Skip to content
2000
image of Transforming Polymers: Innovative Physical and Chemical Modification Techniques for Advanced Functional Applications

Abstract

Polymer modification encompasses a diverse array of techniques aimed at enhancing the physical and chemical properties of polymers, thereby expanding their applicability across various fields. Physical modification methods include self-assembled monolayers, radiation-induced surface modifications, UV irradiation, γ-irradiation, and laser-induced surface modifications. These techniques primarily focus on altering surface properties and enhancing characteristics such as strength, toughness, and thermal stability through non-chemical means. Chemical modification methods, on the other hand, involve reactions that change the polymer’s chemical structure. Common chemical reactions used in polymer modification include PEGylation, conjugation, wet chemical oxidation treatments, and plasma treatments. These processes introduce new functional groups, improve compatibility with other materials, and tailor properties like solubility, adhesion, and biodegradability. Despite the significant advancements in polymer modification techniques, challenges such as maintaining polymer integrity, controlling modification precision, and ensuring scalability persist. This review provides a comprehensive overview of both physical and chemical polymer modification methods, discussing their mechanisms, applications, and the challenges involved, thereby highlighting their critical role in the development of advanced materials for industrial, biomedical, and environmental applications.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298367223250112224739
2025-01-27
2025-04-25
Loading full text...

Full text loading...

References

  1. Nemani S.K. Annavarapu R.K. Mohammadian B. Raiyan A. Heil J. Haque M.A. Abdelaal A. Sojoudi H. Surface modification of polymers: methods and applications. Adv. Mater. Interfaces 2018 a 5 24 1801247 10.1002/admi.201801247
    [Google Scholar]
  2. Ma D. Zhang Z. Zou Y. Chen J. Shi J.W. The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification. Coord. Chem. Rev. 2024 500 215489 10.1016/j.ccr.2023.215489
    [Google Scholar]
  3. Lin Y. Kouznetsova T.B. Foret A.G. Craig S.L. Solvent polarity effects on the mechanochemistry of spiropyran ring opening. J. Am. Chem. Soc. 2024 146 6 3920 3925 10.1021/jacs.3c11621 38308653
    [Google Scholar]
  4. Masina N. Choonara Y.E. Kumar P. du Toit L.C. Govender M. Indermun S. Pillay V. A review of the chemical modification techniques of starch. Carbohydr. Polym. 2017 157 1226 1236 10.1016/j.carbpol.2016.09.094 27987827
    [Google Scholar]
  5. George A. Sanjay M.R. Srisuk R. Parameswaranpillai J. Siengchin S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 2020 154 329 338 10.1016/j.ijbiomac.2020.03.120 32179114
    [Google Scholar]
  6. Mathew Simon S. George G. M S S. v P P. Anna Jose T. Vasudevan P. Saritha A.C. Biju P.R. Joseph C. Unnikrishnan N.V. Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review. Appl. Surf. Sci. Adv. 2021 6 100173 10.1016/j.apsadv.2021.100173
    [Google Scholar]
  7. Yanat M. Schroën K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React. Funct. Polym. 2021 161 104849 10.1016/j.reactfunctpolym.2021.104849
    [Google Scholar]
  8. Narain R. Polymer science and nanotechnology: fundamentals and applications. 1st Ed. Quebec, Canada Dokumen Pub 2020 470
    [Google Scholar]
  9. Anjumol K.S. Sumesh K.R. Vackova T. Hanna J.M. Thomas S. Spatenka P. Effect of plasma treatment on the morphology, mechanical, and wetting properties of polyethylene/banana fiber composites. Biomass Convers. Biorefin. 2023 2 1 2 10.1007/s13399‑023‑04884‑5
    [Google Scholar]
  10. Fabbri P. Messori M. Surface Modification of Polymers: Chemical, Physical, and Biological Routes. modification of Polymer Properties. Norwich, New York William Andrew Publishing 2017 109 130 10.1016/B978‑0‑323‑44353‑1.00005‑1
    [Google Scholar]
  11. Nemani S.K. Annavarapu R.K. Mohammadian B. Raiyan A. Heil J. Haque M.A. Abdelaal A. Sojoudi H. Surface modification: surface modification of polymers: methods and applications. Adv. Mater. Interfaces 2018 b 5 24 1870121 10.1002/admi.201870121
    [Google Scholar]
  12. Aguilar Z. Nanomaterials for Medical Applications, Newnes. 2012 Available from: https://www.google.co.in/books/edition/Nanomaterials_for_Medical_Applications/mdEuU5h0WZUC?hl=en&gbpv=1
  13. Baio J.E. Graham D.J. Castner D.G. Surface analysis tools for characterizing biological materials. Chem. Soc. Rev. 2020 49 11 3278 3296 10.1039/D0CS00181C 32390029
    [Google Scholar]
  14. Chan J.W. Zhang Y. Uhrich K.E. Amphiphilic macromolecule self-assembled monolayers suppress smooth muscle cell proliferation. Bioconjug. Chem. 2015 26 7 1359 1369 10.1021/acs.bioconjchem.5b00208 26042535
    [Google Scholar]
  15. Jaganathan S.K. Balaji A. Vellayappan M.V. Subramanian A.P. John A.A. Asokan M.K. Supriyanto E. Review: Radiation-induced surface modification of polymers for biomaterial application. J. Mater. Sci. 2015 50 5 2007 2018 10.1007/s10853‑014‑8718‑x
    [Google Scholar]
  16. Fu Z. Gu X. Hu L. Li Y. Li J. Radiation induced surface modification of nanoparticles and their dispersion in the polymer matrix. Nanomaterials 2020 10 11 2237 10.3390/nano10112237 33187251
    [Google Scholar]
  17. Barsbay M. Güven O. Surface modification of cellulose via conventional and controlled radiation-induced grafting. Radiat. Phys. Chem. 2019 160 1 8 10.1016/j.radphyschem.2019.03.002
    [Google Scholar]
  18. Xie K. Dong Z. Zhai M. Shi W. Zhao L. Radiation-induced surface modification of silanized silica with n-alkyl-imidazolium ionic liquids and their applications for the removal of ReO4− as an analogue for TcO4−. Appl. Surf. Sci. 2021 551 149406 10.1016/j.apsusc.2021.149406
    [Google Scholar]
  19. Chernysh V.S. Ieshkin A.E. Kireev D.S. Tatarintsev A.A. Senatulin B.R. Skryleva E.A. Surface modification of NiTi alloy by ion and gas cluster ion irradiation. The role of chemical segregation. Nucl. Instrum. Methods Phys. Res. B 2024 554 165463 10.1016/j.nimb.2024.165463
    [Google Scholar]
  20. Harchenko A.A. Brinkevich D.I. Brinkevich S.D. Lukashevich M.G. Odzhaev V.B. Radiation-induced modification of polymer surfaces. J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2015 9 2 371 376 10.1134/S1027451015020317
    [Google Scholar]
  21. Cangialosi D. McGrail P.T. Emmerson G. Valenza A. Calderaro E. Spadaro G. Properties and morphology of PMMA/ABN blends obtained via MMA in situ polymerisation through γ-rays. Nucl. Instrum. Methods Phys. Res. B 2001 185 1-4 262 266 10.1016/S0168‑583X(01)00805‑9
    [Google Scholar]
  22. Spadaro G. Dispenza C. Mc Grail P.T. Valenza A. Cangialosi D. Submicron structured polymethyl methacrylate/acrylonitrile–butadiene rubber blends obtained via gamma radiation induced “in situ” polymerization. Adv. Polym. Technol. 2004 23 3 211 221 10.1002/adv.20010
    [Google Scholar]
  23. Alessi S. Conduruta D. Pitarresi G. Dispenza C. Spadaro G. Hydrothermal ageing of radiation cured epoxy resin-polyether sulfone blends as matrices for structural composites. Polym. Degrad. Stabil. 2010 95 4 677 683 10.1016/j.polymdegradstab.2009.11.038
    [Google Scholar]
  24. Alessi S. Dispenza C. Fuochi P.G. Corda U. Lavalle M. Spadaro G. E-beam curing of epoxy-based blends in order to produce high-performance composites. Radiat. Phys. Chem. 2007 76 8-9 1308 1311 10.1016/j.radphyschem.2007.02.021
    [Google Scholar]
  25. Alessi S. Dispenza C. Spadaro G. Thermal Properties of E‐beam Cured Epoxy/Thermoplastic Matrices for Advanced Composite Materials. Macromol. Symp. 2007 247 1 238 243 10.1002/masy.200750127
    [Google Scholar]
  26. Whba R. Su’ait M.S. Whba F. Sahinbay S. Altin S. Ahmad A. Intrinsic challenges and strategic approaches for enhancing the potential of natural rubber and its derivatives: A review. Int. J. Biol. Macromol. 2024 276 Pt 1 133796 10.1016/j.ijbiomac.2024.133796 39004255
    [Google Scholar]
  27. Jha R.K. Neyhouse B.J. Young M.S. Fagnani D.E. McNeil A.J. Revisiting poly(vinyl chloride) reactivity in the context of chemical recycling. Chem. Sci. 2024 15 16 5802 5813 10.1039/D3SC06758K 38665509
    [Google Scholar]
  28. Agarwal R. Singh M. Ray Chowdhury S. Pant H.J. Effect of electron beam radiation on the mechanical, electrical, heat shrinkable and morphological properties of linear low-density polyethylene/polyolefin elastomer blends. Prog. Rubber Plast. Recycl. Technol. 2024 40 3 287 304 10.1177/14777606231220421
    [Google Scholar]
  29. Maraveas C. Kyrtopoulos IV. Arvanitis KG. Bartzanas T. The aging of polymers under electromagnetic radiation. Polymers 2024 16 5 689 10.3390/polym16050689
    [Google Scholar]
  30. Spadaro G. Acierno D. Dispenza C. Calderaro E. Valenza A. Physical and structural characterization of blends made with polyamide 6 and gamma-irradiated polyethylenes. Radiat. Phys. Chem. 1996 48 2 207 216 10.1016/0969‑806X(95)00422‑T
    [Google Scholar]
  31. Spadaro G. Acierno D. Dispenza C. Valenza A. Thermal analysis of blends made with polyamide 6 and γ-irradiated polyethylenes. Thermochim. Acta 1995 269-270 261 272 10.1016/0040‑6031(95)02365‑8
    [Google Scholar]
  32. Zhou Y. Zhang Y. Zhang Y. Hu W. Han S. UV light-induced photodegradation of condensed tannins: obtaining bayberry tannins with different mean polymerization degrees. Wood Sci. Technol. 2025 59 1 5 10.1007/s00226‑024‑01603‑9
    [Google Scholar]
  33. Gnilitskyi I. Dolgov L. Tamm A. Ferraria A.M. Diedkova K. Kopanchuk S. Tsekhmister Y. Veiksina S. Polewczyk V. Pogorielov M. Enhanced osteointegration and osteogenesis of osteoblast cells by laser-induced surface modification of Ti implants. Nanomedicine 2024 62 102785 10.1016/j.nano.2024.102785 39306023
    [Google Scholar]
  34. Liu Q. Wu D. Chen Y. Chen Z. Yuan S. Yu H. Guo Y. Xie Y. Qian H. Yao W. Interaction and mechanistic studies of thiram and common microplastics in food and associated changes in hazard. J. Hazard. Mater. 2024 461 132464 10.1016/j.jhazmat.2023.132464 37716269
    [Google Scholar]
  35. Yamagishi H. Crivello J.V. Belfort G. Development of a novel photochemical technique for modifying poly (arylsulfone) ultrafiltration membranes. J. Membr. Sci. 1995 105 3 237 247 10.1016/0376‑7388(95)00063‑I
    [Google Scholar]
  36. Pieracci J. Wood D.W. Crivello J.V. Belfort G. UV-assisted graft polymerization of N -vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes: comparison of dip versus immersion modification techniques. Chem. Mater. 2000 12 8 2123 2133 10.1021/cm9907864
    [Google Scholar]
  37. Fathy E.S. Ibrahim S. Elnaggar M.Y. Fahmy H. Lotfy S. Polypropylene based bio-composites for packaging materials: Physico-mechanical impacts of prepared hyper-branched polyamidoamine and gamma-irradiation. J. Thermoplast. Compos. Mater. 2024 37 1 66 83 10.1177/08927057231169902
    [Google Scholar]
  38. Ramos‐Ballesteros A. Pino‐Ramos V.H. López‐Saucedo F. Flores‐Rojas G.G. Bucio E. γ‐rays and ions irradiation. Surf. Modif. Polym. Methods Appl. 2019 1 185 209 10.1002/9783527819249.ch7
    [Google Scholar]
  39. Sonnier R. Taguet A. Rouif S. Modification of Polymer Blends by E-Beam and Gamma Irradiation. Functional Polymer Blends 1st Ed. Boca Raton, FL CRC Press 2012 261 304 10.1201/b11799‑13
    [Google Scholar]
  40. Xiao Y. Zhang F. Wei R. Qin D. Tang Z. Bao Y. Cai Z. Influence of γ‐irradiation dose on the mechanical and tribological properties of fluoroelastomer. Polym. Eng. Sci. 2024 64 10 5186 5197 10.1002/pen.26912
    [Google Scholar]
  41. Benavides R. Vieira L.F. Acosta D.M. DA Silva L. Rodríguez M.T. Martínez-Pardo M.E. Gamma crosslinking of sulfonated styrene-co-butyl acrylate membranes for their use in fuel cells. PlumX Metrics 2024 1 5014434 10.2139/ssrn.5014434
    [Google Scholar]
  42. Nechifor C.D. Dorohoi D.O. Ciobanu C. The influence of gamma radiations on physico-chemical properties of some polymer membranes. Rom. J. Phys. 2009 54 349 359
    [Google Scholar]
  43. Madrid J.F. Abad L.V. Modification of microcrystalline cellulose by gamma radiation-induced grafting. Radiat. Phys. Chem. 2015 115 143 147 10.1016/j.radphyschem.2015.06.025
    [Google Scholar]
  44. Breuer J. Metev S. Sepold G. Photolytical pretreatment of polymers with uv-laser radiation. Mater. Manuf. Process. 1995 10 2 229 239 10.1080/10426919508935018
    [Google Scholar]
  45. Breuer J. Metev S. Sepold G. Hennemann O.D. Kollek H. Krüger G. Laser-induced photochemical adherence enhancement. Appl. Surf. Sci. 1990 46 1-4 336 341 10.1016/0169‑4332(90)90166‑W
    [Google Scholar]
  46. Buchman A. Dodiuk H. Rotel M. Zahavi J. Laser-induced adhesion enhancement of polymer composites and metal alloys. J. Adhes. Sci. Technol. 1994 8 10 1211 1224 10.1163/156856194X01031
    [Google Scholar]
  47. Laurichesse S. Avérous L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 2014 39 7 1266 1290 10.1016/j.progpolymsci.2013.11.004
    [Google Scholar]
  48. Xin J. Lu X. Cao J. Wu W. Liu Q. Wang D. Zhou X. Ding D. Fluorinated organic polymers for cancer drug delivery. Adv. Mater. 2024 36 30 2404645 10.1002/adma.202404645 38678386
    [Google Scholar]
  49. Shatabayeva E.O. Kaldybekov D.B. Ulmanova L. Zhaisanbayeva B.A. Mun E.A. Kenessova Z.A. Kudaibergenov S.E. Khutoryanskiy V.V. Enhancing mucoadhesive properties of gelatin through chemical modification with unsaturated anhydrides. Biomacromolecules 2024 25 3 1612 1628 10.1021/acs.biomac.3c01183 38319691
    [Google Scholar]
  50. Bokatyi A.N. Dubashynskaya N.V. Skorik Y.A. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr. Polym. 2024 337 122145 10.1016/j.carbpol.2024.122145 38710553
    [Google Scholar]
  51. Srinadhu ES. Thanu DP. Putta S. Zhao M. Sengupta B. Arabandi LP. Kumar J. Shyam R. Keswani VH. Keswani M. Chapter 7 - Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment. Polymer Surface Modification to Enhance Adhesion Beverly, MA Scrivener Publishing LLC 2024 273 328 10.1002/9781394231034.ch7
    [Google Scholar]
  52. Bertin M. Leitao E.M. Bickerton S. Verbeek C.J.R. A review of polymer surface modification by cold plasmas toward bulk functionalization. Plasma Process. Polym. 2024 21 5 2300208 10.1002/ppap.202300208
    [Google Scholar]
  53. Sultana N. Nishina Y. Nizami M.Z.I. Surface modifications of medical grade stainless steel. Coatings 2024 14 3 248 10.3390/coatings14030248
    [Google Scholar]
  54. Ghorbanizamani F. Celik E.G. Moulahoum H. Timur S. Self-assembled monolayer–based nanoscaled surfaces. Biophysics At the Nanoscale. New York Academic Press 2024 1 25 10.1016/B978‑0‑443‑15359‑4.00001‑2
    [Google Scholar]
  55. Sugiyama K. Kato K. Kido M. Shiraishi K. Ohga K. Okada K. Matsuo O. Grafting of vinyl monomers on the surface of a poly(ethylene terephthalate) film using Ar plasma-post polymerization technique to increase biocompatibility. Macromol. Chem. Phys. 1998 199 6 1201 1208 10.1002/(SICI)1521‑3935(19980601)199:6<1201::AID‑MACP1201>3.0.CO;2‑6
    [Google Scholar]
  56. Luu C.H. Nguyen N.T. Ta H.T. Unravelling surface modification strategies for preventing medical device‐induced thrombosis. Adv. Healthc. Mater. 2024 13 1 2301039 10.1002/adhm.202301039 37725037
    [Google Scholar]
  57. Wang H. Xu J. Hu J. Hang G. Zhang T. Zheng S. Reprocessing and shape recovery of polyurethane enabled by crosslinking with poly(β-cyclodextrin) via host-guest interactions. Polymer 2023 281 126122 10.1016/j.polymer.2023.126122
    [Google Scholar]
  58. Bayliss N. Schmidt B.V.K.J. Hydrophilic polymers: Current trends and visions for the future. Prog. Polym. Sci. 2023 147 101753 10.1016/j.progpolymsci.2023.101753
    [Google Scholar]
  59. Neves L.B. Afonso I.S. Nobrega G. Barbosa L.G. Lima R.A. Ribeiro J.E. A review of methods to modify the pdms surface wettability and their applications. Micromachines 2024 15 6 670 10.3390/mi15060670 38930640
    [Google Scholar]
  60. Mirzadeh H. Katbab A.A. Burford R.P. CO2-Pulsed laser induced surface grafting of acrylamide onto ethylene-propylene-rubber (EPR)—I. Radiat. Phys. Chem. 1993 41 3 507 519 10.1016/0969‑806X(93)90013‑K
    [Google Scholar]
  61. Mirzadeh H. Katbab A.A. Khorasani M.T. Burford R.P. Gorgin E. Golestani A. Cell attachment to laser-induced AAm-and HEMA-grafted ethylenepropylene rubber as biomaterial: In vivo study. Biomaterials 1995 16 8 641 648 10.1016/0142‑9612(95)93862‑8 7548615
    [Google Scholar]
  62. Casettari L. Vllasaliu D. Mantovani G. Howdle S.M. Stolnik S. Illum L. Effect of PEGylation on the toxicity and permeability enhancement of chitosan. Biomacromolecules 2010 11 11 2854 2865 10.1021/bm100522c 20873757
    [Google Scholar]
  63. Peng Y.Y. Srinivas S. Narain R. Modification of polymers. Inpolym. Sci. Nanotechnol. 2020 1 95 104 10.1016/B978‑0‑12‑816806‑6.00005‑4 32000485
    [Google Scholar]
  64. Yu Y. Chen C.K. Law W.C. Weinheimer E. Sengupta S. Prasad P.N. Cheng C. Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. Biomacromolecules 2014 15 2 524 532 10.1021/bm401471p 24446700
    [Google Scholar]
  65. Wang Y. Xin D. Liu K. Zhu M. Xiang J. Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity. Bioconjug. Chem. 2009 20 12 2214 2221 10.1021/bc8003809 19950889
    [Google Scholar]
  66. De Breuck J. Streiber M. Ringleb M. Schröder D. Herzog N. Schubert U.S. Zechel S. Traeger A. Leiske M.N. Amino-acid-derived anionic polyacrylamides with tailored hydrophobicity–physicochemical properties and cellular interactions. ACS Polym. Au 2024 4 3 222 234 10.1021/acspolymersau.3c00048 38882030
    [Google Scholar]
  67. Zhong X. Jordan R. Chen J.R. Raymond J. Lahann J. Systematic studies into the area selectivity of chemical vapor deposition polymerization. ACS Appl. Mater. Interfaces 2023 15 17 21618 21628 10.1021/acsami.3c01268 37079371
    [Google Scholar]
  68. Maffeis V. Heuberger L. Nikoletić A. Schoenenberger C.A. Palivan C.G. Synthetic cells revisited: artificial cell construction using polymeric building blocks. Adv. Sci. 2024 11 8 2305837 10.1002/advs.202305837 37984885
    [Google Scholar]
  69. O’Brien P. Chemical Vapor Deposition Technology & Engineering Almere , Netherlands ASM International 2001 2 481
    [Google Scholar]
  70. Zhang A. Hou Y. Wang Y. Wang Q. Shan X. Liu J. Highly efficient low-temperature biodegradation of polyethylene microplastics by using cold-active laccase cell-surface display system. Bioresour. Technol. 2023 382 129164 10.1016/j.biortech.2023.129164 37207695
    [Google Scholar]
  71. Schuman TP Chapter 13 - Adhesion Promotors for Polymer Surfaces. Polymer Surface Modification to Enhance Adhesion: Techniques and Applications Beverly, MA Scrivener Publishing LLC 2024 517 558 10.1002/9781394231034.ch13
    [Google Scholar]
  72. Baszkin A. Nishino M. Ter Minassian-Saraga L. Solid—liquid adhesion of oxidized polyethylene films: Effect of temperature. J. Colloid Interface Sci. 1976 54 3 317 328 10.1016/0021‑9797(76)90311‑8
    [Google Scholar]
  73. Baszkin A. Nishino M. Ter-Minassian-Saraga L. Solid-liquid adhesion of oxidized polyethylene films. Effect of temperature on polar forces. J. Coll. Interf. Sci. 1977 59 3 516 524 10.1016/0021‑9797(77)90047‑9
    [Google Scholar]
  74. Rana M.S. Rahman N. Chowdhury T.A. Sultana S. Sardar M.N. Kayser M.N. Investigations of applicability of sulfonated-GMA-g-non-woven PE adsorbent for the efficient removal of uranium from aqueous solutions. J. Radioanal. Nucl. Chem. 2023 332 3 737 746 10.1007/s10967‑023‑08802‑x
    [Google Scholar]
  75. Penn L.S. Bowler E.R. A new approach to surface energy characterization for adhesive performance prediction. Surf. Interface Anal. 1981 3 4 161 164 10.1002/sia.740030405
    [Google Scholar]
  76. Silverstein M.S. Breuer O. Relationship between surface properties and adhesion for etched ultra-high-molecular-weight polyethylene fibers. Compos. Sci. Technol. 1993 48 1-4 151 157 10.1016/0266‑3538(93)90131‑Y
    [Google Scholar]
  77. Gagnon D.R. McCarthy T.J. Polymer surface reconstruction by diffusion of organic functional groups from and to the surface. J. Appl. Polym. Sci. 1984 29 12 4335 4340 10.1002/app.1984.070291262
    [Google Scholar]
  78. Penn L.S. Wang H. Chemical modification of polymer surfaces: a review. Polym. Adv. Technol. 1994 5 12 809 817 10.1002/pat.1994.220051207
    [Google Scholar]
  79. Cooper G.D. Prober M. The action of oxygen corona and of ozone on polyethylene. J. Polym. Sci. 1960 44 144 397 409 10.1002/pol.1960.1204414411
    [Google Scholar]
  80. Dole N. Ahmadi K. Solanki D. Swaminathan V. Keswani V. Keswani M. Chapter 2 - Corona Treatment of Polymer Surfaces to Enhance Adhesion. Polymer Surface Modification to Enhance Adhesion Beverly, MA Scrivener Publishing LLC 2024 45 76 10.1002/9781394231034.ch2
    [Google Scholar]
  81. Chen C.H. Kao S.Y. Lin H.M. Surface modification of poly(ethylene terephthalate) fabric using conductive polyaniline. Mod. Phys. Lett. B 2023 37 17 2340012 10.1142/S0217984923400122
    [Google Scholar]
  82. Zhang S. Liu Y. Lv S. Cheng J. Surface modification of polymers by ion irradiation: Reactivity principle and application. Nucl. Instrum. Methods Phys. Res. B 2023 543 165097 10.1016/j.nimb.2023.165097
    [Google Scholar]
  83. Holländer A. Behnisch J. Zimmermann H. Surface modification of poly(ethylene) in an rf downstream remote plasma reactor. J. Appl. Polym. Sci. 1993 49 10 1857 1863 10.1002/app.1993.070491016
    [Google Scholar]
  84. Courval G.J. Gray D.G. Goring D.A.I. Chemical modification of polyethylene surfaces in a nitrogen corona. J. Polym. Sci. Polym. Lett. Ed. 1976 14 4 231 235 10.1002/pol.1976.130140410
    [Google Scholar]
  85. Wu S. Polymer interface and adhesion. 1st Ed. New York Routledge 2017 630 10.1201/9780203742860
    [Google Scholar]
  86. Kumar P S. Jayanarayanan K. Balachandran M. High-performance thermoplastic polyaryletherketone/carbon fiber composites: Comparison of plasma, carbon nanotubes/graphene nano-anchoring, surface oxidation techniques for enhanced interface adhesion and properties. Compos., Part B Eng. 2023 253 110560 10.1016/j.compositesb.2023.110560
    [Google Scholar]
  87. Chappell P.J.C. Brown J.R. George G.A. Willis H.A. Surface modification of extended chain polyethylene fibres to improve adhesion to epoxy and unsaturated polyester resins. Surf. Interface Anal. 1991 17 3 143 150 10.1002/sia.740170305
    [Google Scholar]
  88. Pillai RR. Thomas V. Plasma surface engineering of natural and sustainable polymeric derivatives and their potential applications. Polymers 2023 15 2 400 10.3390/polym15020400
    [Google Scholar]
  89. Liu S. Characterizing blood protein surface interactions for the development of thromboresistant fluoropolymer coatings. 2023 Available from: https://www.proquest.com/dissertations-theses/characterizing-blood-protein-surface-interactions/docview/2798531383/se-2?accountid=131615
  90. Tan K.L. Woon L.L. Wong H.K. Kang E.T. Neoh K.G. Surface modification of plasma-pretreated poly(tetrafluoroethylene) films by graft copolymerization. Macromolecules 1993 26 11 2832 2836 10.1021/ma00063a030
    [Google Scholar]
  91. Vesel A. Mozetic M. Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum 2012 86 6 634 637 10.1016/j.vacuum.2011.07.005
    [Google Scholar]
  92. Vesel A. Deposition of chitosan on plasma-treated polymers: A review. Polymers 2023 15 5 1109 10.3390/polym15051109
    [Google Scholar]
  93. Bhatt P. Kumar V. Subramaniyan V. Nagarajan K. Sekar M. Chinni S.V. Ramachawolran G. Plasma modification techniques for natural polymer-based drug delivery systems. Pharmaceutics 2023 15 8 2066 10.3390/pharmaceutics15082066 37631280
    [Google Scholar]
  94. Primc G. Mozetič M. Surface modification of polymers by plasma treatment for appropriate adhesion of coatings. Materials 2024 17 7 1494 10.3390/ma17071494 38612009
    [Google Scholar]
  95. Yoshida S. Hagiwara K. Hasebe T. Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Tech. 2013 233 99 107 10.1016/j.surfcoat.2013.02.042
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298367223250112224739
Loading
/content/journals/mroc/10.2174/0118756298367223250112224739
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test