Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

The utilization of chemotherapy remains an established therapeutic strategy in the ongoing fight against cancer. Nevertheless, it has been impeded by the occurrence of several fatal adverse reactions caused by non-specific toxicity often associated with chemotherapy. Nanotechnology is an emerging field of research that is experiencing rapid growth and is widely recognized as a highly promising approach for advanced cancer therapy. Biosynthesized green nanomaterials are emerging as promising tools for cancer treatment and diagnosis. Metal nanoparticles have been developed for use in several applications, including magnetically sensitive medication delivery, photothermal treatment, and photoimaging. Nanomaterials containing metals, such as iron, cobalt, and silver, which are generated from various bio-sources, have been described. The boundless capabilities of nanoparticles have already had a profound impact on human existence. Nevertheless, the potential adverse effects of nanoparticles on human health have consistently instilled apprehension. A thorough investigation of the toxicity and intricate nature of nanomaterials has facilitated the emergence of nanotoxicology, a field that examines the fundamental origins of these problems. The introduction of green chemistry principles has aimed to provide safer techniques for the production and management of nanomaterials, resulting in the emergence of green nanotechnology. This review article highlights the potential uses of green nanotechnology for the detection and management of tumors, including the challenges they face in reaching clinical trials.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812323520240809090957
2024-09-03
2024-11-26
Loading full text...

Full text loading...

References

  1. What is cancer?2021Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer(accessed on 6-8-2024)
  2. McCormackV.A. BoffettaP. Today’s lifestyles, tomorrow’s cancers: trends in lifestyle risk factors for cancer in low- and middle-income countries.Ann. Oncol.201122112349235710.1093/annonc/mdq76321378201
    [Google Scholar]
  3. Global Cancer Therapy Market to Surpass US$ 353.5 Billion by 2030, Says Coherent Market Insights (CMI)2023Available from:https://www.globenewswire.com/en/news-release/2023/01/24/2594388/0/en/Global-Cancer-Therapy-Market-to-Surpass-US-353-5-Billion-by-2030-Says-Coherent-Market-Insights-CMI.html(accessed on 7-8-2024)
  4. ChoiJ.W. HuaT.N.M. Impact of lifestyle behaviors on cancer risk and prevention.J. Lifestyle Med.20211111710.15280/jlm.2021.11.1.133763336
    [Google Scholar]
  5. Global cancer factsand figures.2022Available from:https://www.cancer.org/research/cancer-facts-statistics/global.html#:~:text=Cancer%20causes%20about%201%20in,Human%20Development%20Index%20(HDI)(accessed on 7-8-2024)
  6. Global cancer burden growing, amidst mounting need for services.2024Available from:https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services(accessed on 7-8-2024)
  7. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.2173135736631
    [Google Scholar]
  8. O’ReillyM. MellotteG. RyanB. O’ConnorA. Gastrointestinal side effects of cancer treatments.Ther. Adv. Chronic Dis.202011204062232097035433294145
    [Google Scholar]
  9. McQuadeR.M. StojanovskaV. AbaloR. BornsteinJ.C. NurgaliK. Chemotherapy-induced constipation and diarrhea: Pathophysiology, current and emerging treatments.Front. Pharmacol.2016741410.3389/fphar.2016.0041427857691
    [Google Scholar]
  10. van den BoogaardW.M.C. KomninosD.S.J. VermeijW.P. Chemotherapy side-effects: Not all DNA damage is equal.Cancers (Basel)202214362710.3390/cancers1403062735158895
    [Google Scholar]
  11. HermanowiczJ.M. KwiatkowskaI. PawlakD. Important players in carcinogenesis as potential targets in cancer therapy: an update.Oncotarget202011323078310110.18632/oncotarget.2768932850012
    [Google Scholar]
  12. AlrushaidN. KhanF.A. Al-SuhaimiE.A. ElaissariA. Nanotechnology in cancer diagnosis and treatment.Pharmaceutics2023153102510.3390/pharmaceutics1503102536986885
    [Google Scholar]
  13. DessaleM. MengistuG. MengistH.M. Nanotechnology: A promising approach for cancer diagnosis, therapeutics and theragnosis.Int. J. Nanomedicine2022173735374910.2147/IJN.S37807436051353
    [Google Scholar]
  14. YuZ. GaoL. ChenK. ZhangW. ZhangQ. LiQ. HuK. Nanoparticles: A new approach to upgrade cancer diagnosis and treatment.Nanoscale Res. Lett.20211618810.1186/s11671‑021‑03489‑z34014432
    [Google Scholar]
  15. YaqoobA.A. AhmadH. ParveenT. AhmadA. OvesM. IsmailI.M.I. QariH.A. UmarK. Mohamad IbrahimM.N. Recent advances in metal decorated nanomaterials and their various biological applications: A review.Front Chem.2020834110.3389/fchem.2020.0034132509720
    [Google Scholar]
  16. PeanaM. GeorgakilasA.G. Editorial: Metal nanoparticles in cancer: detection, diagnosis, therapy and their pharmacological assessment.Front. Oncol.202413134419710.3389/fonc.2023.134419738239653
    [Google Scholar]
  17. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  18. ZhaoR. XiangJ. WangB. ChenL. TanS. Recent advances in the development of noble metal NPs for cancer therapy.Bioinorganic Chemistry and Applications.Wiley Online Library202210.1155/2022/2444516
    [Google Scholar]
  19. KarunakaranG. SudhaK.G. AliS. ChoE.B. Biosynthesis of nanoparticles from various biological sources and its biomedical applications.Molecules20232811452710.3390/molecules2811452737299004
    [Google Scholar]
  20. Boroumand MoghaddamA. NamvarF. MoniriM. Md TahirP. AziziS. MohamadR. Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications.Molecules2015209165401656510.3390/molecules20091654026378513
    [Google Scholar]
  21. GhoshS. AhmadR. ZeyaullahM. KhareS.K. Microbial nano-factories: Synthesis and biomedical applications.Front Chem.2021962683410.3389/fchem.2021.62683433937188
    [Google Scholar]
  22. VaishS. PathakB. Mangrove synthesized bio-nanomaterial and its applications: A review.Environ. Nanotechnol. Monit. Manag.20232010086610.1016/j.enmm.2023.100866
    [Google Scholar]
  23. SarkerN.K. KaparajuP. A critical review on the status and progress of microalgae cultivation in outdoor photobioreactors conducted over 35 years (1986–2021).Energies2023167310510.3390/en16073105
    [Google Scholar]
  24. SrivastavaP. YadavU. Mode of the mechanism of biogenic nanomaterials involved in the adsorption of pollutants.Nanobiotechnology for Bioremediation.Elsevier202327329610.1016/B978‑0‑323‑91767‑4.00009‑4
    [Google Scholar]
  25. PriyaN. Naveen KaurK. SidhuA.K. Green synthesis: An eco-friendly route for the synthesis of iron oxide nanoparticles.Front. Nanotechnol.2021365506210.3389/fnano.2021.655062
    [Google Scholar]
  26. SlavinY.N. AsnisJ. HäfeliU.O. BachH. Metal nanoparticles: understanding the mechanisms behind antibacterial activity.J. Nanobiotechnology20171516510.1186/s12951‑017‑0308‑z28974225
    [Google Scholar]
  27. SinghH. DesimoneM.F. PandyaS. JasaniS. GeorgeN. AdnanM. AldarhamiA. BazaidA.S. AlderhamiS.A. Revisiting the green synthesis of nanoparticles: Uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications.Int. J. Nanomedicine2023184727475010.2147/IJN.S41936937621852
    [Google Scholar]
  28. LahiriD. NagM. SheikhH.I. SarkarT. EdinurH.A. PatiS. RayR.R. Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade.Front. Microbiol.20211263658810.3389/fmicb.2021.63658833717030
    [Google Scholar]
  29. MarslinG. SiramK. MaqboolQ. SelvakesavanR.K. KruszkaD. KachlickiP. FranklinG. Secondary metabolites in the green synthesis of metallic nanoparticles.Materials (Basel)201811694010.3390/ma1106094029865278
    [Google Scholar]
  30. JaisonJ.P. BalasubramanianB. GangwarJ. JamesN. PappuswamyM. AnandA.V. Al-DhabiN.A. Valan ArasuM. LiuW.C. SebastianJ.K. Green synthesis of bioinspired nanoparticles mediated from plant extracts of Asteraceae family for potential biological applications.Antibiotics (Basel)202312354310.3390/antibiotics1203054336978410
    [Google Scholar]
  31. SidhuA.K. VermaN. KaushalP. Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential.Frontiers in Nanotechnology2022380162010.3389/fnano.2021.801620
    [Google Scholar]
  32. GherasimO. PuiuR.A. BîrcăA.C. BurdușelA.C. GrumezescuA.M. An updated review on silver nanoparticles in biomedicine.Nanomaterials (Basel)20201011231810.3390/nano1011231833238486
    [Google Scholar]
  33. WypijM. JędrzejewskiT. Trzcińska-WencelJ. OstrowskiM. RaiM. GolińskaP. Green synthesized silver nanoparticles: Antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins.Front. Microbiol.20211263250510.3389/fmicb.2021.63250533967977
    [Google Scholar]
  34. AlharbiN.S. AlsubhiN.S. Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica.J.Radiat. Res. Appl. Sci.202215333534510.1016/j.jrras.2022.08.009
    [Google Scholar]
  35. LeeB. LeeM.J. YunS.J. KimK. ChoiI.H. ParkS. Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae. Int. J. Nanomedicine2019144801481610.2147/IJN.S20573631308659
    [Google Scholar]
  36. MajeedW. BourdoS. PetiboneD.M. SainiV. VangK.B. NimaZ.A. AlghazaliK.M. DarriguesE. GhoshA. WatanabeF. CascianoD. AliS.F. BirisA.S. The role of surface chemistry in the cytotoxicity profile of graphene.J. Appl. Toxicol.201737446247010.1002/jat.337927593524
    [Google Scholar]
  37. MngadiS.M. MokhosiS.R. SinghM. Surface-coating of Mg0.5Co0.5Fe2O4 nanoferrites and their in vitro cytotoxicity.Inorg. Chem. Commun.201910810752510.1016/j.inoche.2019.107525
    [Google Scholar]
  38. OdauduO.R. AkinsikuA.A. Toxicity and cytotoxicity effects of selected nanoparticles: A review.IOP Conf. Ser. Earth Environ. Sci.20221054101200710.1088/1755‑1315/1054/1/012007
    [Google Scholar]
  39. NogaM. MilanJ. FrydrychA. JurowskiK. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)—critical review: State of the art.Int. J. Mol. Sci.2023246513310.3390/ijms2406513336982206
    [Google Scholar]
  40. WāngY. HanY. XuD.X. Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models.Environ. Sci. Ecotechnol.20241910032510.1016/j.ese.2023.10032538046179
    [Google Scholar]
  41. AkterM. SikderM.T. RahmanM.M. UllahA.K.M.A. HossainK.F.B. BanikS. HosokawaT. SaitoT. KurasakiM. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives.J. Adv. Res.2018911610.1016/j.jare.2017.10.00830046482
    [Google Scholar]
  42. AroraS. JainJ. RajwadeJ.M. PaknikarK.M. Cellular responses induced by silver nanoparticles: In vitro studies.Toxicol. Lett.200817929310010.1016/j.toxlet.2008.04.00918508209
    [Google Scholar]
  43. CarlsonC. HussainS.M. SchrandA.M. Braydich-StolleL.K. HessK.L. JonesR.L. SchlagerJ.J. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.J. Phys. Chem. B200811243136081361910.1021/jp712087m18831567
    [Google Scholar]
  44. HeL. HeT. FarrarS. JiL. LiuT. MaX. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species.Cell. Physiol. Biochem.201744253255310.1159/00048508929145191
    [Google Scholar]
  45. ZandiP. SchnugE. Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective.Biology (Basel)202211215510.3390/biology1102015535205022
    [Google Scholar]
  46. JenaA.B. SamalR.R. BholN.K. DuttaroyA.K. Cellular Red-Ox system in health and disease: The latest update.Biomed. Pharmacother.202316211460610.1016/j.biopha.2023.11460636989716
    [Google Scholar]
  47. SchmidtT. SolimaniF. PollmannR. SteinR. SchmidtA. StulbergI. KühnK. EmingR. EubelV. KindP. ArweilerN. SitaruC. HertlM. TH1/TH17 cell recognition of desmoglein 3 and bullous pemphigoid antigen 180 in patients with lichen planus.J. Allergy Clin. Immunol.20181422669672.e710.1016/j.jaci.2018.02.04429626572
    [Google Scholar]
  48. VonaR. PallottaL. CappellettiM. SeveriC. MatarreseP. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders.Antioxidants202110220110.3390/antiox1002020133573222
    [Google Scholar]
  49. FuX. WangX. ZhouS. ZhangY. IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy.Int. J. Nanomedicine2017123751376610.2147/IJN.S11396328553112
    [Google Scholar]
  50. ZhangJ. ZhangT. GaoJ. Biocompatible iron oxide nanoparticles for targeted cancer gene therapy: A review.Nanomaterials (Basel)20221219332310.3390/nano1219332336234452
    [Google Scholar]
  51. KucharczykK. KaczmarekK. JozefczakA. SlachcinskiM. MackiewiczA. Dams-KozlowskaH. Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres.Mater. Sci. Eng. C202112011165410.1016/j.msec.2020.11165433545822
    [Google Scholar]
  52. YanX. LiS. YanH. YuC. LiuF. IONPs-based medical imaging in cancer care: Moving beyond traditional diagnosis and therapeutic assessment.Int. J. Nanomedicine2023181741176310.2147/IJN.S39904737034271
    [Google Scholar]
  53. QiZ. HuangX. JingJ. FengW. XuM. YanL. GaoM. LiuS. YuX-F. Amino-modified IONPs potentiates ferroptotic cell death due to the release of Fe ion in the lysosome.J. Environ. Sci. (China)202515011310.1016/j.jes.2024.01.034
    [Google Scholar]
  54. JaganjacM. Borovic SunjicS. ZarkovicN. Utilizing iron for targeted lipid peroxidation as anticancer option of integrative biomedicine: A short review of nanosystems containing iron.Antioxidants20209319110.3390/antiox903019132106528
    [Google Scholar]
  55. ChenY. HouS. Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles.Cell Death Discov.20239119510.1038/s41420‑023‑01490‑237380637
    [Google Scholar]
  56. ChenK. ZhangS. JiaoJ. ZhaoS. Ferroptosis and its potential role in lung cancer: Updated evidence from pathogenesis to therapy.J. Inflamm. Res.2021147079709010.2147/JIR.S34795534992407
    [Google Scholar]
  57. AliA. ZafarH. ZiaM. ul HaqI. PhullA.R. AliJ.S. HussainA. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.Nanotechnol. Sci. Appl.20169496710.2147/NSA.S9998627578966
    [Google Scholar]
  58. WuH. YinJ.J. WamerW.G. ZengM. LoY.M. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.Yao Wu Shi Pin Fen Xi2014221869424673906
    [Google Scholar]
  59. HauserA.K. MitovM.I. DaleyE.F. McGarryR.C. AndersonK.W. HiltJ.Z. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.Biomaterials201610512713510.1016/j.biomaterials.2016.07.03227521615
    [Google Scholar]
  60. YuS. ZhangH. ZhangS. ZhongM. FanH. Ferrite nanoparticles-based reactive oxygen species-mediated cancer therapy.Front Chem.2021965105310.3389/fchem.2021.65105333987168
    [Google Scholar]
  61. FarzinA. EtesamiS.A. QuintJ. MemicA. TamayolA. Magnetic nanoparticles in cancer therapy and diagnosis.Adv. Healthc. Mater.202099190105810.1002/adhm.20190105832196144
    [Google Scholar]
  62. NarwadeM. ShaikhA. GajbhiyeK.R. KesharwaniP. GajbhiyeV. Advanced cancer targeting using aptamer functionalized nanocarriers for site-specific cargo delivery.Biomater. Res.20232714210.1186/s40824‑023‑00365‑y37149607
    [Google Scholar]
  63. ZhouG. WilsonG. HebbardL. DuanW. LiddleC. GeorgeJ. QiaoL. Aptamers: A promising chemical antibody for cancer therapy.Oncotarget2016712134461346310.18632/oncotarget.717826863567
    [Google Scholar]
  64. PrakashJ. RajamanickamK. Aptamers and their significant role in cancer therapy and diagnosis.Biomedicines20153324826910.3390/biomedicines303024828536411
    [Google Scholar]
  65. MortensenM.S. RuizJ. WattsJ.L. Polyunsaturated fatty acids drive lipid peroxidation during ferroptosis.Cells202312580410.3390/cells1205080436899940
    [Google Scholar]
  66. JiangX. StockwellB.R. ConradM. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  67. ZhaoL. ZhouX. XieF. ZhangL. YanH. HuangJ. ZhangC. ZhouF. ChenJ. ZhangL. Ferroptosis in cancer and cancer immunotherapy.Cancer Commun. (Lond.)20224228811610.1002/cac2.1225035133083
    [Google Scholar]
  68. AbassA.A. AbdulridhaW.M. AlaarageW.K. AbdulrudhaN.H. HaiderJ. Evaluating the antibacterial effect of cobalt nanoparticles against multi-drug resistant pathogens.J. Med. Life202114682383310.25122/jml‑2021‑027035126754
    [Google Scholar]
  69. WarisA. DinM. AliA. AfridiS. BasetA. KhanA.U. AliM. Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review.Open Life Sci.2021161143010.1515/biol‑2021‑000333817294
    [Google Scholar]
  70. RauwelE. Al-AragS. SalehiH. AmorimC.O. CuisinierF. GuhaM. RosarioM.S. RauwelP. Assessing cobalt metal nanoparticles uptake by cancer cells using live raman spectroscopy.Int. J. Nanomedicine2020157051706210.2147/IJN.S25806033061367
    [Google Scholar]
  71. AnsariS.M. BhorR.D. PaiK.R. SenD. MazumderS. GhoshK. KolekarY.D. RamanaC.V. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility.Appl. Surf. Sci.201741417118710.1016/j.apsusc.2017.03.002
    [Google Scholar]
  72. ThamilarasanV. SengottuvelanN. SudhaA. SrinivasanP. ChakkaravarthiG. Cobalt(III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions.J. Photochem. Photobiol. B201616255856910.1016/j.jphotobiol.2016.06.02427475779
    [Google Scholar]
  73. ChattopadhyayS. DashS.K. TripathyS. PramanikP. RoyS. Phosphonomethyl iminodiacetic acid-conjugated cobalt oxide nanoparticles liberate CO++ ion-induced stress associated activation of TNF-α/p38 MAPK/caspase 8-caspase 3 signaling in human leukemia cells.J. Biol. Inorg. Chem.201520112314110.1007/s00775‑014‑1221‑725534662
    [Google Scholar]
  74. BastideK. UgolinN. LevaloisC. BernaudinJ.F. ChevillardS. Are adenosquamous lung carcinomas a simple mix of adenocarcinomas and squamous cell carcinomas, or more complex at the molecular level?Lung Cancer20106811910.1016/j.lungcan.2009.11.00120004040
    [Google Scholar]
  75. LiY. ZhangY. LiF. FengJ. LiM. ChenL. DongY. Ultrasensitive electrochemical immunosensor for quantitative detection of SCCA using Co3O4@CeO2-Au@Pt nanocomposite as enzyme-mimetic labels.Biosens. Bioelectron.201792333910.1016/j.bios.2017.01.06528182976
    [Google Scholar]
  76. Hyperthermia and thermal ablation.2023Available from:https://magforce.de/physicians/(accessed on 7-8-2024)
  77. NBTXR3 With or Without Cetuximab in LA-HNSCC.patent NCT04892173, 2023.
  78. TamarkinL. MyerL. HaynesR. PaciottiG. CYT-6091 (Aurimune): a colloidal gold-based tumor-targeted nanomedicine.Nanomedicine20062427327410.1016/j.nano.2006.10.020
    [Google Scholar]
  79. Magnetic Nanoparticle Thermoablation-Retention and Maintenance in the Prostate.Patent NCT02033447, 2017.
  80. YuW. CaoX. XuG. SongY. Potential role for carbon nanoparticles to guide central neck dissection in patients with papillary thyroid cancer.Surgery20161603755761
    [Google Scholar]
  81. GholizadehO. YasaminehS. AminiP. AfkhamiH. DelarampourA. AkbarzadehS. Karimi MatloubR. ZahediM. HosseiniP. HajiesmaeiliM. PoortahmasebiV. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview.Virol. J.202219120610.1186/s12985‑022‑01935‑736463213
    [Google Scholar]
  82. KučukN. PrimožičM. KnezŽ. LeitgebM. Sustainable biodegradable biopolymer-based nanoparticles for healthcare applications.Int. J. Mol. Sci.2023244318810.3390/ijms2404318836834596
    [Google Scholar]
  83. XuH. LiS. LiuY.S. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases.Signal Transduct. Target. Ther.20227123110.1038/s41392‑022‑01082‑z35817770
    [Google Scholar]
  84. DashS. DasT. PatelP. PandaP.K. SuarM. VermaS.K. Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases.J. Nanobiotechnol.202220139310.1186/s12951‑022‑01595‑336045375
    [Google Scholar]
  85. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑034059100
    [Google Scholar]
  86. RoshaniM. Rezaian-IsfahniA. LotfalizadehM.H. KhassafiN. AbadiM.H.J.N. NejatiM. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review.Cancer Cell Int.202323128010.1186/s12935‑023‑03115‑137981671
    [Google Scholar]
  87. XuanZ. LiM. RongP. WangW. LiY. LiuD. Plasmonic ELISA based on the controlled growth of silver nanoparticles.Nanoscale2016839172711727710.1039/C6NR06079J27714165
    [Google Scholar]
  88. GaoS. ChenD. LiQ. YeJ. JiangH. AmatoreC. WangX. Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters.Sci. Rep.201441438410.1038/srep0438424632892
    [Google Scholar]
  89. BaranwalJ. BarseB. Di PetrilloA. GattoG. PiliaL. KumarA. Nanoparticles in Cancer Diagnosis and Treatment.Materials (Basel)20231615535410.3390/ma1615535437570057
    [Google Scholar]
  90. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  91. MaterónE.M. MiyazakiC.M. CarrO. JoshiN. PiccianiP.H.S. DalmaschioC.J. DavisF. ShimizuF.M. Magnetic nanoparticles in biomedical applications: A review.Applied Surface Science Advances2021610016310.1016/j.apsadv.2021.100163
    [Google Scholar]
  92. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  93. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c0784037125102
    [Google Scholar]
  94. Najahi-MissaouiW. ArnoldR.D. CummingsB.S. Safe Nanoparticles: Are We There Yet?Int. J. Mol. Sci.202022138510.3390/ijms2201038533396561
    [Google Scholar]
  95. MishraS. SundaramB. Fate, transport, and toxicity of nanoparticles: An emerging pollutant on biotic factors.Process Saf. Environ. Prot.202317459560710.1016/j.psep.2023.04.037
    [Google Scholar]
  96. AbbasiR. ShinehG. MobarakiM. DoughtyS. TayebiL. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review.J. Nanopart. Res.20232534310.1007/s11051‑023‑05690‑w36875184
    [Google Scholar]
  97. MankeA. WangL. RojanasakulY. Mechanisms of nanoparticle-induced oxidative stress and toxicity.BioMed Res. Int.2013201311510.1155/2013/94291624027766
    [Google Scholar]
  98. SuL.J. ZhangJ.H. GomezH. MuruganR. HongX. XuD. JiangF. PengZ.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.2019201911310.1155/2019/508084331737171
    [Google Scholar]
  99. ModanlooM. ShokrzadehM. Analyzing mitochondrial dysfunction, oxidative stress, and apoptosis: Potential role of L-carnitine.Iran. J. Kidney Dis.2019132748630988244
    [Google Scholar]
  100. ChaudharyP. JanmedaP. DoceaA.O. YeskaliyevaB. Abdull RazisA.F. ModuB. CalinaD. Sharifi-RadJ. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases.Front Chem.202311115819810.3389/fchem.2023.115819837234200
    [Google Scholar]
  101. LevardC. HotzeE.M. ColmanB.P. DaleA.L. TruongL. YangX.Y. BoneA.J. BrownG.E.Jr TanguayR.L. Di GiulioR.T. BernhardtE.S. MeyerJ.N. WiesnerM.R. LowryG.V. Sulfidation of silver nanoparticles: natural antidote to their toxicity.Environ. Sci. Technol.20134723134401344810.1021/es403527n24180218
    [Google Scholar]
  102. OsmanA.I. ZhangY. FarghaliM. RashwanA.K. EltaweilA.S. Abd El-MonaemE.M. MohamedI.M.A. BadrM.M. IharaI. RooneyD.W. YapP-S. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review.Environ. Chem. Lett.202422284188710.1007/s10311‑023‑01682‑3
    [Google Scholar]
  103. DługoszO. SzostakK. StarońA. Pulit-ProciakJ. BanachM. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine.Materials (Basel)202013227910.3390/ma1302027931936311
    [Google Scholar]
  104. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems.Emergent mater.20225615931615
    [Google Scholar]
  105. MajithiaM. BarrettoD.A. Biocompatible green-synthesized nanomaterials for therapeutic applications.Advances in Nano and Biochemistry.Elsevier202328536710.1016/B978‑0‑323‑95253‑8.00012‑7
    [Google Scholar]
  106. IranmaneshS. Shahidi BonjarG.H. BaghizadehA. Study of the biosynthesis of gold nanoparticles by using several saprophytic fungi.SN Applied Sciences2020211185110.1007/s42452‑020‑03704‑z
    [Google Scholar]
  107. AdebayoE.A. AzeezM.A. AlaoM.B. OkeA.M. AinaD.A. Fungi as veritable tool in current advances in nanobiotechnology.Heliyon2021711e0848010.1016/j.heliyon.2021.e0848034901509
    [Google Scholar]
  108. RaiM. BondeS. GolinskaP. Trzcińska-WencelJ. GadeA. Abd-ElsalamK.A. ShendeS. GaikwadS. IngleA.P. Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications.J. Fungi (Basel)20217213910.3390/jof702013933672011
    [Google Scholar]
  109. Villanueva-FloresF. Castro-LugoA. RamírezO.T. PalomaresL.A. Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices.Nanotechnology2020311313200210.1088/1361‑6528/ab5bc831770746
    [Google Scholar]
  110. FranciaV. YangK. DevilleS. Reker-SmitC. NelissenI. SalvatiA. Corona composition can affect the mechanisms cells use to internalize nanoparticles.ACS Nano20191310111071112110.1021/acsnano.9b0382431525954
    [Google Scholar]
  111. BergerS. BergerM. BantzC. MaskosM. WagnerE. Performance of nanoparticles for biomedical applications: The in vitro / in vivo discrepancy.Biophys. Rev.20223101130310.1063/5.007349438505225
    [Google Scholar]
  112. WangL. HartelN. RenK. GrahamN.A. MalmstadtN. Effect of protein corona on nanoparticle–plasma membrane and nanoparticle–biomimetic membrane interactions.Environ. Sci. Nano20207396397410.1039/D0EN00035C
    [Google Scholar]
  113. HoshyarN. GrayS. HanH. BaoG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.Nanomedicine (Lond.)201611667369210.2217/nnm.16.527003448
    [Google Scholar]
  114. BosettiR. JonesS.L. Cost-effectiveness of nanomedicine: estimating the real size of nano-costs.Nanomedicine (Lond.)201914111367137010.2217/nnm‑2019‑013031169449
    [Google Scholar]
  115. PatelJ. PatelS. Major obstacles in technology transfer of nanomedicine from conception to commercialization.International J. Pharm. Res. Appl.202052333342
    [Google Scholar]
  116. PulingamT. ForoozandehP. ChuahJ.A. SudeshK. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles.Nanomaterials (Basel)202212357610.3390/nano1203057635159921
    [Google Scholar]
  117. AriasL.S. PessanJ.P. VieiraA.P.M. LimaT.M.T. DelbemA.C.B. MonteiroD.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity.Antibiotics (Basel)2018724610.3390/antibiotics702004629890753
    [Google Scholar]
  118. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.333026348965
    [Google Scholar]
  119. SchwartzS.Jr Unmet needs in developing nanoparticles for precision medicine.Nanomedicine (Lond.)201712427127410.2217/nnm‑2016‑039028093937
    [Google Scholar]
  120. von RoemelingC. JiangW. ChanC.K. WeissmanI.L. KimB.Y.S. Breaking down the barriers to precision cancer nanomedicine.Trends Biotechnol.201735215917110.1016/j.tibtech.2016.07.00627492049
    [Google Scholar]
  121. NizzeroS. ZiemysA. FerrariM. Transport barriers and oncophysics in cancer treatment.Trends Cancer20184427728010.1016/j.trecan.2018.02.00829606312
    [Google Scholar]
  122. MitragotriS. LammersT. BaeY.H. SchwendemanS. De SmedtS. LerouxJ.C. PeerD. KwonI.C. HarashimaH. KikuchiA. OhY.K. TorchilinV. HenninkW. HanesJ. ParkK. Drug delivery research for the future: Expanding the nano horizons and beyond.J. Control. Release201724618318410.1016/j.jconrel.2017.01.01128110715
    [Google Scholar]
  123. WechslerM.E. Vela RamirezJ.E. PeppasN.A. 110th Anniversary: Nanoparticle mediated drug delivery for the treatment of Alzheimer’s disease: Crossing the blood-brain barrier.Ind. Eng. Chem. Res.20195833150791508710.1021/acs.iecr.9b0219632982041
    [Google Scholar]
  124. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.0079030065653
    [Google Scholar]
  125. NehoffH. ParayathN.N. DomanovitchL. TaurinS. GreishK. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect.Int. J. Nanomedicine201492539255524904213
    [Google Scholar]
  126. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812323520240809090957
Loading
/content/journals/nanoasi/10.2174/0122106812323520240809090957
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test