Skip to content
2000
image of A Mechanistic Review on the Anti-inflammatory Effects of β-caryophyllene

Abstract

Beta(β)-caryophyllene (BCP) is a naturally occurring bicyclic sesquiterpene widely present in essential oils from various spices, fruits, and both medicinal and ornamental plants. This mini-review primarily covers research progress over the past 20 years (2004-2024) regarding the anti-inflammatory activities and mechanisms of BCP, focusing on its antioxidant, immunomodulatory, analgesic, and neuroprotective properties. Experimental studies have documented a variety of pharmacological activities associated with BCP, including anti-inflammatory, antioxidant, analgesic, immunomodulatory, cardioprotective, intestinal protective, neuroprotective, and nephroprotective effects. BCP has shown significant therapeutic potential in treating diabetes, cardiovascular diseases, inflammatory bowel diseases, ischemia/reperfusion injury, inflammatory disorders, and neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298342319241125043305
2025-01-03
2025-04-25
Loading full text...

Full text loading...

References

  1. Netea M.G. Balkwill F. Chonchol M. Cominelli F. Donath M.Y. Giamarellos-Bourboulis E.J. Golenbock D. Gresnigt M.S. Heneka M.T. Hoffman H.M. Hotchkiss R. Joosten L.A.B. Kastner D.L. Korte M. Latz E. Libby P. Mandrup-Poulsen T. Mantovani A. Mills K.H.G. Nowak K.L. O’Neill L.A. Pickkers P. van der Poll T. Ridker P.M. Schalkwijk J. Schwartz D.A. Siegmund B. Steer C.J. Tilg H. van der Meer J.W.M. van de Veerdonk F.L. Dinarello C.A. A guiding map for inflammation. Nat. Immunol. 2017 18 8 826 831 10.1038/ni.3790 28722720
    [Google Scholar]
  2. Arulselvan P. Fard M.T. Tan W.S. Gothai S. Fakurazi S. Norhaizan M.E. Kumar S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev. 2016 2016 1 5276130 10.1155/2016/5276130 27803762
    [Google Scholar]
  3. Majety P. Hennessey J.V. Acute and Subacute, and Riedel’s Thyroiditis. South Dartmouth (MA) MDText.com, Inc. 2000
    [Google Scholar]
  4. Torres A. Cilloniz C. Niederman M.S. Menéndez R. Chalmers J.D. Wunderink R.G. van der Poll T. Pneumonia. Nat. Rev. Dis. Primers 2021 7 1 25 10.1038/s41572‑021‑00259‑0 33833230
    [Google Scholar]
  5. Furman D. Campisi J. Verdin E. Carrera-Bastos P. Targ S. Franceschi C. Ferrucci L. Gilroy D.W. Fasano A. Miller G.W. Miller A.H. Mantovani A. Weyand C.M. Barzilai N. Goronzy J.J. Rando T.A. Effros R.B. Lucia A. Kleinstreuer N. Slavich G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019 25 12 1822 1832 10.1038/s41591‑019‑0675‑0 31806905
    [Google Scholar]
  6. Miller G.E. Chen E. Parker K.J. Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychol. Bull. 2011 137 6 959 997 10.1037/a0024768 21787044
    [Google Scholar]
  7. Tetali S.D. Terpenes and isoprenoids: a wealth of compounds for global use. Planta 2019 249 1 1 8 10.1007/s00425‑018‑3056‑x 30467631
    [Google Scholar]
  8. Mamdouh Hashiesh H. Sheikh A. Meeran M.F.N. Saraswathiamma D. Jha N.K. Sadek B. Adeghate E. Tariq S. Al Marzooqi S. Ojha S. β-caryophyllene, a dietary phytocannabinoid, alleviates diabetic cardiomyopathy in mice by inhibiting oxidative stress and inflammation activating cannabinoid type-2 receptors. ACS Pharmacol. Transl. Sci. 2023 6 8 1129 1142 10.1021/acsptsci.3c00027 37588762
    [Google Scholar]
  9. Mazzantini C. El Bourji Z. Parisio C. Davolio P.L. Cocchi A. Pellegrini-Giampietro D.E. Landucci E. Anti-inflammatory properties of cannabidiol and beta-caryophyllene alone or combined in an in vitro inflammation model. Pharmaceuticals 2024 17 4 467 10.3390/ph17040467 38675427
    [Google Scholar]
  10. Irrera N. D’Ascola A. Pallio G. Bitto A. Mazzon E. Mannino F. Squadrito V. Arcoraci V. Minutoli L. Campo G.M. Avenoso A. Bongiorno E.B. Vaccaro M. Squadrito F. Altavilla D. β-caryophyllene mitigates collagen Antibody Induced Arthritis (CAIA) in mice through a cross-talk between CB2 and PPAR-γ receptors. Biomolecules 2019 9 8 326 10.3390/biom9080326 31370242
    [Google Scholar]
  11. Kumawat V.S. Kaur G. Cannabinoid receptor 2 (CB2) agonists and l-arginine ameliorate diabetic nephropathy in rats by suppressing inflammation and fibrosis through NF-κβ pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 1 381 393 10.1007/s00210‑023‑02597‑0 37450015
    [Google Scholar]
  12. Kumawat V.S. Kaur G. Cannabinoid 2 receptor agonist and L-arginine combination attenuates diabetic cardiomyopathy in rats via NF-ĸβ inhibition. Can. J. Physiol. Pharmacol. 2022 100 3 259 271 10.1139/cjpp‑2021‑0046 34860602
    [Google Scholar]
  13. Yeom J.E. Kim S.K. Park S.Y. Regulation of the gut microbiota and inflammation by β-caryophyllene extracted from cloves in a dextran sulfate sodium-induced colitis mouse model. Molecules 2022 27 22 7782 10.3390/molecules27227782 36431883
    [Google Scholar]
  14. Irrera N. D’Ascola A. Pallio G. Bitto A. Mannino F. Arcoraci V. Rottura M. Ieni A. Minutoli L. Metro D. Vaccaro M. Altavilla D. Squadrito F. β-caryophyllene inhibits cell proliferation through a direct modulation of cb2 receptors in glioblastoma cells. Cancers (Basel) 2020 12 4 1038 10.3390/cancers12041038 32340197
    [Google Scholar]
  15. Mohamed M.E. Abdelnaby R.M. Younis N.S. β-caryophyllene ameliorates hepatic ischemia reperfusion-induced injury: the involvement of Keap1/Nrf2/HO 1/NQO 1 and TLR4/NF-κB/NLRP3 signaling pathways. Eur. Rev. Med. Pharmacol. Sci. 2022 26 22 8551 8566 10.26355/eurrev_202211_30391 36459036
    [Google Scholar]
  16. Hashiesh H.M. Meeran M.F.N. Sharma C. Sadek B. Kaabi J.A. Ojha S.K. Therapeutic potential of β-caryophyllene: A dietary cannabinoid in diabetes and associated complications. Nutrients 2020 12 10 2963 10.3390/nu12102963 32998300
    [Google Scholar]
  17. Paredes J. Castañeda R. Gertsch J. Huerta V. Roa R. Valls E. Zarate C. Espuny A. Soto M. Neuroprotective effects of β-caryophyllene against dopaminergic neuron injury in a murine model of Parkinson’s disease induced by MPTP. Pharmaceuticals (Basel) 2017 10 3 60 10.3390/ph10030060 28684694
    [Google Scholar]
  18. Li W.Y. Yang F. Chen J.H. Ren G.F. β-Caryophyllene ameliorates MSU-induced gouty arthritis and inflammation through inhibiting NLRP3 and NF-κB signal pathway: In silico and in vivo. Front. Pharmacol. 2021 12 651305 10.3389/fphar.2021.651305 33967792
    [Google Scholar]
  19. Yang B. Wang M. Li Y. β-Caryophyllene downregualtes inflammatory cytokine expression and alleviates systemic inflammation in mice by inhibiting the NF-κB signaling pathway. Xibao Yu Fenzi Mianyixue Zazhi 2024 40 3 229 234 38512033
    [Google Scholar]
  20. Casadiego O. Macias O. García L. Sanabria-Chanaga E. Baay-Guzmán G.J. Mantilla J.C. Escobar P. In‐Silico selection of wound‐healing plant secondary molecules and their pro‐healing activities on experimental models. Chem. Biodivers. 2023 20 12 e202300961 10.1002/cbdv.202300961 37966104
    [Google Scholar]
  21. Parisotto-Peterle J. Bidone J. Lucca L.G. Araújo G.M.S. Falkembach M.C. da Silva Marques M. Horn A.P. dos Santos M.K. da Veiga V.F. Jr Limberger R.P. Teixeira H.F. Dora C.L. Koester L.S. Healing activity of hydrogel containing nanoemulsified β-caryophyllene. Eur. J. Pharm. Sci. 2020 148 105318 10.1016/j.ejps.2020.105318 32205230
    [Google Scholar]
  22. Picciolo G. Pallio G. Altavilla D. Vaccaro M. Oteri G. Irrera N. Squadrito F. β-caryophyllene reduces the inflammatory phenotype of periodontal cells by targeting CB2 receptors. Biomedicines 2020 8 6 164 10.3390/biomedicines8060164 32560286
    [Google Scholar]
  23. Mattiuzzo E. Faggian A. Venerando R. Benetti A. Belluzzi E. Abatangelo G. Ruggieri P. Brun P. In vitro effects of low doses of β-caryophyllene, ascorbic acid and d-glucosamine on human chondrocyte viability and inflammation. Pharmaceuticals (Basel) 2021 14 3 286 10.3390/ph14030286 33806983
    [Google Scholar]
  24. Castro N.F.C. Jubilato F.C. Guerra L.H.A. Santos F.C.A. Taboga S.R. Vilamaior P.S.L. Therapeutic effects of β‐caryophyllene on proliferative disorders and inflammation of the gerbil prostate. Prostate 2021 81 12 812 824 10.1002/pros.24177 34125438
    [Google Scholar]
  25. Varga Z.V. Matyas C. Erdelyi K. Cinar R. Nieri D. Chicca A. Nemeth B.T. Paloczi J. Lajtos T. Corey L. Hasko G. Gao B. Kunos G. Gertsch J. Pacher P. β‐Caryophyllene protects against alcoholic steatohepatitis by attenuating inflammation and metabolic dysregulation in mice. Br. J. Pharmacol. 2018 175 2 320 334 10.1111/bph.13722 28107775
    [Google Scholar]
  26. Shin S.Y. Koh D. Lim Y. Lee Y.H. Inhibition of EGR-1-dependent MMP1 transcription by ethanol extract of Ageratum houstonianum in HaCaT keratinocytes. Mol. Biol. Rep. 2021 48 1 1 11 10.1007/s11033‑020‑06091‑1 33449301
    [Google Scholar]
  27. Ahn S.S. Yeo H. Jung E. Ou S. Lee Y.H. Lim Y. Shin S.Y. β-caryophyllene ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis through the downregulation of mitogen-activated protein kinase/EGR1/TSLP signaling axis. Int. J. Mol. Sci. 2022 23 23 14861 10.3390/ijms232314861 36499191
    [Google Scholar]
  28. Gutiérrez H.A.E. Salido S.C.L. Soto M.E.F. Martínez A.R.T. Huerta V.C. Paredes J.M.V. Angiotensinergic effect of β-Caryophyllene on Lipopolysaccharide- induced systemic inflammation. Biochem. Biophys. Res. Commun. 2024 719 150081 10.1016/j.bbrc.2024.150081 38744071
    [Google Scholar]
  29. Xiao K.J. Wang W.X. Dai J.L. Zhu L. Anti-inflammatory activity and chemical composition of the essential oils from Senecio flammeus. EXCLI J. 2014 13 782 791 26417301
    [Google Scholar]
  30. Brito L.F. Oliveira H.B.M. das Neves Selis N. e Souza C.L.S. Júnior M.N.S. de Souza E.P. Silva L.S.C. de Souza Nascimento F. Amorim A.T. Campos G.B. de Oliveira M.V. Yatsuda R. Timenetsky J. Marques L.M. Anti‐inflammatory activity of β ‐caryophyllene combined with docosahexaenoic acid in a model of sepsis induced by Staphylococcus aureus in mice. J. Sci. Food Agric. 2019 99 13 5870 5880 10.1002/jsfa.9861 31206687
    [Google Scholar]
  31. Bénet T. Picot V.S. Awasthi S. Pandey N. Bavdekar A. Kawade A. Robinson A. Rakoto-Andrianarivelo M. Sylla M. Diallo S. Russomando G. Basualdo W. Komurian-Pradel F. Endtz H. Vanhems P. Paranhos-Baccalà G. Severity of pneumonia in under 5-year-old children from developing countries: A multicenter, prospective, observational study. Am. J. Trop. Med. Hyg. 2017 97 1 68 76 10.4269/ajtmh.16‑0733 28719310
    [Google Scholar]
  32. Oishi T. Uchiyama M. Oishi T. Matsui K. Shirai T. Matsuo M. Negishi J. Kaneko T. Tsukano S. Taguchi T. Narita M. Clinical implications of interleukin-18 levels in pediatric patients with Mycoplasma pneumoniae pneumonia. J. Infect. Chemother. 2011 17 6 803 806 10.1007/s10156‑011‑0265‑7 21681500
    [Google Scholar]
  33. Chen M. Deng H. Zhao Y. Miao X. Gu H. Bi Y. Zhu Y. Guo Y. Shi S. Xu J. Zhao D. Liu F. Toll-Like Receptor 2 Modulates Pulmonary Inflammation and TNF-α Release Mediated by Mycoplasma pneumoniae. Front. Cell. Infect. Microbiol. 2022 12 824027 10.3389/fcimb.2022.824027 35372108
    [Google Scholar]
  34. Liu M. Niu W. Ou L. β-Caryophyllene ameliorates the Mycoplasmal pneumonia through the inhibition of NF-κB signal transduction in mice. Saudi J. Biol. Sci. 2021 28 8 4240 4246 10.1016/j.sjbs.2021.06.034 34354405
    [Google Scholar]
  35. Zhang Y. Zhang H. Li Y. Wang M. Qian F. β-Caryophyllene attenuates lipopolysaccharide-induced acute lung injury via inhibition of the MAPK signalling pathway. J. Pharm. Pharmacol. 2021 73 10 1319 1329 10.1093/jpp/rgab074 34313776
    [Google Scholar]
  36. D’Ascola A. Irrera N. Ettari R. Bitto A. Pallio G. Mannino F. Atteritano M. Campo G.M. Minutoli L. Arcoraci V. Squadrito V. Picciolo G. Squadrito F. Altavilla D. Exploiting curcumin synergy with natural products using quantitative analysis of dose–effect relationships in an experimental in vitro model of osteoarthritis. Front. Pharmacol. 2019 10 1347 10.3389/fphar.2019.01347 31798452
    [Google Scholar]
  37. Moldogazieva N.T. Mokhosoev I.M. Feldman N.B. Lutsenko S.V. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic. Res. 2018 52 5 507 543 10.1080/10715762.2018.1457217 29589770
    [Google Scholar]
  38. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  39. Morris G. Gevezova M. Sarafian V. Maes M. Redox regulation of the immune response. Cell. Mol. Immunol. 2022 19 10 1079 1101 10.1038/s41423‑022‑00902‑0 36056148
    [Google Scholar]
  40. Flohé L. Brigelius-Flohé R. Saliou C. Traber M.G. Packer L. Redox regulation of NF-kappa B activation. Free Radic. Biol. Med. 1997 22 6 1115 1126 10.1016/S0891‑5849(96)00501‑1 9034250
    [Google Scholar]
  41. Reuter S. Gupta S.C. Chaturvedi M.M. Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010 49 11 1603 1616 10.1016/j.freeradbiomed.2010.09.006 20840865
    [Google Scholar]
  42. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  43. Al-Taee H. Azimullah S. Meeran M.F.N. Alaraj Almheiri M.K. Al Jasmi R.A. Tariq S. AB Khan M. Adeghate E. Ojha S. β-caryophyllene, a dietary phytocannabinoid attenuates oxidative stress, inflammation, apoptosis and prevents structural alterations of the myocardium against doxorubicin-induced acute cardiotoxicity in rats: An in vitro and in vivo study. Eur. J. Pharmacol. 2019 858 172467 10.1016/j.ejphar.2019.172467 31216443
    [Google Scholar]
  44. Meeran M.F.N. Al Taee H. Azimullah S. Tariq S. Adeghate E. Ojha S. β-Caryophyllene, a natural bicyclic sesquiterpene attenuates doxorubicin-induced chronic cardiotoxicity via activation of myocardial cannabinoid type-2 (CB2) receptors in rats. Chem. Biol. Interact. 2019 304 158 167 10.1016/j.cbi.2019.02.028 30836069
    [Google Scholar]
  45. Youssef D.A. El-Fayoumi H.M. Mahmoud M.F. Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors. Chem. Biol. Interact. 2019 297 16 24 10.1016/j.cbi.2018.10.010 30343038
    [Google Scholar]
  46. Mouratidou C. Pavlidis E.T. Katsanos G. Kotoulas S.C. Mouloudi E. Tsoulfas G. Galanis I.N. Pavlidis T.E. Hepatic ischemia-reperfusion syndrome and its effect on the cardiovascular system: The role of treprostinil, a synthetic prostacyclin analog. World J. Gastrointest. Surg. 2023 15 9 1858 1870 10.4240/wjgs.v15.i9.1858 37901735
    [Google Scholar]
  47. Arizuka N. Murakami T. Suzuki K. The effect of β-caryophyllene on nonalcoholic steatohepatitis. J. Toxicol. Pathol. 2017 30 4 263 273 10.1293/tox.2017‑0018 29097836
    [Google Scholar]
  48. Harb A.A. Bustanji Y.K. Abdalla S.S. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet. J. Clin. Biochem. Nutr. 2018 62 3 230 237 10.3164/jcbn.17‑3 29892161
    [Google Scholar]
  49. Ames-Sibin A.P. Barizão C.L. Castro-Ghizoni C.V. Silva F.M.S. Sá-Nakanishi A.B. Bracht L. Bersani-Amado C.A. Marçal-Natali M.R. Bracht A. Comar J.F. β‐Caryophyllene, the major constituent of copaiba oil, reduces systemic inflammation and oxidative stress in arthritic rats. J. Cell. Biochem. 2018 119 12 10262 10277 10.1002/jcb.27369 30132972
    [Google Scholar]
  50. Rajab B.S. Albukhari T.A. Khan A.A. Refaat B. Almehmadi S.J. Nasreldin N. Elshopakey G.E. El-Boshy M. Antioxidative and anti-inflammatory protective effects of β-caryophyllene against amikacin-induced nephrotoxicity in rat by Regulating the Nrf2/AMPK/AKT and NF-κB/TGF-β/KIM-1 Molecular Pathways. Oxid. Med. Cell. Longev. 2022 2022 1 12 10.1155/2022/4212331 36062191
    [Google Scholar]
  51. Refaat B. El-Boshy M. Protective antioxidative and anti-inflammatory actions of β-caryophyllene against sulfasalazine-induced nephrotoxicity in rat. Exp. Biol. Med. (Maywood) 2022 247 8 691 699 10.1177/15353702211073804 35068213
    [Google Scholar]
  52. Li H. Wang D. Chen Y. Yang M. β-Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells. Int. Immunopharmacol. 2020 84 106556 10.1016/j.intimp.2020.106556 32416450
    [Google Scholar]
  53. Basha R.H. Sankaranarayanan C. β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chem. Biol. Interact. 2016 245 50 58 10.1016/j.cbi.2015.12.019 26748309
    [Google Scholar]
  54. Sudeep H.V. Venkatakrishna K. Raj A. Reethi B. Shyamprasad K. Viphyllin™, a standardized extract from black pepper seeds, mitigates intestinal inflammation, oxidative stress, and anxiety‐like behavior in DSS ‐induced colitis mice. J. Food Biochem. 2022 46 10 e14306 10.1111/jfbc.14306 35766031
    [Google Scholar]
  55. Wu Y.T. Zhong L.S. Huang C. Guo Y.Y. Jin F.J. Hu Y.Z. Zhao Z.B. Ren Z. Wang Y.F. β-Caryophyllene Acts as a Ferroptosis Inhibitor to Ameliorate Experimental Colitis. Int. J. Mol. Sci. 2022 23 24 16055 10.3390/ijms232416055 36555694
    [Google Scholar]
  56. Cho J.Y. Kim H.Y. Kim S.K. Park J.H.Y. Lee H.J. Chun H.S. β-Caryophyllene attenuates dextran sulfate sodium-induced colitis in mice via modulation of gene expression associated mainly with colon inflammation. Toxicol. Rep. 2015 2 1039 1045 10.1016/j.toxrep.2015.07.018 28962446
    [Google Scholar]
  57. Shirafkan F. Hensel L. Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front. Immunol. 2024 15 1339714 10.3389/fimmu.2024.1339714 38571951
    [Google Scholar]
  58. Megha K.B. Joseph X. Akhil V. Mohanan P.V. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine 2021 91 153712 10.1016/j.phymed.2021.153712 34511264
    [Google Scholar]
  59. Moudgil K.D. Venkatesha S.H. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation. Int. J. Mol. Sci. 2022 24 1 95 10.3390/ijms24010095 36613560
    [Google Scholar]
  60. Yamaguchi M. Levy R. The combination of catechin, baicalin and β‑caryophyllene potentially suppresses the production of inflammatory cytokines in mouse macrophages in vitro. Exp. Ther. Med. 2019 17 5 4312 4318 10.3892/etm.2019.7452 31007758
    [Google Scholar]
  61. Alberti T. Barbosa W. Vieira J. Raposo N. Dutra R. (−)-β-Caryophyllene, a CB2 receptor-selective phytocannabinoid, suppresses motor paralysis and neuroinflammation in a murine model of multiple sclerosis. Int. J. Mol. Sci. 2017 18 4 691 10.3390/ijms18040691 28368293
    [Google Scholar]
  62. da Silva S.L. Figueiredo P.M.S. Yano T. Chemotherapeutic potential of the volatile oils from Zanthoxylum rhoifolium Lam leaves. Eur. J. Pharmacol. 2007 576 1-3 180 188 10.1016/j.ejphar.2007.07.065 17716654
    [Google Scholar]
  63. Askari V.R. Baradaran Rahimi V. Tabatabaee S.A. Shafiee-Nick R. Combination of Imipramine, a sphingomyelinase inhibitor, and β-caryophyllene improve their therapeutic effects on experimental autoimmune encephalomyelitis (EAE). Int. Immunopharmacol. 2019 77 105923 10.1016/j.intimp.2019.105923 31711937
    [Google Scholar]
  64. Askari V.R. Rahimi V. Nick R. Low doses of β-caryophyllene reduced clinical and paraclinical parameters of an autoimmune animal model of multiple Sclerosis: Investigating the role of CB2 receptors in inflammation by lymphocytes and microglial. Brain Sci. 2023 13 7 1092 10.3390/brainsci13071092 37509022
    [Google Scholar]
  65. Wei C. Huang L. Zheng Y. Cai X. Selective activation of cannabinoid receptor 2 regulates Treg/Th17 balance to ameliorate neutrophilic asthma in mice. Ann. Transl. Med. 2021 9 12 1015 10.21037/atm‑21‑2778 34277815
    [Google Scholar]
  66. Andrade-Silva M. Correa L.B. Candéa A.L.P. Cavalher-Machado S.C. Barbosa H.S. Rosas E.C. Henriques M.G. The cannabinoid 2 receptor agonist β-caryophyllene modulates the inflammatory reaction induced by Mycobacterium bovis BCG by inhibiting neutrophil migration. Inflamm. Res. 2016 65 11 869 879 10.1007/s00011‑016‑0969‑3 27379721
    [Google Scholar]
  67. Cao M. Wang G. Xie J. Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discov. 2023 9 1 465 10.1038/s41420‑023‑01766‑7 38114466
    [Google Scholar]
  68. Fontes L.B.A. Dias D.S. Aarestrup B.J.V. Aarestrup F.M. Da Silva Filho A.A. Corrêa J.O.A. β -Caryophyllene ameliorates the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomed. Pharmacother. 2017 91 257 264 10.1016/j.biopha.2017.04.092 28463791
    [Google Scholar]
  69. Sousa L.F.B. Oliveira H.B.M. das Neves Selis N. Morbeck L.L.B. Santos T.C. da Silva L.S.C. Viana J.C.S. Reis M.M. Sampaio B.A. Campos G.B. Timenetsky J. Yatsuda R. Marques L.M. β-caryophyllene and docosahexaenoic acid, isolated or associated, have potential antinociceptive and anti-inflammatory effects in vitro and in vivo. Sci. Rep. 2022 12 1 19199 10.1038/s41598‑022‑23842‑1 36357780
    [Google Scholar]
  70. Paula-Freire L.I.G. Andersen M.L. Gama V.S. Molska G.R. Carlini E.L.A. The oral administration of trans-caryophyllene attenuates acute and chronic pain in mice. Phytomedicine 2014 21 3 356 362 10.1016/j.phymed.2013.08.006 24055516
    [Google Scholar]
  71. Koyama S. Purk A. Kaur M. Soini H.A. Novotny M.V. Davis K. Kao C.C. Matsunami H. Mescher A. Beta-caryophyllene enhances wound healing through multiple routes. PLoS One 2019 14 12 e0216104 10.1371/journal.pone.0216104 31841509
    [Google Scholar]
  72. Li W. Qian P. Guo Y. Gu L. Jurat J. Bai Y. Zhang D. Myrtenal and β-caryophyllene oxide screened from Liquidambaris fructus suppress NLRP3 inflammasome components in rheumatoid arthritis. BMC Compl. Med. Therap. 2021 21 1 242 10.1186/s12906‑021‑03410‑2 34583676
    [Google Scholar]
  73. Silva V. Fonsêca B.M. Aguiar J.C. Navarro D. Oliveira A. Napoleão T.H. Correia M. Lima V. Costa W.K. Vanusa da Silva M. Chemical composition, antinociceptive and anti-inflammatory effects in mice of the essential oil of Psidium cattleyanum Sabine leaves. J. Ethnopharmacol. 2023 312 116443 10.1016/j.jep.2023.116443 37054827
    [Google Scholar]
  74. do Nascimento A.L. Guedes J.B. Costa W.K. de Veras B.O. de Aguiar J.C.R.O.F. Navarro D.M.A.F. Correia M.T.S. Napoleão T.H. de Oliveira A.M. da Silva M.V. Essential oil from the leaves of Eugenia pohliana DC. (Myrtaceae) alleviate nociception and acute inflammation in mice. Inflammopharmacology 2022 30 6 2273 2284 10.1007/s10787‑022‑01067‑y 36094726
    [Google Scholar]
  75. Alharthi S. Ziora Z.M. Mustafa G. Chaubey P. El Kirdasy A.F. Alotaibi G. β-caryophyllene-loaded microemulsion-based topical hydrogel: A promising carrier to enhance the analgesic and anti-inflammatory outcomes. Gels 2023 9 8 634 10.3390/gels9080634 37623089
    [Google Scholar]
  76. Blanton H. Yin L. Duong J. Benamar K. Cannabidiol and beta-caryophyllene in combination: A therapeutic functional interaction. Int. J. Mol. Sci. 2022 23 24 15470 10.3390/ijms232415470 36555111
    [Google Scholar]
  77. Kuwahata H. Katsuyama S. Komatsu T. Nakamura H. Corasaniti M.T. Bagetta G. Sakurada S. Sakurada T. Takahama K. Local peripheral effects of β-caryophyllene through CB2 receptors in neuropathic pain in mice. Pharmacol. Pharm. 2012 3 4 397 403 10.4236/pp.2012.34053
    [Google Scholar]
  78. Aly E. Khajah M.A. Masocha W. β-caryophyllene, a CB2-receptor-selective phytocannabinoid, suppresses mechanical allodynia in a mouse model of antiretroviral-induced neuropathic pain. Molecules 2019 25 1 106 10.3390/molecules25010106 31892132
    [Google Scholar]
  79. Berger G. Arora N. Burkovskiy I. Xia Y. Chinnadurai A. Westhofen R. Hagn G. Cox A. Kelly M. Zhou J. Lehmann C. Experimental cannabinoid 2 receptor activation by phyto-derived and synthetic cannabinoid ligands in LPS-induced interstitial cystitis in mice. Molecules 2019 24 23 4239 10.3390/molecules24234239 31766439
    [Google Scholar]
  80. Laks E.Y. Li H. Ward S.J. Non-psychoactive cannabinoid modulation of nociception and inflammation associated with a rat model of pulpitis. Biomolecules 2023 13 5 846 10.3390/biom13050846 37238715
    [Google Scholar]
  81. Ojha S. Javed H. Azimullah S. Haque M.E. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol. Cell. Biochem. 2016 418 1-2 59 70 10.1007/s11010‑016‑2733‑y 27316720
    [Google Scholar]
  82. Brand-Rubalcava P.A. Tejeda-Martínez A.R. González-Reynoso O. Nápoles-Medina A.Y. Chaparro-Huerta V. Flores-Soto M.E. β-Caryophyllene decreases neuroinflammation and exerts neuroprotection of dopaminergic neurons in a model of hemiparkinsonism through inhibition of the NLRP3 inflammasome. Parkinsonism Relat. Disord. 2023 117 105906 10.1016/j.parkreldis.2023.105906 37924806
    [Google Scholar]
  83. Kanojia U. Chaturbhuj S.G. Sankhe R. Das M. Surubhotla R. Krishnadas N. Gourishetti K. Nayak P.G. Kishore A. Beta-caryophyllene, a CB2R selective agonist, protects against cognitive impairment caused by neuro-inflammation and not in dementia due to ageing induced by mitochondrial dysfunction. CNS Neurol. Disord. Drug Targets 2021 20 10 963 974 10.2174/1871527320666210202121103 33530917
    [Google Scholar]
  84. Chen F. Bai N. Yue F. Hao Y. Wang H. He Y. Lu K. Effects of oral β-caryophyllene (BCP) treatment on perioperative neurocognitive disorders: Attenuation of neuroinflammation associated with microglial activation and reinforcement of autophagy activity in aged mice. Brain Res. 2023 1815 148425 10.1016/j.brainres.2023.148425 37244603
    [Google Scholar]
  85. Alonso C. Satta V. Fisac H.I. Ruiz F.J. Sagredo O. Disease-modifying effects of cannabidiol, β-caryophyllene and their combination in Syn1-Cre/Scn1aWT/A1783V mice, a preclinical model of Dravet syndrome. Neuropharmacology 2023 237 109602 10.1016/j.neuropharm.2023.109602 37290534
    [Google Scholar]
  86. Liu H. Song Z. Liao D. Zhang T. Liu F. Zhuang K. Luo K. Yang L. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice. Neurochem. Res. 2015 40 1 118 123 10.1007/s11064‑014‑1474‑0 25417010
    [Google Scholar]
  87. Yang M. Lv Y. Tian X. Lou J. An R. Zhang Q. Li M. Xu L. Dong Z. Neuroprotective effect of β-caryophyllene on cerebral ischemia-reperfusion injury via regulation of necroptotic neuronal death and inflammation: In Vivo and in Vitro. Front. Neurosci. 2017 11 583 10.3389/fnins.2017.00583 29123466
    [Google Scholar]
  88. Serra M.P. Boi M. Carta A. Murru E. Carta G. Banni S. Quartu M. Anti-inflammatory effect of beta-caryophyllene mediated by the involvement of TRPV1, BDNF and trkB in the rat cerebral cortex after hypoperfusion/reperfusion. Int. J. Mol. Sci. 2022 23 7 3633 10.3390/ijms23073633 35408995
    [Google Scholar]
  89. Askari V.R. Shafiee-Nick R. The protective effects of β-caryophyllene on LPS-induced primary microglia M1/M2 imbalance: A mechanistic evaluation. Life Sci. 2019 219 40 73 10.1016/j.lfs.2018.12.059 30620895
    [Google Scholar]
  90. Askari V.R. Shafiee-Nick R. Promising neuroprotective effects of β-caryophyllene against LPS-induced oligodendrocyte toxicity: A mechanistic study. Biochem. Pharmacol. 2019 159 154 171 10.1016/j.bcp.2018.12.001 30529211
    [Google Scholar]
  91. Hu Y. Zeng Z. Wang B. Guo S. Trans-caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells. Int. Immunopharmacol. 2017 51 91 98 10.1016/j.intimp.2017.07.009 28821008
    [Google Scholar]
  92. Guo K. Mou X. Huang J. Xiong N. Li H. Trans-caryophyllene suppresses hypoxia-induced neuroinflammatory responses by inhibiting NF-κB activation in microglia. J. Mol. Neurosci. 2014 54 1 41 48 10.1007/s12031‑014‑0243‑5 24488604
    [Google Scholar]
  93. Santos N.A.G. Martins N.M. Sisti F.M. Fernandes L.S. Ferreira R.S. de Freitas O. Santos A.C. The cannabinoid beta-caryophyllene (BCP) induces neuritogenesis in PC12 cells by a cannabinoid-receptor-independent mechanism. Chem. Biol. Interact. 2017 261 86 95 10.1016/j.cbi.2016.11.015 27871898
    [Google Scholar]
  94. Mannino F. Pallio G. Imbesi C. Scarfone A. Puzzolo D. Micali A. Freni J. Squadrito F. Bitto A. Minutoli L. Irrera N. Beta-caryophyllene, a plant-derived CB2 receptor agonist, protects SH-SY5Y cells from cadmium-induced toxicity. Int. J. Mol. Sci. 2023 24 20 15487 10.3390/ijms242015487 37895166
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298342319241125043305
Loading
/content/journals/mroc/10.2174/0118756298342319241125043305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test