Skip to content
2000
image of Research Progress on the Formation of C-C Bonds through Photoinduced Cross-coupling Reactions Involving Katritzky Salts

Abstract

In recent years, photochemical organic conversion promoted by visible light has attracted the interest of many organic chemists. Compared with the traditional methods, visible light as the photocatalytic oxidation of renewable energy has been proved to be a mild and powerful tool that can promote the activation of organic molecules through the single electron transfer (SET) process. Katritzky salt has been widely used in organic synthesis and drug preparation due to its convenient synthesis, easy availability of raw materials and high stability. These large Katritzky salts derived from amines can easily generate carbon radicals and conduct various organic conversion reactions. At present, this research has become an important research field of organic synthesis. This paper reviews the research results of coupling reactions of Carbon-Carbon bond formation involving visible light promoted Katritzky salts since 2020, and discusses representative examples and reaction mechanisms.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298307537240722112735
2024-10-01
2025-01-21
Loading full text...

Full text loading...

References

  1. Han F.S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 2013 42 12 5270 5298 10.1039/c3cs35521g 23460083
    [Google Scholar]
  2. Kadu B.S. Suzuki–Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis. Catal. Sci. Technol. 2021 11 4 1186 1221 10.1039/D0CY02059A
    [Google Scholar]
  3. Amini M. Bagherzadeh M. Rostamnia S. Efficient imidazolium salts for palladium-catalyzed Mizoroki–Heck and Suzuki–Miyaura cross-coupling reactions. Chin. Chem. Lett. 2013 24 5 433 436 10.1016/j.cclet.2013.03.025
    [Google Scholar]
  4. Alamgholiloo H. Rostamnia R. Hassankhani A. Khalafy J. Baradarani M. M. Mahmoudi G. Liu X. Stepwise post-modification immobilization of palladium Schiff-base complex on to the OMS-Cu (BDC) metal-organic framework for Mizoroki-Heck cross-coupling reaction. Appl. Organometal. Chem. 2018 2018 e4539 10.1002/aoc.4539
    [Google Scholar]
  5. Rostamnia S. Zeinizadeh B. Doustkhah E. Exfoliated Pd decorated graphene oxide nanosheets (PdNP-GO/P123): Non-toxic, ligandless and recyclable in greener Hiyama cross-coupling reaction. J. Colloid. Interf. Sci. 2015 3 040 10.1016/j.jcis.2015.03.040
    [Google Scholar]
  6. Moradi L. Sadeghi S.H. Efficient pathway for the synthesis of amido alkyl derivatives using KCC-1/PMA immobilized on magnetic MnO2 nanowires as recyclable solid acid catalyst. J. Mol. Struct. 2022 2022 134477 10.1016/j.molstruc
    [Google Scholar]
  7. Ahadi A. Rostamnia S. Panahi P. Wilson L. Kong Q. An Z. Shokouhimehr M. Palladium comprising dicationic bipyridinium supported periodic mesoporous organosilica (PMO): Pd@Bipy–PMO as an efficient hybrid catalyst for suzuki–miyaura cross-coupling reaction in water. Catalysts 2019 9 2 140 10.3390/catal9020140
    [Google Scholar]
  8. Wang S.S. Yang G.Y. Recent developments in low-cost TM-catalyzed Heck-type reactions (TM = transition metal, Ni, Co, Cu, and Fe). Catal. Sci. Technol. 2016 6 9 2862 2876 10.1039/C5CY02235E
    [Google Scholar]
  9. Koranne A. Turakhia S. Jha V.K. Gupta S. Ravi R. Mishra A. Aggarwal A.K. Jha C.K. Dheer N. Jha A.K. The Mizoroki–Heck reaction between in situ generated alkenes and aryl halides: cross-coupling route to substituted olefins. RSC Advances 2023 13 32 22512 22528 10.1039/D3RA03533F 37497097
    [Google Scholar]
  10. Hapke M. Brandt L. Lützen A. Versatile tools in the construction of substituted 2,2′-bipyridines—cross-coupling reactions with tin, zinc and boron compounds. Chem. Soc. Rev. 2008 37 12 2782 2797 10.1039/b810973g 19020687
    [Google Scholar]
  11. Rinu P.X.T. Philip R.M. Anilkumar G. Anilkumar G. Low-cost transition metal catalysed Negishi coupling: An update. Org. Biomol. Chem. 2023 21 32 6438 6455 10.1039/D3OB00784G 37522832
    [Google Scholar]
  12. Chinchilla R. Nájera C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 2011 40 10 5084 5121 10.1039/c1cs15071e 21655588
    [Google Scholar]
  13. Nicewicz D.A. MacMillan D.W.C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 2008 322 5898 77 80 10.1126/science.1161976 18772399
    [Google Scholar]
  14. Prier C.K. Rankic D.A. MacMillan D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013 113 7 5322 5363 10.1021/cr300503r 23509883
    [Google Scholar]
  15. Yoon T.P. Ischay M.A. Du J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010 2 7 527 532 10.1038/nchem.687 20571569
    [Google Scholar]
  16. Schultz D.M. Yoon T.P. Solar synthesis: prospects in visible light photocatalysis. Science 2014 343 6174 1239176 10.1126/science.1239176 24578578
    [Google Scholar]
  17. Gan Z. Li G. Yang X. Yan Q. Xu G. Li G. Jiang Y.Y. Yang D. Visible-light-induced regioselective cross-dehydrogenative coupling of 2-isothiocyanatonaphthalenes with amines using molecular oxygen. Sci. China Chem. 2020 63 11 1652 1658 10.1007/s11426‑020‑9811‑6
    [Google Scholar]
  18. Wang L. Zhang M. Zhang Y. Liu Q. Zhao X. Li J.S. Luo Z. Wei W. Metal-free visible-light-induced oxidative cyclization reaction of 1,6-enynes and arylsulfinic acids leading to sulfonylated benzofurans. Chin. Chem. Lett. 2020 31 1 67 70 10.1016/j.cclet.2019.05.041
    [Google Scholar]
  19. Johnson M.W. Hannoun K.I. Tan Y. Fu G.C. Peters J.C. A mechanistic investigation of the photoinduced, copper-mediated cross-coupling of an aryl thiol with an aryl halide. Chem. Sci. 2016 7 7 4091 4100 10.1039/C5SC04709A 28044096
    [Google Scholar]
  20. Jouffroy M. Kelly C.B. Molander G.A. Thioetherification via photoredox/nickel dual catalysis. Org. Lett. 2016 18 4 876 879 10.1021/acs.orglett.6b00208 26852821
    [Google Scholar]
  21. Bell J.D. Murphy J.A. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem. Soc. Rev. 2021 50 17 9540 9685 10.1039/D1CS00311A 34309610
    [Google Scholar]
  22. He S. Li H. Chen X. Krylov I.B. Terent’ev A.O. Qu L. Yu B. Advances of N -hydroxyphthalimide esters in photocatalytic alkylation reactions. Youji Huaxue 2021 41 12 4661 4689 10.6023/cjoc202105041
    [Google Scholar]
  23. Kong Y. L. Xu W. X. Liu X. H. Weng J. Q. Visible light-induced hydroxyalkylation of 2H-benzothiazoles with alcohols via selectfluor oxidation. Chin. Chem. Lett. 2020 31 3245 3249
    [Google Scholar]
  24. Guo W. Tao K. Tan W. Zhao M. Zheng L. Fan X. Recent advances in photocatalytic C–S/P–S bond formation via the generation of sulfur centered radicals and functionalization. Org. Chem. Front. 2019 6 12 2048 2066 10.1039/C8QO01353E
    [Google Scholar]
  25. Srivastava V. Singh P.K. Srivastava A. Singh P.P. Recent application of visible-light induced radicals in C–S bond formation. RSC Advances 2020 10 34 20046 20056 10.1039/D0RA03086D 35520400
    [Google Scholar]
  26. Peng S. Lin Y. He W. Visible light-induced aldehyde reductive minisci reaction towards N-heterocycles. Youji Huaxue 2020 40 2 541 542 10.6023/cjoc202000006
    [Google Scholar]
  27. Sundaravelu N. Nandy A. Sekar G. Visible light mediated photocatalyst free C–S cross coupling: Domino synthesis of thiochromane derivatives via photoinduced electron transfer. Org. Lett. 2021 23 8 3115 3119 10.1021/acs.orglett.1c00806 33826352
    [Google Scholar]
  28. Bai J. Yan S. Zhang Z. Guo Z. Zhou C.Y. Visible-light carbon nitride-catalyzed aerobic cyclization of thiobenzanilides under ambient air conditions. Org. Lett. 2021 23 12 4843 4848 10.1021/acs.orglett.1c01571 34076439
    [Google Scholar]
  29. Xu Q. Zhou X. Zhang S. Pan L. Liu Q. Li Y. Visible-light-induced sulfur-alkenylation of alkenes. Org. Lett. 2021 23 12 4870 4875 10.1021/acs.orglett.1c01596 34109797
    [Google Scholar]
  30. Sun K. Li G. Li Y. Yu J. Zhao Q. Zhang Z. Zhang G. Oxidative radical relay functionalization for the synthesis of benzimidazo[2,1‐ a ]iso‐quinolin‐6(5 H )‐ones. Adv. Synth. Catal. 2020 362 10 1947 1954 10.1002/adsc.202000040
    [Google Scholar]
  31. Wu C. Bian Q. Ding T. Tang M. Zhang W. Xu Y. Liu B. Xu H. Li H.B. Fu H. Photoinduced iron-catalyzed ipso -nitration of aryl halides via single-electron transfer. ACS Catal. 2021 11 15 9561 9568 10.1021/acscatal.1c02272
    [Google Scholar]
  32. Yu X.Y. Chen J.R. Xiao W.J. Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis. Chem. Rev. 2021 121 1 506 561 10.1021/acs.chemrev.0c00030 32469528
    [Google Scholar]
  33. Chan A.Y. Perry I.B. Bissonnette N.B. Buksh B.F. Edwards G.A. Frye L.I. Garry O.L. Lavagnino M.N. Li B.X. Liang Y. Mao E. Millet A. Oakley J.V. Reed N.L. Sakai H.A. Seath C.P. MacMillan D.W.C. Metallaphotoredox: The merger of photoredox and transition metal catalysis. Chem. Rev. 2022 122 2 1485 1542 10.1021/acs.chemrev.1c00383 34793128
    [Google Scholar]
  34. Romero N.A. Nicewicz D.A. Organic photoredox catalysis. Chem. Rev. 2016 116 17 10075 10166 10.1021/acs.chemrev.6b00057 27285582
    [Google Scholar]
  35. Skubi K.L. Blum T.R. Yoon T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 2016 116 17 10035 10074 10.1021/acs.chemrev.6b00018 27109441
    [Google Scholar]
  36. Chen Y. Lu L.Q. Yu D-G. Zhu C-J. Xiao W-J. Visible light-driven organic photochemical synthesis in China. Sci. China Chem. 2019 62 1 24 57 10.1007/s11426‑018‑9399‑2
    [Google Scholar]
  37. Zhou Q.Q. Zou Y.Q. Lu L.Q. Xiao W.J. Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angew Chem Int Ed Engl 2019 58 6 1586 1604 10.1002/anie.201803102
    [Google Scholar]
  38. Mei Q. Recent progress of Visible Light-induced the synthesis of C-3 (hetero) aryl thio indole compounds. Chin. J. Organ. Chem. 2023 44 2 398 10.6023/cjoc202308008
    [Google Scholar]
  39. Candish L. Collins K.D. Cook G.C. Douglas J.J. Gómez-Suárez A. Jolit A. Keess S. Photocatalysis in the life science industry. Chem. Rev. 2022 122 2 2907 2980 10.1021/acs.chemrev.1c00416 34558888
    [Google Scholar]
  40. He F.S. Ye S. Wu J. Recent advances in pyridinium salts as radical reservoirs in organic synthesis. ACS Catal. 2019 9 10 8943 8960 10.1021/acscatal.9b03084
    [Google Scholar]
  41. Kong D. Moon P.J. Lundgren R.J. Radical coupling from alkyl amines. Nat. Catal. 2019 2 6 473 476 10.1038/s41929‑019‑0292‑9
    [Google Scholar]
  42. M Correia J.T. A Fernandes V. Matsuo B.T. C Delgado J.A. de Souza W.C. Paixão M.W. Photoinduced deaminative strategies: Katritzky salts as alkyl radical precursors. Chem. Commun. 2020 56 4 503 514 10.1039/C9CC08348K 31850410
    [Google Scholar]
  43. Rössler S.L. Jelier B.J. Magnier E. Dagousset G. Carreira E.M. Togni A. Pyridinium salts as redox-active functional group transfer reagents. Angew Chem Int Ed Engl 2020 59 24 9264 9280 10.1002/anie.201911660
    [Google Scholar]
  44. Li Y.N. Xiao F. Guo Y. Zeng Y.F. Recent developments in deaminative functionalization of alkyl amines. Eur. J. Org. Chem. 2021 2021 8 1215 1228 10.1002/ejoc.202001193
    [Google Scholar]
  45. Yousif A.M. Colarusso S. Bianchi E. Katritzky salts for the synthesis of unnatural amino acids and late‐stage functionalization of peptides. Eur. J. Org. Chem. 2023 26 12 e202201274 10.1002/ejoc.202201274
    [Google Scholar]
  46. Klauck F.J.R. Yoon H. James M.J. Lautens M. Glorius F. Visible-light-mediated deaminative three-component dicarbofunctionalization of styrenes with benzylic radicals. ACS Catal. 2019 9 1 236 241 10.1021/acscatal.8b04191
    [Google Scholar]
  47. Sun S. Z. Romano C. Martin R. Site-selective catalytic deaminative alkylation of unactivated olefins. J Am Chem Soc 2019 141 41 16197 16201 10.1021/jacs.9b07489
    [Google Scholar]
  48. Wang C. Qi R. Xue H. Shen Y. Chang M. Chen Y. Wang R. Xu Z. Visible-light-promoted C(sp3)−H alkylation by intermolecular charge transfer: Preparation of unnatural α-amino acids and late-stage modification of peptides. Angew. Chem., Int. Ed. 2020 59 7461 7466
    [Google Scholar]
  49. Yang T. Wei Y. Koh M. J. Photoinduced nickel-catalyzed deaminative cross- electrophile coupling for C(sp2)−C(sp3) and C(sp3)−C(sp3) bond formation. ACS Catal. 2021 11 6519 6525
    [Google Scholar]
  50. Sun S.Z. Cai Y.M. Zhang D.L. Wang J.B. Yao H.Q. Rui X.Y. Martin R. Shang M. Enantioselective deaminative alkylation of amino acid derivatives with unactivated olefins. J. Am. Chem. Soc. 2022 144 3 1130 1137 10.1021/jacs.1c12350 35029378
    [Google Scholar]
  51. Wang K. Liu X. Yang S. Tian Y. Zhou M. Zhou J. Jia X. Li B. Liu S. Chen J. In Situ alkyl radical recycling-driven decoupled electrophotochemical deamination. Org. Lett. 2022 24 19 3471 3476 10.1021/acs.orglett.2c01022 35546086
    [Google Scholar]
  52. Klauck F.J.R. James M.J. Glorius F. Deaminative strategy for the visible‐light‐mediated generation of alkyl radicals. Angew. Chem. Int. Ed. 2017 56 40 12336 12339 10.1002/anie.201706896 28762257
    [Google Scholar]
  53. Liao J. Guan W. Boscoe B.P. Tucker J.W. Tomlin J.W. Garnsey M.R. Watson M.P. Transforming benzylic amines into diarylmethanes: cross-couplings of benzylic pyridinium salts via C–N bond activation. Org. Lett. 2018 20 10 3030 3033 10.1021/acs.orglett.8b01062 29745674
    [Google Scholar]
  54. Yue H. Zhu C. Shen L. Geng Q. Hock K. J. Yuan T. Cavallo L. Rueping M. Nickel-catalyzed C−N bond activation: Activated primary amines as alkylating reagents in reductive cross-coupling. Chem. Sci. 2019 10 4430 4435
    [Google Scholar]
  55. Yi J. Badir S. O. Kammer L. M. Ribagorda M. Molander G. A. Deaminative reductive arylation enabled by nickel/photoredox dual catalysis. Org. Lett. 2019 21 3346 3351
    [Google Scholar]
  56. Cui P. Li S. Wang X. Li M. Wang C. Wu L. Visible-light-promoted unsymmetrical phosphine synthesis from benzylamines. Org. Lett. 2022 24 7 1566 1570 10.1021/acs.orglett.2c00317 35157457
    [Google Scholar]
  57. Wesenberg L. J. Sivo A. Vilé G. Noël T. Ni-catalyzed electro-reductive cross-electrophile couplings of alkyl amine-derived radical precursors with aryl iodides. J Org Chem 2023 10.1021/acs.joc.3c00859
    [Google Scholar]
  58. Zhang M.M. Liu F. Visible-light-mediated allylation of alkyl radicals with allylic sulfones via a deaminative strategy. Org. Chem. Front. 2018 5 23 3443 3446 10.1039/C8QO01046C
    [Google Scholar]
  59. Wu J. Grant P.S. Li X. Noble A. Aggarwal V.K. Catalyst‐free deaminative functionalizations of primary amines by photoinduced single‐electron transfer. Angew. Chem. Int. Ed. 2019 58 17 5697 5701 10.1002/anie.201814452 30794331
    [Google Scholar]
  60. Lübbesmeyer M. Mackay E.G. Raycroft M.A.R. Elfert J. Pratt D.A. Studer A. Base-promoted C–C bond activation enables radical allylation with homoallylic alcohols. J. Am. Chem. Soc. 2020 142 5 2609 2616 10.1021/jacs.9b12343 31941267
    [Google Scholar]
  61. Liu Y. Tao X. Mao Y. Yuan X. Qiu J. Kong L. Ni S. Guo K. Wang Y. Pan Y. Electrochemical C–N bond activation for deaminative reductive coupling of Katritzky salts. Nat. Commun. 2021 12 1 6745 10.1038/s41467‑021‑27060‑7 34799580
    [Google Scholar]
  62. Zhu T. Shen J. Sun Y. Wu J. Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts. Chem. Commun. 2021 57 7 915 918 10.1039/D0CC07632E 33393531
    [Google Scholar]
  63. Ociepa M. Turkowska J. Gryko D. Redox-activated amines in C(sp3)−C(sp) and C(sp3)−C(sp2) bond formation enabled by metal-free photoredox catalysis. ACS Catal. 2018 8 11362 11367
    [Google Scholar]
  64. Yin J. Zhang X. Zhao L. Luo M. Guo L. Yang C. Xia W. Electrochemically enabled C(sp 3 )–C(sp) cross-coupling of alkyl iodides, N -hydroxyphthalimide esters, and Katritzky salts with acetylenic sulfones. Org. Chem. Front. 2023 10 18 4679 4686 10.1039/D3QO00844D
    [Google Scholar]
  65. Lai S. Z. Yang Y. M. Xu H. Tang Z. Y. Luo Z. Z. Photoinduced deaminative coupling of alkylpyridium salts with terminal arylalkynes. J Org Chem 2020 85 23 15638 15644 10.1021/acs.joc.0c01928
    [Google Scholar]
  66. Huang Y. Liu Z. Liu W.H. Deaminative addition of alkylpyridinium salt to aldehyde. Org. Lett. 2023 25 26 4934 4939 10.1021/acs.orglett.3c01724 37364276
    [Google Scholar]
  67. Kim I. Im H. Lee H. Hong S. N-Heterocyclic carbene-catalyzed deaminative cross-coupling of aldehydes with Katritzky pyridinium salts. Chem. Sci. 2020 11 12 3192 3197 10.1039/D0SC00225A 34122824
    [Google Scholar]
  68. Cui P. L. Li S. D. Wang X. J. Li M. Wang C. Wu L. P. Nickel-catalyzed deaminative acylation of activated aliphatic amines with aromatic amides via C–N bond activation. Org Lett 2022 22 3 950 955
    [Google Scholar]
  69. Zhao F. Li C.L. Wu X.F. Deaminative carbonylative coupling of alkylamines with styrenes under transition-metal-free conditions. Chem. Commun. 2020 56 64 9182 9185 10.1039/D0CC04062B 32661525
    [Google Scholar]
  70. Wang X. Kuang Y. Ye S. Wu J. Photoredox-catalyzed synthesis of sulfones through deaminative insertion of sulfur dioxide. Chem. Commun. 2019 55 99 14962 14964 10.1039/C9CC08333B 31774418
    [Google Scholar]
  71. Andrews J.A. Pantaine L.R.E. Palmer C.F. Poole D.L. Willis M.C. Sulfinates from Amines: A radical approach to alkyl sulfonyl derivatives via donor–acceptor activation of pyridinium salts. Org. Lett. 2021 23 21 8488 8493 10.1021/acs.orglett.1c03194 34648294
    [Google Scholar]
  72. Das K.K. Paul S. Panda S. Transition metal-free synthesis of alkyl pinacol boronates. Org. Biomol. Chem. 2020 18 44 8939 8974 10.1039/D0OB01721C 33146221
    [Google Scholar]
  73. Corcé V. Ollivier C. Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem. Soc. Rev. 2022 51 1470 1510
    [Google Scholar]
  74. Gao Y. Jiang S. Mao N.D. Xiang H. Duan J.L. Ye X.Y. Wang L.W. Ye Y. Xie T. Recent progress in fragmentation of katritzky salts enabling formation of C–C, C–B, and C–S bonds. Top. Curr. Chem. 2022 380 4 25 10.1007/s41061‑022‑00381‑x 35585362
    [Google Scholar]
  75. Yang M. Cao T. Xu T. Liao S. Visible-light-induced deaminative thioesterification of amino acid derived katritzky salts via electron donor–acceptor complex formation. Org. Lett. 2019 21 21 8673 8678 10.1021/acs.orglett.9b03284 31638821
    [Google Scholar]
  76. Tcyrulnikov S. Cai Q. Twitty J.C. Xu J. Atifi A. Bercher O.P. Yap G.P.A. Rosenthal J. Watson M.P. Kozlowski M.C. Dissection of alkylpyridinium structures to understand deamination reactions. ACS Catal. 2021 11 14 8456 8466 10.1021/acscatal.1c01860 34745709
    [Google Scholar]
  77. Huan F. Chen Q.Y. Guo Y. Visible light-induced photoredox construction of trifluoromethylated quaternary carbon centers from trifluoromethylated tertiary Bromides. J. Org. Chem. 2016 81 16 7051 7063 10.1021/acs.joc.6b00930 27438228
    [Google Scholar]
  78. Panferova L.I. Chernov G.N. Levin V.V. Kokorekin V.A. Dilman A.D. Photoredox mediated annelation of iododifluoromethylated alcohols with 1,1-diarylethylenes. Tetrahedron 2018 74 50 7136 7142 10.1016/j.tet.2018.10.062
    [Google Scholar]
  79. Cai S.H. Wang D.X. Ye L. Liu Z.Y. Feng C. Loh T.P. Pyrroline Synthesis via visible‐light‐promoted hydroimination of unactivated alkenes with N, N′ ‐Dimethylpropylene Urea as H ‐Donor. Adv. Synth. Catal. 2018 360 6 1262 1266 10.1002/adsc.201700937
    [Google Scholar]
  80. Zhang H. Zhang P. X. Jiang M. Yang H. J. Fu H. Merging photoredox with copper catalysis: Decarboxylative alkynylation of α-amino acid derivatives. Org. Lett. 2017 19 1016 1019
    [Google Scholar]
  81. Schönbauer D. Sambiagio C. Noël T. Schnürch M. Photocatalytic deaminative benzylation and alkylation of tetrahydroisoquinolines with N -alkylpyrydinium salts. Beilstein J. Org. Chem. 2020 16 809 817 10.3762/bjoc.16.74 32395184
    [Google Scholar]
  82. Huang Y. Jia J. Huang Q.P. Zhao L. Wang P. Gu J. He C.Y. Visible light promoted deaminative difluoroalkylation of aliphatic amines with difluoroenoxysilanes. Chem. Commun. 2020 56 91 14247 14250 10.1039/D0CC05725H 33118572
    [Google Scholar]
  83. Yang T. Wei Y. Koh M.J. Photoinduced nickel-catalyzed deaminative cross-electrophile coupling for C(sp 2 )–C(sp 3 ) and C(sp 3 )–C(sp 3 ) bond formation. ACS Catal. 2021 11 11 6519 6525 10.1021/acscatal.1c01416
    [Google Scholar]
  84. Tao M. Wang A.J. Guo P. Li W. Zhao L. Tong J. Wang H. Yu Y. He C.Y. Visible‐light‐induced regioselective deaminative alkylation of coumarins via photoredox catalysis. Adv. Synth. Catal. 2022 364 1 24 29 10.1002/adsc.202100940
    [Google Scholar]
  85. Xie K.A. Bednarova E. Joe C.L. Lin C. Sherwood T.C. Simmons E.M. Lainhart B.C. Rovis T. Orange light-driven C(sp2)-C(sp3) cross-coupling via spin-forbidden If(III) metallaphotoredox catalysis. J. Am. Chem. Soc. 2023 145 36 19925 19931 10.1021/jacs.3c06285 37642382
    [Google Scholar]
  86. Nandi S. Das P. Das S. Mondal S. Jana R. Visible-light-mediated β-acylative divergent alkene difunctionalization with Katritzky salt/CO 2. Green Chem. 2023 25 9 3633 3643 10.1039/D3GC00143A
    [Google Scholar]
  87. Fuentes de Arriba A.L. Urbitsch F. Dixon D.J. Umpolung synthesis of branched α-functionalized amines from imines via photocatalytic three-component reductive coupling reactions. Chem. Commun. 2016 52 100 14434 14437 10.1039/C6CC09172E 27901532
    [Google Scholar]
  88. Marzo L. Ghosh I. Esteban F. König B. Metal-free photocatalyzed cross-coupling of bromoheteroarenes with pyrroles. ACS Catal. 2016 6 10 6780 6784 10.1021/acscatal.6b01452
    [Google Scholar]
  89. Grandjean J.M.M. Nicewicz D.A. Synthesis of highly substituted tetrahydrofurans by catalytic polar-radical-crossover cycloadditions of alkenes and alkenols. Angew. Chem. Int. Ed. 2013 52 14 3967 3971 10.1002/anie.201210111 23440762
    [Google Scholar]
  90. Zeng T.T. Xuan J. Ding W. Wang K. Lu L.Q. Xiao W.J. [3 + 2] Cycloaddition/oxidative aromatization sequence via photoredox catalysis: one-pot synthesis of oxazoles from 2H-azirines and aldehydes. Org. Lett. 2015 17 16 4070 4073 10.1021/acs.orglett.5b01994 26250789
    [Google Scholar]
  91. Ramesh V. Gangadhar M. Nanubolu J.B. Adiyala P.R. Visible-light-induced deaminative alkylation/cyclization of alkyl amines with N -methacryloyl-2-phenylbenzoimidazoles in continuous-flow organo-photocatalysis. J. Org. Chem. 2021 86 18 12908 12921 10.1021/acs.joc.1c01555 34477379
    [Google Scholar]
  92. Kishor G. Ramesh V. Rao V.R. Pabbaraja S. Adiyala P.R. Regioselective C-3-alkylation of quinoxalin-2(1 H )-ones via C–N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis. RSC Adv. 2022 12 20 12235 12241 10.1039/D2RA00753C 35517836
    [Google Scholar]
  93. Singh S. Tripathi K.N. Singh R.P. Redox activated amines in the organophotoinduced alkylation of coumarins. Org. Biomol. Chem. 2022 20 29 5716 5720 10.1039/D2OB00943A 35838252
    [Google Scholar]
  94. Sekino T. Sato S. Yoshino T. Kojima M. Matsunaga S. Regioselective deaminative allylation of aliphatic amines via dual cobalt and organophotoredox catalysis. Org Lett 2022 24 11 2120 2124 10.1021/acs.orglett.2c00319
    [Google Scholar]
  95. Arceo E. Jurberg I.D. Álvarez-Fernández A. Melchiorre P. Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nat. Chem. 2013 5 9 750 756 10.1038/nchem.1727 23965676
    [Google Scholar]
  96. Guo Q. Wang M. Liu H. Wang R. Xu Z. Visible‐light‐promoted dearomative fluoroalkylation of β‐naphthols through intermolecular charge transfer. Angew. Chem. Int. Ed. 2018 57 17 4747 4751 10.1002/anie.201800767 29476596
    [Google Scholar]
  97. Wang C. Qi R. Xue H. Shen Y. Chang M. Chen Y. Wang R. Xu Z. Visible‐light‐promoted C(sp 3 )−H alkylation by intermolecular charge transfer: preparation of unnatural α‐amino acids and late‐stage modification of peptides. Angew. Chem. Int. Ed. 2020 59 19 7461 7466 10.1002/anie.201914555 32078758
    [Google Scholar]
  98. Laroche B. Tang X. Archer G. Di Sanza R. Melchiorre P. Photochemical chemoselective alkylation of tryptophan-containing peptides. Org. Lett. 2021 23 2 285 289 10.1021/acs.orglett.0c03735 33400540
    [Google Scholar]
  99. Xia Q. Li Y. Wang X. Dai P. Deng H. Zhang W.H. Visible light-driven α-alkylation of N-Aryl tetrahydro isoquinolines initiated by electron donor−acceptor complex. Org. Lett. 2020 22 18 7290 7294 10.1021/acs.orglett.0c02631 32902295
    [Google Scholar]
  100. Wang J.X. Ge W. Xing W.L. Fu M.C. Photoinduced deaminative alkylation for the synthesis of γ-ketoesters via electron donor–acceptor complex formation. J. Org. Chem. 2021 86 24 18224 18231 10.1021/acs.joc.1c02499 34846880
    [Google Scholar]
  101. Huang Q. P. Huang Y. Wang A. J. Zhao L. Jia J. Yu Y. B. Tong J. Gu J. W. He C. Y. Visible light induced deaminative alkylation of difluoroenoxysilanes: A transition metal free strategy. Org. Chem. Front. 2021 8 4438 4444 10.1039/D1QO00507C
    [Google Scholar]
  102. Lu Y. Fang C.Z. Liu Q. Li B.L. Wang Z.X. Chen X.Y. Donor–acceptor complex enables cascade radical cyclization of N -arylacrylamides with katritzky salts. Org. Lett. 2021 23 14 5425 5429 10.1021/acs.orglett.1c01758 34190559
    [Google Scholar]
  103. Ferko B. Marčeková M. Detková K.R. Doháňošová J. Berkeš D. Jakubec P. Visible-light-promoted cross-coupling of N -alkylpyridinium salts and nitrostyrenes. Org. Lett. 2021 23 22 8705 8710 10.1021/acs.orglett.1c03122 34723544
    [Google Scholar]
  104. Zhang C.S. Bao L. Chen K.Q. Wang Z.X. Chen X.Y. Photoinduced α-alkenylation of katritzky salts: Synthesis of β,γ-unsaturated esters. Org. Lett. 2021 23 5 1577 1581 10.1021/acs.orglett.0c04287 33595328
    [Google Scholar]
  105. Wang J.X. Wang Y.T. Zhang H. Fu M.C. Visible-light-induced iodine-anion-catalyzed decarboxylative/deaminative C–H alkylation of enamides. Org. Chem. Front. 2021 8 16 4466 4472 10.1039/D1QO00660F
    [Google Scholar]
  106. Cai Z. Gu R. Si W. Xiang Y. Sun J. Jiao Y. Zhang X. Photoinduced allylic defluorinative alkylation of trifluoromethyl alkenes with Katritzky salts under catalyst- and metal-free conditions. Green Chem. 2022 24 18 6830 6835 10.1039/D2GC02266D
    [Google Scholar]
  107. Gao P. Zhang Q. Li Y. Cui L. Fan X. Zhang G. Chen F. Catalyst‐free defluoroalkylation of trifluoromethylated alkenes via photoinduced electron donor‐acceptor complex. ChemistrySelect 2023 8 22 e202300665 10.1002/slct.202300665
    [Google Scholar]
  108. Yetra S.R. Schmitt N. Tambar U.K. Catalytic photochemical enantioselective α-alkylation with pyridinium salts. Chem. Sci. 2023 14 3 586 592 10.1039/D2SC05654B 36741522
    [Google Scholar]
  109. Deng Y. Cheng X. Tan H. He Y. Zhang C. Qiu G. Zheng D. Photoinitiated deaminative alkylation of quinoxalin‐2(1 H )‐ones via electron catalysis. Adv. Synth. Catal. 2023 365 6 865 870 10.1002/adsc.202300035
    [Google Scholar]
  110. Singh N. Sharma S. Sharma A. Visible light induced EDA-mediated deaminative C-2 alkylation of heterocyclic-N-oxides using katritzky salts. Adv. Synth. & Catal. 2023 365 3505 3511 10.1002/adsc.202300723
    [Google Scholar]
  111. Lapierre R. Lina Truong L. Hedouin M. Oulyadi H. Schiavi B. Jean A. Jubault P. Poisson T. Electron donor–acceptor complex photoactivation for deaminative alkynylation, alkenylation and allenylation: A comprehensive study. Org. Chem. Front. 2024 11 2231 2240 10.1039/D4QO00177J
    [Google Scholar]
  112. Foley D.J. Waldmann H. Ketones as strategic building blocks for the synthesis of natural product-inspired compounds. Chem. Soc. Rev. 2022 51 10 4094 4120 10.1039/D2CS00101B 35506561
    [Google Scholar]
  113. Lee F.K. Krishnan P. Muhamad A. Low Y.Y. Kam T.S. Ting K.N. Lim K.H. Concise synthesis of the vasorelaxant alkaloids schwarzinicines A and B. Nat. Prod. Res. 2022 36 15 3972 3978 10.1080/14786419.2021.1903005 33749454
    [Google Scholar]
  114. Cuquerella M.C. Lhiaubet-Vallet V. Cadet J. Miranda M.A. Benzophenone photosensitized DNA damage. Acc. Chem. Res. 2012 45 9 1558 1570 10.1021/ar300054e 22698517
    [Google Scholar]
  115. Mallat T. Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 2004 104 6 3037 3058 10.1021/cr0200116 15186187
    [Google Scholar]
  116. Bechara W. S. Pelletier G. Charette A. B. Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides. Nat. Chem. 2012 4 228 234
    [Google Scholar]
  117. Sartori G. Maggi R. Use of solid catalysts in Friedel-Crafts acylation reactions. Chem. Rev. 2006 106 3 1077 1104 10.1021/cr040695c 16522017
    [Google Scholar]
  118. Jana R. Pathak T.P. Sigman M.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 2011 111 3 1417 1492 10.1021/cr100327p 21319862
    [Google Scholar]
  119. Chalotra N. Sultan S. Shah B. A. Recent advances in photoredox methods for ketone synthesis. Asian J. Org. Chem. 2020 9 863 881
    [Google Scholar]
  120. Yin H. Jian S. Feng X. Bao M. Zhang X. Metal-free photoinduced denitrogenative alkylation of vinyl azides with alkyl radicals toward ketones. Org. Chem. Front. 2024 11 11 3124 3130 10.1039/D4QO00280F
    [Google Scholar]
  121. Qin H.T. Wu S.W. Liu J.L. Liu F. Photoredox-catalysed redox-neutral trifluoromethylation of vinyl azides for the synthesis of α-trifluoromethylated ketones. Chem. Commun. 2017 53 10 1696 1699 10.1039/C6CC10035J 28101550
    [Google Scholar]
  122. Zheng C. Wang G. Z. Shang R. Catalyst-free decarboxylation and decarboxylative giese additions of alkyl carboxylates through photoactivation of electron donor-acceptor complex. Adv. Synth. Catal. 2019 361 4500 4505
    [Google Scholar]
  123. Ghosh I. Marzo L. Das A. Shaikh R. König B. Visible light mediated photoredox catalytic arylation reactions. Acc. Chem. Res. 2016 49 8 1566 1577 10.1021/acs.accounts.6b00229 27482835
    [Google Scholar]
  124. Babu S.S. Muthuraja P. Yadav P. Gopinath P. Aryldiazonium salts in photoredox catalysis : Recent trends. Adv. Synth. Catal. 2021 363 7 1782 1809 10.1002/adsc.202100136
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298307537240722112735
Loading
/content/journals/mroc/10.2174/0118756298307537240722112735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test