WangY. Mitoxantrone-mediated apoptotic B16-F1 cells induce specific anti-tumor immune response.Cell. Mol. Immunol.20096646947510.1038/cmi.2009.59 20003823
    [Google Scholar]
  65. ShinJ.Y. LeeS.K. KangC.D. ChungJ.S. LeeE.Y. SeoS.Y. LeeS.Y. BaekS.Y. KimB.S. KimJ.B. YoonS. Antitumor effect of intratumoral administration of dendritic cell combination with vincristine chemotherapy in a murine fibrosarcoma model.Histol. Histopathol.200318243544710.14670/HH‑18.435 12647794
    [Google Scholar]
  66. WeiT. LiM. ZhuZ. XiongH. ShenH. ZhangH. DuQ. LiQ. Vincristine upregulates PD-L1 and increases the efficacy of PD-L1 blockade therapy in diffuse large B-cell lymphoma.J. Cancer Res. Clin. Oncol.2021147369170110.1007/s00432‑020‑03446‑w 33389078
    [Google Scholar]
  67. IwaiT. SugimotoM. WakitaD. YorozuK. KurasawaM. YamamotoK. Topoisomerase I inhibitor, irinotecan, depletes regulatory T cells and up-regulates MHC class I and PD-L1 expression, resulting in a supra-additive antitumor effect when combined with anti-PD-L1 antibodies.Oncotarget2018959314113142110.18632/oncotarget.25830 30140379
    [Google Scholar]
  68. WanS. PestkaS. JubinR.G. LyuY.L. TsaiY.C. LiuL.F. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells.PLoS One201273e3254210.1371/journal.pone.0032542 22396773
    [Google Scholar]
  69. HongM. PuauxA.L. HuangC. LoumagneL. TowC. MackayC. KatoM. Prévost-BlondelA. AvrilM.F. NardinA. AbastadoJ.P. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control.Cancer Res.201171226997700910.1158/0008‑5472.CAN‑11‑1466 21948969
    [Google Scholar]
  70. LadoireS. ArnouldL. ApetohL. CoudertB. MartinF. ChauffertB. FumoleauP. GhiringhelliF. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells.Clin. Cancer Res.20081482413242010.1158/1078‑0432.CCR‑07‑4491 18413832
    [Google Scholar]
  71. PengJ. HamanishiJ. MatsumuraN. AbikoK. MuratK. BabaT. YamaguchiK. HorikawaN. HosoeY. MurphyS.K. KonishiI. MandaiM. Chemotherapy Induces Programmed Cell Death-Ligand 1 Overexpression via the Nuclear Factor-κB to Foster an Immunosuppressive Tumor Microenvironment in Ovarian Cancer.Cancer Res.201575235034504510.1158/0008‑5472.CAN‑14‑3098 26573793
    [Google Scholar]
  72. MichelsT. ShurinG.V. NaiditchH. SevkoA. UmanskyV. ShurinM.R. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner.J. Immunotoxicol.20129329230010.3109/1547691X.2011.642418 22283566
    [Google Scholar]
  73. CullisJ. SiolasD. AvanziA. BaruiS. MaitraA. Bar-SagiD. Macropinocytosis of Nab-mnancer.Cancer Immunol. Res.20175318219010.1158/2326‑6066.CIR‑16‑0125 28108630
    [Google Scholar]
  74. ShimizuT. Abu LilaA.S. NishioM. DoiY. AndoH. UkawaM. IshimaY. IshidaT. Modulation of antitumor immunity contributes to the enhanced therapeutic efficacy of liposomal oxaliplatin in mouse model.Cancer Sci.201710891864186910.1111/cas.13305 28643902
    [Google Scholar]
  75. KouL. HuangH. LinX. JiangX. WangY. LuoQ. SunJ. YaoQ. GanapathyV. ChenR. Endocytosis of ATB 0,+ (SLC6A14)-targeted liposomes for drug delivery and its therapeutic application for pancreatic cancer.Expert Opin. Drug Deliv.202017339540510.1080/17425247.2020.1723544 31990587
    [Google Scholar]
  76. LiS. ChiS.Y. ChengX. WuC. XuQ. QuP. GaoW. LiuY. Effects of antimicrobial peptides on the growth performance, antioxidant and intestinal function in juvenile largemouth bass, Micropterus salmoides.Aquacult. Rep.20201610025210.1016/j.aqrep.2019.100252
    [Google Scholar]
  77. WangY. FuM. LiuJ. YangY. YuY. LiJ. PanW. FanL. LiG. LiX. WangX. Inhibition of tumor metastasis by targeted daunorubicin and dioscin codelivery liposomes modified with PFV for the treatment of non-small-cell lung cancer.Int. J. Nanomedicine2019144071409010.2147/IJN.S194304 31239668
    [Google Scholar]
  78. YuS. BiX. YangL. WuS. YuY. JiangB. ZhangA. LanK. DuanS. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic antibreast cancer effects in vivo.J. Biomed. Nanotechnol.20191561135114810.1166/jbn.2019.2751 31072423
    [Google Scholar]
  79. ZhaoY. XuJ. LeV.M. GongQ. LiS. GaoF. NiL. LiuJ. LiangX. EpCAM Aptamer-Functionalized Cationic Liposome-Based Nanoparticles Loaded with miR-139-5p for Targeted Therapy in Colorectal Cancer.Mol. Pharm.201916114696471010.1021/acs.molpharmaceut.9b00867 31589818
    [Google Scholar]
  80. MashreghiM. ZamaniP. MoosavianS.A. JaafariM.R. Anti-epcam aptamer (Syl3c)-functionalized liposome for targeted delivery of doxorubicin: In vitro and in vivo antitumor studies in mice bearing C26 colon carcinoma.Nanoscale Res. Lett.202015110110.1186/s11671‑020‑03334‑9 32383027
    [Google Scholar]
  81. ShaoL. KahramanN. YanG. WangJ. OzpolatB. IttmannM. Targeting the TMPRSS2/ERG fusion mRNA using liposomal nanovectors enhances docetaxel treatment in prostate cancer.Prostate2020801657310.1002/pros.23918 31614005
    [Google Scholar]
  82. YuJ. ShinD. KimJ.S. Repurposing of fluvastatin as an anticancer agent against breast cancer stem cells via encapsulation in a hyaluronan-conjugated liposome.Pharmaceutics20201212113310.3390/pharmaceutics12121133 33255298
    [Google Scholar]
  83. GaiC. LiuC. WuX. YuM. ZhengJ. ZhangW. LvS. LiW. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells.Cell Death Dis.202011975110.1038/s41419‑020‑02939‑3 32929075
    [Google Scholar]
  84. NassirA.M. IbrahimI.A.A. MdS. WarisM. Tanuja; Ain, M.R.; Ahmad, I.; Shahzad, N. Surface functionalized folate targeted oleuropein nano-liposomes for prostate tumor targeting: In vitro and in vivo activity.Life Sci.201922013614610.1016/j.lfs.2019.01.053 30710640
    [Google Scholar]
  85. WangF. ZhangZ. Retracted article: Nanoformulation of apolipoprotein E3-tagged liposomal nanoparticles for the co-delivery of KRAS-siRNA and gemcitabine for pancreatic cancer treatment.Pharm. Res.2020371224710.1007/s11095‑020‑02949‑y 33216236
    [Google Scholar]
  86. CanoM.E. LesurD. BincolettoV. GazzanoE. StellaB. RigantiC. ArpiccoS. KovenskyJ. Synthesis of defined oligohyaluronates-decorated liposomes and interaction with lung cancer cells.Carbohydr. Polym.202024811679810.1016/j.carbpol.2020.116798 32919536
    [Google Scholar]
  87. DréauD. MooreL.J. WuM. RoyL.D. DillionL. PorterT. PuriR. MominN. WittrupK.D. MukherjeeP. Combining the Specific Anti-MUC1 Antibody TAB004 and Lip-MSA-IL-2 Limits Pancreatic Cancer Progression in Immune Competent Murine Models of Pancreatic Ductal Adenocarcinoma.Front. Oncol.2019933010.3389/fonc.2019.00330 31114758
    [Google Scholar]
  88. VermaA. Najahi-MissaouiW. CummingsB. SomanathP. Sterically stabilized liposomes targeting P21 (RAC1) activated kinase 1 and secreted phospholipase A<sub>2</sub> suppress prostate cancer growth and metastasis.Oncol. Lett.2020205110.3892/ol.2020.12040 32934746
    [Google Scholar]
  89. GhoshS. LalaniR. MaitiK. BanerjeeS. BhattH. BobdeY.S. PatelV. BiswasS. BhowmickS. MisraA. Synergistic co-loading of vincristine improved chemotherapeutic potential of pegylated liposomal doxorubicin against triple negative breast cancer and non-small cell lung cancer.Nanomedicine20213110232010.1016/j.nano.2020.102320 33075540
    [Google Scholar]
  90. ShinJ.H. ShinD.H. KimJ.S. Let-7 miRNA and CDK4 siRNA co-encapsulated in Herceptin-conjugated liposome for breast cancer stem cells.Asian J. Pharmaceut. Sci202015447248110.1016/j.ajps.2019.03.001
    [Google Scholar]
  91. MadamsettyV.S. PalK. DuttaS.K. WangE. ThompsonJ.R. BanerjeeR.K. CaulfieldT.R. ModyK. YenY. MukhopadhyayD. HuangH.S. Design and evaluation of pegylated liposomal formulation of a novel multikinase inhibitor for enhanced chemosensitivity and inhibition of metastatic pancreatic ductal adenocarcinoma.Bioconjug. Chem.201930102703271310.1021/acs.bioconjchem.9b00632 31584260
    [Google Scholar]
  92. HuY. ZhouP. LinY. YangD. WangB. Anti-colorectal cancer effect via application of polyethylene glycol modified liposomal apatinib.J. Biomed. Nanotechnol.20191561256126610.1166/jbn.2019.2770 31072433
    [Google Scholar]
  93. YariH. NkepangG. AwasthiV. Surface modification of liposomes by a lipopolymer targeting prostate specific membrane antigen for theranostic delivery in prostate cancer.Materials (Basel)201912575610.3390/ma12050756 30841602
    [Google Scholar]
  94. ZhaoZ. ZhaoY. XieC. ChenC. LinD. WangS. LinD. CuiX. GuoZ. ZhouJ. Dual-active targeting liposomes drug delivery system for bone metastatic breast cancer: Synthesis and biological evaluation.Chem. Phys. Lipids201922310478510.1016/j.chemphyslip.2019.104785 31194968
    [Google Scholar]
  95. KimJ. EygerisY. GuptaM. SahayG. Self-assembled mRNA vaccines.Adv. Drug Deliv. Rev.20211708311210.1016/j.addr.2020.12.014 33400957
    [Google Scholar]
  96. Najahi-MissaouiW. ArnoldR.D. CummingsB.S. Safe nanoparticles: Are we there yet?Int. J. Mol. Sci.202022138510.3390/ijms22010385 33396561
    [Google Scholar]
  97. McKinlayC.J. BennerN.L. HaabethO.A. WaymouthR.M. WenderP.A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters.Proc. Natl. Acad. Sci. USA201811526E5859E586610.1073/pnas.1805358115 29891683
    [Google Scholar]
  98. BillingsleyM.M. SinghN. RavikumarP. ZhangR. JuneC.H. MitchellM.J. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering.Nano Lett.20202031578158910.1021/acs.nanolett.9b04246 31951421
    [Google Scholar]
  99. ChandrasekaranS. ChanM.F. LiJ. KingM.R. Super natural killer cells that target metastases in the tumor draining lymph nodes.Biomaterials201677667610.1016/j.biomaterials.2015.11.001 26584347
    [Google Scholar]
  100. SieglerE.L. KimY.J. ChenX. SiriwonN. MacJ. RohrsJ.A. BrysonP.D. WangP. Combination cancer therapy using chimeric antigen receptor-engineered natural killer cells as drug carriers.Mol. Ther.201725122607261910.1016/j.ymthe.2017.08.010
    [Google Scholar]
  101. TaubA.F. Photodynamic therapy in dermatology: history and horizons. J. drug. dermatol.20043S1S8S25
    [Google Scholar]
  102. BabilasP. KarrerS. SidoroffA. LandthalerM. SzeimiesR.M. Photodynamic therapy in dermatology – an update.Photodermatol. Photoimmunol. Photomed.200521314214910.1111/j.1600‑0781.2005.00147.x 15888131
    [Google Scholar]
  103. CengelK.A. SimoneC.B.II GlatsteinE. PDT.What’s Past Is Prologue. Cancer Res.20167692497249910.1158/0008‑5472.CAN‑16‑0927 27197260
    [Google Scholar]
  104. RailkarR. AgarwalP.K. Photodynamic Therapy in the Treatment of Bladder Cancer: Past Challenges and Current Innovations.Eur. Urol. Focus20184450951110.1016/j.euf.2018.08.005 30145112
    [Google Scholar]
  105. TriesscheijnM. BaasP. SchellensJ.H.M. StewartF.A. Photodynamic therapy in oncology.Oncologist20061191034104410.1634/theoncologist.11‑9‑1034 17030646
    [Google Scholar]
  106. ZhaoJ. DuanL. WangA. FeiJ. LiJ. Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020121e158310.1002/wnan.1583 31566931
    [Google Scholar]
  107. KammerL.M. BadirS.O. HuR.M. MolanderG.A. Photoactive electron donor–acceptor complex platform for Ni-mediated C(sp3)–C(sp2) bond formation.Chem. Sci. (Camb.)202112155450545710.1039/D1SC00943E 34168786
    [Google Scholar]
  108. KargesJ. BasuU. BlacqueO. ChaoH. GasserG. Polymeric encapsulation of novel homoleptic bis(dipyrrinato) zinc(II) complexes with long lifetimes for applications as photodynamic therapy photosensitisers.Angew. Chem. Int. Ed.20195840143341434010.1002/anie.201907856 31386250
    [Google Scholar]
  109. LiuJ. HuF. WuM. TianL. GongF. ZhongX. ChenM. LiuZ. LiuB. Bioorthogonal Coordination Polymer Nanoparticles with Aggregation-Induced Emission for Deep Tumor-Penetrating Radio- and Radiodynamic Therapy.Adv. Mater.2021339e200788810.1002/adma.202007888
    [Google Scholar]
  110. YuanB. WuH. WangH. TangB. XuJ.F. ZhangX. A Self‐Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety.Angew. Chem. Int. Ed.202160270671010.1002/anie.202012477 32978887
    [Google Scholar]
  111. CheungE.C. VousdenK.H. The role of ROS in tumour development and progression.Nat. Rev. Cancer202222528029710.1038/s41568‑021‑00435‑0 35102280
    [Google Scholar]
  112. ZhangS. LiZ. WangQ. LiuQ. YuanW. FengW. LiF. An NIR-II photothermally triggered “oxygen bomb” for hypoxic tumor programmed cascade therapy.Adv. Mater.20223429e220197810.1002/adma.202201978
    [Google Scholar]
  113. DonohoeC. SengeM.O. ArnautL.G. Gomes-da-SilvaL.C. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity.Biochim. Biophys. Acta Rev. Cancer20191872218830810.1016/j.bbcan.2019.07.003 31401103
    [Google Scholar]
  114. EstaquierJ. ValletteF. VayssiereJ.L. MignotteB. The mitochondrial pathways of apoptosis.Adv. Exp. Med. Biol.201294215718310.1007/978‑94‑007‑2869‑1_7 22399422
    [Google Scholar]
  115. XueL. ChiuS. OleinickN.L. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4.Oncogene200120263420342710.1038/sj.onc.1204441 11423992
    [Google Scholar]
  116. MenilliL. MilaniC. ReddiE. MoretF. Overview of nanoparticle-based approaches for the combination of photodynamic therapy (PDT) and chemotherapy at the preclinical stage.Cancers (Basel)20221418446210.3390/cancers14184462 36139623
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812316387240822075859
Loading
/content/journals/nanoasi/10.2174/0122106812316387240822075859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test