Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

This review article aims to explore recent advancements in the treatment of Cutaneous Lupus Erythematosus (CLE) by focusing on the innovative use of Nano Lipid Carrier formulations. It assesses the efficacy, safety, and potential therapeutic benefits of these novel formulations in managing CLE symptoms. A comprehensive search was conducted across various scientific databases, including PubMed, MEDLINE, and Google Scholar, to identify relevant studies, clinical trials, and reviews pertaining to CLE treatment, particularly those involving various NLC formulations. Studies were selected based on their relevance to CLE treatment, with a specific emphasis on recent innovations. Data extraction involved gathering information on study design, intervention methods, outcomes, and conclusions related to the efficacy and safety of novel formulations in managing CLE symptoms. The synthesized data reveal promising outcomes associated with the use of NLC in treating CLE. These formulations offer enhanced drug delivery, improved skin penetration, and targeted therapy, resulting in better symptom management and reduced adverse effects compared to conventional treatments. Various studies demonstrate the efficacy of NLC embedded in reducing inflammation, controlling disease activity, and improving the quality of life for CLE patients. The latest advancements in CLE treatment, using novel methods, present a significant revolution in managing this chronic autoimmune skin condition. The reviewed literature highlights the potential of Nano lipid carrier embedded hydrogel as a promising therapeutic approach for CLE, offering improved efficacy, safety, and patient compliance. Further research and clinical trials are warranted to validate these findings and establish NLC as a standard treatment modality for CLE.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812313487240806111714
2024-08-08
2024-11-26
Loading full text...

Full text loading...

References

  1. MetelitsaA. DelormeI. O’SullivanD. ZeinabR. LegaultM. GooderhamM. A practical guide to advanced topical drug delivery systems in dermatology.Skin Therapy Lett.2023285511 37734108
    [Google Scholar]
  2. TapfumaneyiP. ImranM. MohammedY. RobertsM.S. Recent advances and future prospective of topical and transdermal delivery systems.Front Drug Deliv2022295773210.3389/fddev.2022.957732
    [Google Scholar]
  3. RainaN. RaniR. ThakurV.K. GuptaM. New insights in topical drug delivery for skin disorders: From a nanotechnological perspective.ACS Omega2023822191451916710.1021/acsomega.2c08016 37305231
    [Google Scholar]
  4. SunR. XiaQ. Nanostructured lipid carriers incorporated in alginate hydrogel: Enhanced stability and modified behavior in gastrointestinal tract.Colloids Surf. A Physicochem. Eng. Asp.201957419720610.1016/j.colsurfa.2019.04.082
    [Google Scholar]
  5. DoktorovovaS. SoutoE.B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review.Expert Opin. Drug Deliv.20096216517610.1517/17425240802712590 19239388
    [Google Scholar]
  6. WaghuleT. RapalliV.K. GorantlaS. SahaR.N. DubeyS.K. PuriA. SinghviG. Nanostructured lipid carriers as potential drug delivery systems for skin disorders.Curr. Pharm. Des.202026364569457910.2174/1381612826666200614175236 32534562
    [Google Scholar]
  7. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.021 32373485
    [Google Scholar]
  8. PetrilliR. LopezR.F.V. Physical methods for topical skin drug delivery: Concepts and applications.Braz. J. Pharm. Sci.201854spee0100810.1590/s2175‑97902018000001008
    [Google Scholar]
  9. ViegasC. PatrícioA.B. PrataJ.M. NadhmanA. ChintamaneniP.K. FonteP. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review.Pharmaceutics2023156159310.3390/pharmaceutics15061593 37376042
    [Google Scholar]
  10. GomaaE. FathiH.A. EissaN.G. ElsabahyM. Methods for preparation of nanostructured lipid carriers.Methods20221993810.1016/j.ymeth.2021.05.003 33992771
    [Google Scholar]
  11. GargN.K. TandelN. BhadadaS.K. TyagiR.K. Nanostructured lipid carrier–mediated transdermal delivery of aceclofenac hydrogel present an effective therapeutic approach for inflammatory diseases.Front. Pharmacol.20211271361610.3389/fphar.2021.713616 34616297
    [Google Scholar]
  12. AbdE. YousufS. PastoreM. TelaproluK. MohammedY. NamjoshiS. GriceJ. RobertsM. Skin models for the testing of transdermal drugs.Clin. Pharmacol.2016816317610.2147/CPAA.S64788 27799831
    [Google Scholar]
  13. AboofazeliR. LawrenceC. WicksS. LawrenceM. Investigations into the formation and characterization of phospholipid microemulsions. III. Pseudo-ternary phase diagrams of systems containing water-lecithin-isopropyl myristate and either an alkanoic acid, amine, alkanediol, polyethylene glycol alkyl ether or alcohol as cosurfactant.Int. J. Pharm.19941111637210.1016/0378‑5173(94)90402‑2
    [Google Scholar]
  14. IzzaN. WatanabeN. OkamotoY. SugaK. WibisonoY. KajimuraN. MitsuokaK. UmakoshiH. Dependence of the core–shell structure on the lipid composition of nanostructured lipid carriers: Implications for drug carrier design.ACS Appl. Nano Mater.2022579958996910.1021/acsanm.2c02214
    [Google Scholar]
  15. NündelK. GreenN.M. ShafferA.L. MoodyK.L. BustoP. EilatD. MiyakeK. OropalloM.A. CancroM.P. Marshak-RothsteinA. Cell-intrinsic expression of TLR9 in autoreactive B cells constrains BCR/TLR7-dependent responses.J. Immunol.201519462504251210.4049/jimmunol.1402425 25681333
    [Google Scholar]
  16. TilstraJ. B Cell-specific MyD88 Regulates Pathology After Disease Onset in Murine Lupus.Available From: https://acrabstracts.org/abstract/b-cell-specific-tlr7-regulates-lupus-in-tlr9-deficient-mice/ 2019
  17. PatilT.S. GujarathiN.A. AherA.A. PachpandeH.E. SharmaC. OjhaS. GoyalS.N. AgrawalY.O. Recent advancements in topical anti-psoriatic nanostructured lipid carrier-based drug delivery.Int. J. Mol. Sci.2023243297810.3390/ijms24032978 36769305
    [Google Scholar]
  18. ParodisI. StockfeltM. SjöwallC. B Cell therapy in systemic lupus erythematosus: From rationale to clinical practice.Front. Med. (Lausanne)2020731610.3389/fmed.2020.00316 32754605
    [Google Scholar]
  19. BoneparthA. DavidsonA. B-cell activating factor targeted therapy and lupus.Arthritis Res. Ther.201214 Suppl 4Suppl 4S210.1186/ar392023281926
    [Google Scholar]
  20. FurieR. StohlW. GinzlerE.M. BeckerM. MishraN. ChathamW.W. MerrillJ.T. WeinsteinA. McCuneW.J. ZhongJ. CaiW. FreimuthW. Study GroupB. Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: A phase I trial in patients with systemic lupus erythematosus.Arthritis Res. Ther.2008105R10910.1186/ar2506 18786258
    [Google Scholar]
  21. ClinicalTrials.govA Study of Belimumab in Subjects With Systemic Lupus Erythematosus (BLISS-76).Available From: https://clinicaltrials.gov/study/NCT00410384#study-overview 2017
  22. ShinB.K. BaekE.J. ChoiS.G. DavaaE. NhoY.C. LimY.M. ParkJ.S. HuhK.M. ParkJ.S. Preparation and irradiation of Pluronic F127-based thermoreversible and mucoadhesive hydrogel for local delivery of naproxen.Drug Dev. Ind. Pharm.201339121874188010.3109/03639045.2012.665925 22409199
    [Google Scholar]
  23. ClinicalTrials.govSubcutaneous Anifrolumab in Adult Patients With Systemic Lupus Erythematosus (Tulip SC).Available From: https://clinicaltrials.gov/study/NCT04877691 2024
  24. ClinicalTrials.govEvaluation of Lenalidomide (REVLIMID®) to Treat Subjects With Cutaneous Lupus Erythematosus (CLE).Available From: https://clinicaltrials.gov/study/NCT00633945 2023
  25. ChenX. XiaoH. ShiX. ZhaoQ. XuX. FanP. XiaoD. Bibliometric analysis and visualization of transdermal drug delivery research in the last decade: Global research trends and hotspots.Front. Pharmacol.202314117325110.3389/fphar.2023.1173251 37397493
    [Google Scholar]
  26. XuY. ZhaoM. CaoJ. FangT. ZhangJ. ZhenY. WuF. YuX. LiuY. LiJ. WangD. Applications and recent advances in transdermal drug delivery systems for the treatment of rheumatoid arthritis.Acta Pharm. Sin. B202313114417444110.1016/j.apsb.2023.05.025 37969725
    [Google Scholar]
  27. AllisonM.C. HowatsonA.G. TorranceC.J. LeeF.D. RussellR.I. Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs.N. Engl. J. Med.19923271174975410.1056/NEJM199209103271101 1501650
    [Google Scholar]
  28. HuoR. HuangX. YangY. LinJ. Potential Use of Janus Kinase Inhibitors in the Treatment of Systemic Lupus Erythematosus.J. Inflamm. Res.2023161471147810.2147/JIR.S397639 37051062
    [Google Scholar]
  29. NikolopoulosD. ParodisI. Janus kinase inhibitors in systemic lupus erythematosus: Implications for tyrosine kinase 2 inhibition.Front. Med. (Lausanne)202310121714710.3389/fmed.2023.1217147 37457579
    [Google Scholar]
  30. KotylaP. Gumkowska-SrokaO. WnukB. KotylaK. Jak inhibitors for treatment of autoimmune diseases: Lessons from systemic sclerosis and systemic lupus erythematosus.Pharmaceuticals (Basel)202215893610.3390/ph15080936 36015084
    [Google Scholar]
  31. ChoS.K. VazquezT. WerthV.P. Litifilimab (BIIB059), a promising investigational drug for cutaneous lupus erythematosus.Expert Opin. Investig. Drugs202332534535310.1080/13543784.2023.2212154 37148249
    [Google Scholar]
  32. PelletierJPR MukhtarF Passive monoclonal and polyclonal antibody therapies.Immunologic Concepts in Transfusion Medicine202025134810.1016/B978‑0‑323‑67509‑3.00016‑0
    [Google Scholar]
  33. YuS. TanG. LiuD. YangX. PanW. Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: Design, characterization and in vitro cellular inhibition and uptake studies.RSC Advances2017727166681667710.1039/C7RA00552K
    [Google Scholar]
  34. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.015 34588846
    [Google Scholar]
  35. Cooke BaileyJ.N. BushW.S. CrawfordD.C. Editorial: The importance of diversity in precision medicine research.Front. Genet.20201187510.3389/fgene.2020.00875 33005167
    [Google Scholar]
  36. PMCThe Personalized Medicine Report: 2020 · Opportunity, Challenges, and the FutureAvailable From: https://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/PMC_The_Personalized_Medicine_Report_Opportunity_Challenges_and_the_Future.pdf 2024
  37. WeberB. MarquartE. RadakovicS. TanewA. Effectiveness of narrowband UVB phototherapy and psoralen plus UVA photochemotherapy in the treatment of generalized lichen planus: Results from a large retrospective analysis and an update of the literature.Photodermatol. Photoimmunol. Photomed.202238210411110.1111/phpp.12723 34351641
    [Google Scholar]
  38. NiebeD. Cutaneous lupus erythematosus: An update on pathogenesis and future therapeutic directions.American J. Clin. Dermatol.202324521540
    [Google Scholar]
  39. LlorenteX. EsteruelasG. BonillaL. AgudeloM.G. FilgairaI. Lopez-RamajoD. GongR.C. SolerC. EspinaM. GarcíaM.L. ManilsJ. PujolM. Sánchez-LópezE. Riluzole-loaded nanostructured lipid carriers for hyperproliferative skin diseases.Int. J. Mol. Sci.2023249805310.3390/ijms24098053 37175765
    [Google Scholar]
  40. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.055 29677547
    [Google Scholar]
  41. GargJ. PathaniaK. SahS.P. PawarS.V. Nanostructured lipid carriers: A promising drug carrier for targeting brain tumours.Future J Pharmaceut Sci2022812510.1186/s43094‑022‑00414‑8
    [Google Scholar]
  42. AliM. BathaeiM.J. IstifE. KarimiS.N.H. BekerL. Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications.Adv. Healthc. Mater.20231223230031810.1002/adhm.202300318 37235849
    [Google Scholar]
  43. CarboneC. CupriS. LeonardiA. PuglisiG. PignatelloR. Lipid-based nanocarriers for drug delivery and targeting: A patent survey of methods of production and characterization.Pharm. Pat. Anal.20132566567710.4155/ppa.13.43 24237173
    [Google Scholar]
  44. CevcG. BlumeG. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force.Biochim. Biophys. Acta Biomembr.19921104122623210.1016/0005‑2736(92)90154‑E 1550849
    [Google Scholar]
  45. ChaudhariR. TandelN. SahuK. NegiS. BashirH. RupareliyaA. MishraR.P.N. DalaiS.K. TyagiR.K. Transdermal immunization of elastic liposome-laden recombinant chimeric fusion protein of P. falciparum (PfMSP-Fu24) mounts protective immune response.Nanomaterials (Basel)202111240610.3390/nano11020406 33562617
    [Google Scholar]
  46. SinghI. SwamiR. PoojaD. JeengarM.K. KhanW. SistlaR. Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting.J. Drug Target.201624321222310.3109/1061186X.2015.1068320 26219519
    [Google Scholar]
  47. ChaiQ. JiaoY. YuX. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them.Gels201731610.3390/gels3010006 30920503
    [Google Scholar]
  48. LampropoulosC. D’CruzD.P. Topical calcineurin inhibitors in systemic lupus erythematosus.Ther. Clin. Risk Manag.201069510110.2147/TCRM.S3193 20421909
    [Google Scholar]
  49. Company-QuirogaJ. Alique-GarcíaS. Romero-MatéA. Current insights into the management of discoid lupus erythematosus.Clin. Cosmet. Investig. Dermatol.20191272173210.2147/CCID.S184824 31632120
    [Google Scholar]
  50. FairleyJ.L. OonS. SaracinoA.M. NikpourM. Management of cutaneous manifestations of lupus erythematosus: A systematic review.Semin. Arthritis Rheum.20205019512710.1016/j.semarthrit.2019.07.010 31526594
    [Google Scholar]
  51. CorreaS. GrosskopfA.K. Lopez HernandezH. ChanD. YuA.C. StapletonL.M. AppelE.A. Translational applications of hydrogels.Chem. Rev.202112118113851145710.1021/acs.chemrev.0c01177 33938724
    [Google Scholar]
  52. Savić GajićI.M. SavićI.M. SvirčevZ. Preparation and characterization of alginate hydrogels with high water-retaining capacity.Polymers (Basel)20231512259210.3390/polym15122592 37376238
    [Google Scholar]
  53. HwangH.S. LeeC.S. Recent progress in hyaluronic-acid-based hydrogels for bone tissue engineering.Gels20239758810.3390/gels9070588 37504467
    [Google Scholar]
  54. LustS.T. HooglandD. NormanM.D.A. KerinsC. OmarJ. JowettG.M. YuT.T.L. YanZ. XuJ.Z. MarcianoD. da SilvaR.M.P. DreissC.A. LamataP. ShipleyR.J. GentlemanE. Selectively cross-linked tetra-PEG hydrogels provide control over mechanical strength with minimal impact on diffusivity.ACS Biomater. Sci. Eng.2021794293430410.1021/acsbiomaterials.0c01723 34151570
    [Google Scholar]
  55. AlmoshariY. Novel hydrogels for topical applications: An updated comprehensive review based on source.Gels20228317410.3390/gels8030174 35323287
    [Google Scholar]
  56. FanR. ChengY. WangR. ZhangT. ZhangH. LiJ. SongS. ZhengA. Thermosensitive hydrogels and advances in their application in disease therapy.Polymers (Basel)20221412237910.3390/polym14122379 35745954
    [Google Scholar]
  57. QianL. Cellulose-Based Composite Hydrogels: Preparation, Structures, and Applications.Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series Mondal MdI.H. Springer International PublishingBerlin, Heidelberg201815010.1007/978‑3‑319‑76573‑0_23‑1
    [Google Scholar]
  58. ZhengH. ZuoB. Functional silk fibroin hydrogels: Preparation, properties and applications.J. Mater. Chem. B Mater. Biol. Med.2021951238125810.1039/D0TB02099K 33406183
    [Google Scholar]
  59. HaworthK. TravisD. AbarigaS.A. FullerD. PuckerA.D. Silicone hydrogel versus hydrogel soft contact lenses for differences in patient-reported eye comfort and safety.Cochrane Libr.20212021510.1002/14651858.CD014791 37724689
    [Google Scholar]
  60. TeraoM. MatsuiS. KatayamaI. Two cases of refractory discoid lupus erythematosus successfully treated with topical tocoretinate.Dermatol. Online J.20111741510.5070/D30R49C68V 21549090
    [Google Scholar]
  61. NewmanA.J. SchneiderA. BlumettiB. BarrJ. Chronic cutaneous lupus erythematosus and topical clindamycin.BMJ Case Rep.20182018bcr-2018-22672810.1136/bcr‑2018‑226728 30249740
    [Google Scholar]
  62. Alves de MedeirosA.K. SpeeckaertR. DesmetE. Van GeleM. De SchepperS. LambertJ. JAK3 as an emerging target for topical treatment of inflammatory skin diseases.PLoS One20161110e016408010.1371/journal.pone.0164080 27711196
    [Google Scholar]
  63. ChassetF. BouazizJ.D. Costedoat-ChalumeauN. FrancèsC. ArnaudL. Efficacy and comparison of antimalarials in cutaneous lupus erythematosus subtypes: A systematic review and meta-analysis.Br. J. Dermatol.2017177118819610.1111/bjd.15312 28112801
    [Google Scholar]
  64. Syed AzharS.N.A. AshariS.E. ZainuddinN. HassanM. Nanostructured lipid carriers-hydrogels system for drug delivery: Nanohybrid technology perspective.Molecules202227128910.3390/molecules27010289 35011520
    [Google Scholar]
  65. ShipmanW.D. VerniceN.A. DemetresM. JorizzoJ.L. An update on the use of hydroxychloroquine in cutaneous lupus erythematosus: A systematic review.J. Am. Acad. Dermatol.202082370972210.1016/j.jaad.2019.07.027 31306730
    [Google Scholar]
  66. OtotakeY. YamaguchiY. KanaokaM. AkitaA. IkedaN. AiharaM. Varied responses to and efficacies of hydroxychloroquine treatment according to cutaneous lupus erythematosus subtypes in Japanese patients.J. Dermatol.201946428528910.1111/1346‑8138.14802 30719729
    [Google Scholar]
  67. GardetA. PellerinA. McCarlC.A. DiwanjiR. WangW. DonaldsonD. FranchimontN. WerthV.P. RabahD. Effect of in vivo hydroxychloroquine and ex vivo anti-BDCA2 mAb treatment on pDC IFNα production from patients affected with cutaneous lupus erythematosus.Front. Immunol.20191027510.3389/fimmu.2019.00275 30846987
    [Google Scholar]
  68. NagaichU. GulatiN. Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: Design and in vivo characterization.Drug Deliv. Transl. Res.20166328929810.1007/s13346‑016‑0291‑1
    [Google Scholar]
  69. DenekeN. DohadwalaS. MooreQ.C. NaveF. ThompsonA. Evaluating alternative crosslinking agents in poly (vinyl alcohol) hydrogels membranes.Seman Sch.2018
    [Google Scholar]
  70. KhvorostinaM.A. The influence of crosslinking agents on the matrix properties of hydrogel structures based on sodium alginate.Inorg Mater: Appl Res20241538839410.30791/1028‑978X‑2023‑12‑22‑31
    [Google Scholar]
  71. ArgenzianoM. HaimhofferA. BastiancichC. JicsinszkyL. CalderaF. TrottaF. ScuteraS. AlottoD. FumagalliM. MussoT. CastagnoliC. CavalliR. In vitro enhanced skin permeation and retention of imiquimod loaded in β-cyclodextrin nanosponge hydrogel.Pharmaceutics201911313810.3390/pharmaceutics11030138 30897794
    [Google Scholar]
  72. GhasemiyehP Mohammadi-SamaniS. Hydrogels as drug delivery systems;Pros and Cons. Trends Pharmacuet. Sci.201941724
    [Google Scholar]
  73. de Risi-PuglieseT. Cohen AubartF. HarocheJ. MogueletP. Grootenboer-MignotS. MathianA. Ingen-Housz-OroS. HieM. WendremaireN. AucouturierF. LepelletierF. MiyaraM. Bader-MeunierB. RémyP. FabienN. FrancèsC. BareteS. AmouraZ. Clinical, histological, immunological presentations and outcomes of bullous systemic lupus erythematosus: 10 New cases and a literature review of 118 cases.Semin. Arthritis Rheum.2018481838910.1016/j.semarthrit.2017.11.003 29191376
    [Google Scholar]
  74. FeltenR. DervovicE. ChassetF. GottenbergJ.E. SibiliaJ. ScherF. ArnaudL. The 2018 pipeline of targeted therapies under clinical development for systemic lupus erythematosus: A systematic review of trials.Autoimmun. Rev.201817878179010.1016/j.autrev.2018.02.011 29885544
    [Google Scholar]
  75. ChassetF. ArnaudL. JachietM. MonfortJ.B. BouazizJ.D. CordolianiF. BagotM. BarbaudA. FrancèsC. Changing antimalarial agents after inefficacy or intolerance in patients with cutaneous lupus erythematosus: A multicenter observational study.J. Am. Acad. Dermatol.2018781107114.e110.1016/j.jaad.2017.08.045 29061479
    [Google Scholar]
  76. ChassetF. TounsiT. CesbronE. BarbaudA. FrancèsC. ArnaudL. Efficacy and tolerance profile of thalidomide in cutaneous lupus erythematosus: A systematic review and meta-analysis.J. Am. Acad. Dermatol.2018782342350.e410.1016/j.jaad.2017.09.059 28989111
    [Google Scholar]
  77. DasinehS. AkbarianM. EbrahimiH.A. BehbudiG. Tacrolimus-loaded chitosan-coated nanostructured lipid carriers: Preparation, optimization and physicochemical characterization.Appl. Nanosci.20211141169118110.1007/s13204‑021‑01744‑4
    [Google Scholar]
  78. SavićV. IlićT. NikolićI. MarkovićB. ČalijaB. CekićN. SavićS. Tacrolimus-loaded lecithin-based nanostructured lipid carrier and nanoemulsion with propylene glycol monocaprylate as a liquid lipid: Formulation characterization and assessment of dermal delivery compared to referent ointment.Int. J. Pharm.201956911862410.1016/j.ijpharm.2019.118624 31419461
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812313487240806111714
Loading
/content/journals/nanoasi/10.2174/0122106812313487240806111714
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test