Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The demand for crop yields is increasing in modern society. The challenges to agricultural cultivation, nevertheless, are posed by soil degradation, pollution, and the increasing number of extreme weather events due to climate change. All these factors can threaten crop yield and quality. However, fulvic acid can effectively alleviate these problems. It’s a type of humus with multiple agricultural values, is produced through biomass fermentation, and has various mechanisms that promote crop growth. It plays a significant role in mitigating various adverse factors affecting crop growth. Fulvic acid contains more carboxyl and hydroxyl groups but also the presence of ether bonds and ester bonds, due to the special structure of xanthic acid, which also allows it to closely bond with many metal ions and substances. This paper provides an in-depth study of the mechanism and molecular structure of fulvic acid production and describes a variety of application scenes of fulvic acid in agricultural production. This paper makes a general conclusion on the improvement of yield and quality of yellow rot crops and analyzes the resistance of yellow rot to the adverse environment, including heavy metal hazards, salt stress hazards, drought hazards, pests, and diseases. Through the analysis by many scholars, yellow rot acid can play a significant role in the improvement of the adverse environment growing plants.

Furthermore, the combined use of fulvic acid and modern drip irrigation techniques is receiving increased attention due to the significant benefits it offers in terms of water management and enhanced fertilizer efficiency. More studies should be conducted on the mechanism of xanthate in plants. The characterization of fulvic acid properties is indispensable in practical agricultural applications. Moreover, the development of effective fulvic acid derivatives according to the actual situation is essential to promote the sustainable development of agriculture.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298321828240826074104
2024-09-12
2025-03-30
Loading full text...

Full text loading...

References

  1. Miri NargesiM. SedaghathoorS. HashemabadiD. Effect of foliar application of amino acid, humic acid and fulvic acid on the oil content and quality of olive.Saudi J. Biol. Sci.20222953473348110.1016/j.sjbs.2022.02.034 35844421
    [Google Scholar]
  2. WangY. LiuZ. XiemuxidingA. ZhangX. DuanL. LiR. Fulvic acid, brassinolide, and uniconazole mediated regulation of morphological and physiological traits in maize seedlings under water stress.J. Plant Growth Regul.20234231762177410.1007/s00344‑022‑10658‑6 35668726
    [Google Scholar]
  3. Ukalska-JarugaA. DebaeneG. SmreczakB. Particle and structure characterization of fulvic acids from agricultural soils.J. Soils Sediments20181882833284310.1007/s11368‑018‑2008‑1
    [Google Scholar]
  4. YangS. ZhangZ. CongL. WangX. ShiS. Effect of fulvic acid on the phosphorus availability in acid soil.J. Soil Sci. Plant Nutr.201313ahead10.4067/S0718‑95162013005000041
    [Google Scholar]
  5. Mohsen Al-MughairH.A-H. Abbas Al-WaeliH. Hussein Noor Al-jana, M.; Si-hud Al-Hamdawi, E. R. Influence of humic and fulvic acid addition on soil N P K availability and broad bean output (Vicia Faba L.).Bionatura20238114
    [Google Scholar]
  6. LiuN. YeW. ZhaoG. LiuG. Release of free-state ions from fulvic acid-heavy metal complexes via VUV/H2O2 photolysis: Photodegradation of fulvic acids and recovery of Cd2+ and Pb2+ stripping voltammetry currents.Environ. Pollut.202231512042010.1016/j.envpol.2022.120420
    [Google Scholar]
  7. WinklerJ. GhoshS. Therapeutic potential of fulvic acid in chronic inflammatory diseases and diabetes.J. Diabetes Res.201820181710.1155/2018/5391014 30276216
    [Google Scholar]
  8. QinY. ZhangM. DaiW. XiangC. LiB. JiaQ. Antidiarrhoeal mechanism study of fulvic acids based on molecular weight fractionation.Fitoterapia201913710427010.1016/j.fitote.2019.104270 31326418
    [Google Scholar]
  9. CornejoA. JiménezJ.M. CaballeroL. MeloF. MaccioniR.B. Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer’s disease.J. Alzheimers Dis.201127114315310.3233/JAD‑2011‑110623 21785188
    [Google Scholar]
  10. RanS. HeT. ZhouX. YinD. Effects of fulvic acid and humic acid from different sources on Hg methylation in soil and accumulation in rice.J. Environ. Sci.20221199310510.1016/j.jes.2022.02.023 35934469
    [Google Scholar]
  11. GongG. LiZ. ZhangY. MaL. WangZ. LiR. LiangS. LuS. MaL. Preparation and structural characterisation of coal-based fulvic acid based on lignite.J. Mol. Struct.2022126013276610.1016/j.molstruc.2022.132766
    [Google Scholar]
  12. CaiD. KongX. ZhangX. YeJ. XuH. ZhuY. WangD. Alkali-activated potassium persulfate treatment of sugarcane filter cake for the rapid production of fulvic-like-acid fertilizer.ACS Sustain. Chem.& Eng.20231137136781368710.1021/acssuschemeng.3c03511
    [Google Scholar]
  13. Arosemena PoloJ.D. Toboso-ChaveroS. AdhikariB. VillalbaG. Closing the nutrient cycle in urban areas: The use of municipal solid waste in peri-urban and urban agriculture.Waste Manag.202418322023110.1016/j.wasman.2024.05.009 38761486
    [Google Scholar]
  14. LeograndeR. LopedotaO. VittiC. VentrellaD. MontemurroF. Saline water and municipal solid waste compost application on tomato crop: Effects on plant and soil.J. Plant Nutr.201639449150110.1080/01904167.2015.1084325
    [Google Scholar]
  15. AliH. LetaS. HussenA. AlemuT. Resource recovery potential from source-separated organic municipal solid waste: Opportunities for organic fertilizer production and creating sustainable urban agriculture in Ethiopia.J. Mater. Cycles Waste Manag.20232542417243010.1007/s10163‑023‑01709‑5
    [Google Scholar]
  16. SardarmehniM. LevisJ.W. BarlazM.A. What is the best end use for compost derived from the organic fraction of municipal solid waste?Environ. Sci. Technol.2021551738110.1021/acs.est.0c04997 33300346
    [Google Scholar]
  17. MuD. MuL. GengX. MohamedT.A. WeiZ. Evolution from basic to advanced structure of fulvic acid and humic acid prepared by food waste.Int. J. Biol. Macromol.2024256Pt 212841310.1016/j.ijbiomac.2023.128413 38029895
    [Google Scholar]
  18. Esteves da SilvaJ.C.G. MachadoA.A.S.C. PintoM.S.S.D.S. The complexation of Cu(II) by anthropogenic fulvic acids extracted from composted urban and livestock wastes.J. Environ. Sci. Health B199732446948210.1080/03601239709373098 9208471
    [Google Scholar]
  19. WangZ. ShenT. YangY. GaoB. WanY. LiY.C. YaoY. LiuL. TangY. XieJ. DingF. ChenJ. Fulvic acid-like substance and its characteristics, an innovative waste recycling material from pulp black liquor.J. Clean. Prod.202024311858510.1016/j.jclepro.2019.118585
    [Google Scholar]
  20. ZhaoX. LiB. NiJ. XieD. Effect of four crop straws on transformation of organic matter during sewage sludge composting.J. Integr. Agric.201615123224010.1016/S2095‑3119(14)60954‑0
    [Google Scholar]
  21. ChiM. Extraction and characterization of fulvic acid from corn straw compost by alkali solution acid precipitation. Ind. Crops Prod.202319811667810.1016/j.indcrop.2023.116678.
    [Google Scholar]
  22. JaingT. HanG. ZhangY. HuangY. LiG. GuoY. YangY. Improving extraction yield of humic substances from lignite with anthraquinone in alkaline solution.J. Cent. South Univ. Technol.2011181687210.1007/s11771‑011‑0660‑3
    [Google Scholar]
  23. HancA. EnevV. HrebeckovaT. KlucakovaM. PekarM. Characterization of humic acids in a continuous-feeding vermicomposting system with horse manure.Waste Manag.20199911110.1016/j.wasman.2019.08.032 31454594
    [Google Scholar]
  24. MuD. WangC. GengX. ZhaoY. MohamedT.A. WuD. WeiZ. Effect of Maillard reaction based on catechol polymerization on the conversion of food waste to humus.Chemosphere202435314156010.1016/j.chemosphere.2024.141560 38417496
    [Google Scholar]
  25. ReemtsmaT. TheseA. Comparative investigation of low-molecular-weight fulvic acids of different origin by SEC-Q-TOF-ms: New insights into structure and formation.Environ. Sci. Technol.200539103507351210.1021/es0480466 15952353
    [Google Scholar]
  26. SchultenH.R. SchnitzerM. Chemical model structures for soil organic matter and soils.Soil Sci.1997162211513010.1097/00010694‑199702000‑00005
    [Google Scholar]
  27. LinderP.W. MurrayK. Statistical determination of the molecular structure and the metal binding sites of fulvic acids.Sci. Total Environ.1987641-214916110.1016/0048‑9697(87)90128‑8
    [Google Scholar]
  28. TiwariJ. RamanathanA. BauddhK. KorstadJ. Humic substances: Structure, function and benefits for agroecosystems—A review.Pedosphere202333223724910.1016/j.pedsph.2022.07.008
    [Google Scholar]
  29. RazaT. QadirM.F. KhanM.Z. SaleemM. IqbalM. KhanA.Q. RazaA. RazaM.A. RazaM.R. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem.J. Environ. Manag.202334411852910.1016/j.jenvman.2023.118529.
    [Google Scholar]
  30. ArcandM.M. HelgasonB.L. LemkeR.L. Microbial crop residue decomposition dynamics in organic and conventionally managed soils.Appl. Soil Ecol.201610734735910.1016/j.apsoil.2016.07.001
    [Google Scholar]
  31. AtiweshG. ParrishC.C. BanoubJ. LeT.A.T. Lignin degradation by microorganisms: A review.Biotechnol. Prog.2022382e322610.1002/btpr.3226 34854261
    [Google Scholar]
  32. HeJ. ZhuN. XuY. WangL. ZhengJ. LiX. The microbial mechanisms of enhanced humification by inoculation with Phanerochaete chrysosporium and Trichoderma longibrachiatum during biogas residues composting.Bioresour. Technol.202235112697310.1016/j.biortech.2022.126973 35292388
    [Google Scholar]
  33. SachsP. Humus: Still a Mystery.New YorkNortheast Organic Farming Association2002
    [Google Scholar]
  34. ZavarzinaA.G. DanchenkoN.N. DeminV.V. ArtemyevaZ.S. KogutB.M. Humic substances: Hypotheses and reality (a review).Eurasian Soil Sci.202154121826185410.1134/S1064229321120164
    [Google Scholar]
  35. TangC. LiY. SongJ. AntoniettiM. YangF. Artificial humic substances improve microbial activity for binding CO2.iScience202124610264710.1016/j.isci.2021.102647 34466779
    [Google Scholar]
  36. HuangW. KuzyakovY. NiuS. LuoY. SunB. ZhangJ. LiangY. Drivers of microbially and plant‐derived carbon in topsoil and subsoil.Glob. Change Biol.202329226188620010.1111/gcb.16951 37732716
    [Google Scholar]
  37. HeX. ZhangH. LiJ. YangF. DaiW. XiangC. ZhangM. The positive effects of humic/fulvic acid fertilizers on the quality of lemon fruits.Agronomy2022128191910.3390/agronomy12081919
    [Google Scholar]
  38. KailolaJ.J.G. SantosaE. AzizS.A. DinartyD. WidodoW.D. Leaves production and its flavonoids content of moringa (Moringa oleifera Lam.) from fulvic acid treatment.Indones. J. Agron.202351110711810.24831/ija.v51i1.45864
    [Google Scholar]
  39. BrazieneZ. PaltanaviciusV. AvizienytėD. The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity.Environ. Res.202119511082410.1016/j.envres.2021.110824 33539831
    [Google Scholar]
  40. LvD. SunH. ZhangM. LiC. Fulvic acid fertilizer improves garlic yield and soil nutrient status.Gesunde Pflanzen202274368569310.1007/s10343‑022‑00644‑z
    [Google Scholar]
  41. DingS. DengX. YunW. ZhangP. HeZ. LuoB. Effects of fulvic acid on rice growth and phosphorus absorption.J. Plant Nutr.20244791408141710.1080/01904167.2024.2308189
    [Google Scholar]
  42. GalerianiT.M. NevesG.O. Santos FerreiraJ.H. OliveiraR.N. OliveiraS.L. CalonegoJ.C. CrusciolC.A.C. Calcium and boron fertilization improves soybean photosynthetic efficiency and grain yield.Plants20221121293710.3390/plants11212937 36365390
    [Google Scholar]
  43. OliveiraS.L. CrusciolC.A.C. RodriguesV.A. GalerianiT.M. PortugalJ.R. BossolaniJ.W. MorettiL.G. CalonegoJ.C. CantarellaH. Molybdenum foliar fertilization improves photosynthetic metabolism and grain yields of field-grown soybean and maize.Front. Plant Sci.20221388768210.3389/fpls.2022.887682 35720532
    [Google Scholar]
  44. NaeemM. NaeemM.S. AhmadR. AhmadR. AshrafM.Y. IhsanM.Z. NawazF. AtharH-R. AshrafM. AbbasH.T. AbdullahM. Improving drought tolerance in maize by foliar application of boron: Water status, antioxidative defense and photosynthetic capacity.Arch. Agron. Soil Sci.201864562663910.1080/03650340.2017.1370541
    [Google Scholar]
  45. WangS. DuanS. GeorgeT.S. FengG. ZhangL. Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure.Plant Soil20244971-250352210.1007/s11104‑023‑06409‑5
    [Google Scholar]
  46. ZhangM. LiX. WangX. FengJ. ZhuS. Potassium fulvic acid alleviates salt stress of citrus by regulating rhizosphere microbial community, osmotic substances and enzyme activities.Front. Plant Sci.202314116146910.3389/fpls.2023.1161469 37035078
    [Google Scholar]
  47. PokethitiyookP. PoolpakT. TanhanP. SiangjaeoS. MahakittikunP. Enhancement of zinc and cadmium uptake in Brassicaceae plants by Rhizosphere bacteria.J. Biotechnol.2008136S30S3110.1016/j.jbiotec.2008.07.058
    [Google Scholar]
  48. EsringüA. TuranM. CangönülA. Remediation of Pb and Cd polluted soils with fulvic acid.Forests20211211160810.3390/f12111608
    [Google Scholar]
  49. YildirimE. EkinciM. TuranM. AğarG. DursunA. KulR. AlimZ. ArginS. Humic + Fulvic acid mitigated Cd adverse effects on plant growth, physiology, and biochemical properties of garden cress.Sci. Rep.2021111804010.1016/10.1038/s41598‑021‑86991‑9.
    [Google Scholar]
  50. CuiH. WenX. WuZ. ZhaoY. LuQ. WeiZ. Insight into complexation of Cd(II) and Cu(II) to fulvic acid based on feature recognition of PARAFAC combined with 2DCOS.J. Hazard. Mater.202244012975810.1016/j.jhazmat.2022.129758 35969950
    [Google Scholar]
  51. ShintaY.C. ZamanB. SumiyatiS. Citric Acid and EDTA as chelating agents in phytoremediation of heavy metal in polluted soil: A review.Earth and Environmental Science2021896
    [Google Scholar]
  52. ZhangK. DaiZ. ZhangW. GaoQ. DaiY. XiaF. ZhangX. EDTA-based adsorbents for the removal of metal ions in wastewater.Coord. Chem. Rev.202143421380910.1016/j.ccr.2021.213809
    [Google Scholar]
  53. GuoX. WeiZ. WuQ. LiC. QianT. ZhengW. Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments.Chemosphere201614741241910.1016/j.chemosphere.2015.12.087 26774307
    [Google Scholar]
  54. ChengattA.P. SarathN.G. SebastianD.P. MohananN.S. SindhuE.S. GeorgeS. PuthurJ.T. Chelate assisted phytoextraction for effective rehabilitation of heavy metal(loid)s contaminated lands.Int. J. Phytoremediation202325898199610.1080/15226514.2022.2124233 36148488
    [Google Scholar]
  55. CheleK.H. TinteM.M. PiaterL.A. DuberyI.A. TugizimanaF. Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective.Metabolites2021111172410.3390/metabo11110724 34822381
    [Google Scholar]
  56. ThakurH. RekhaK.B. GiriY.Y. BabuS.S. Impact of humic + fulvic acid and chemical fertilizer application on plant growth and yield traits of sunflower (Helianthus annuus L.) under alfisols.J. Pharmacogn. Phytochem.2018729922994
    [Google Scholar]
  57. JesminA. AnhL.H. MaiN.P. KhanhT.D. XuanT.D. Fulvic acid improves salinity tolerance of rice seedlings: Evidence from phenotypic performance, relevant phenolic acids, and momilactones.Plants20231212235910.3390/plants12122359 37375984
    [Google Scholar]
  58. FizerM. SideyV. MilyovichS. FizerO. A DFT study of fulvic acid binding with bivalent metals: Cd, Cu, Mg, Ni, Pb, Zn.J. Mol. Graph. Model.202110210780010.1016/j.jmgm.2020.107800 33197854
    [Google Scholar]
  59. AndrewS. Calcium binding by fulvic acids studied by an ion selecitive electrode and an ultrafiltrastion method.Talanta199340452152610.1016/0039‑9140(93)80011‑F 18965660
    [Google Scholar]
  60. GuptaA. Rico-MedinaA. Caño-DelgadoA.I. The physiology of plant responses to drought.Science2020368648826626910.1126/science.aaz7614 32299946
    [Google Scholar]
  61. AnjumS.A. WangL. FarooqM. XueL. AliS. Fulvic acid application improves the maize performance under well-watered and drought conditions.J. Agron. Crop Sci.2011197640941710.1111/j.1439‑037X.2011.00483.x
    [Google Scholar]
  62. IraniH. ValizadehKajiB. NaeiniM.R. Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes.Chem. Biol. Technol. Agric.202181510.1186/s40538‑020‑00200‑9
    [Google Scholar]
  63. SunJ. QiuC. DingY. WangY. SunL. FanK. GaiZ. DongG. WangJ. LiX. SongL. DingZ. Fulvic acid ameliorates drought stress-induced damage in tea plants by regulating the ascorbate metabolism and flavonoids biosynthesis.BMC Genomics202021141110.1186/s12864‑020‑06815‑4 32552744
    [Google Scholar]
  64. QiuC. SunJ. ShenJ. ZhangS. DingY. GaiZ. FanK. SongL. ChenB. DingZ. WangY. Fulvic acid enhances drought resistance in tea plants by regulating the starch and sucrose metabolism and certain secondary metabolism.J. Proteomics202124710433710.1016/j.jprot.2021.104337 34298183
    [Google Scholar]
  65. HatchC.D. GierlusK.M. ZahardisJ. SchuttlefieldJ. GrassianV.H. Water uptake of humic and fulvic acid: Measurements and modelling using single parameter Köhler theory.Environ. Chem.20096538010.1071/EN09083
    [Google Scholar]
  66. XuD. DengY. XiP. YuG. WangQ. ZengQ. JiangZ. GaoL. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism.Food Chem.201928622623310.1016/j.foodchem.2019.02.015 30827600
    [Google Scholar]
  67. ZhaoX. ZhuD. TanJ. WangR. QiG. Cooperative action of fulvic acid and Bacillus paralicheniformis ferment in regulating soil microbiota and improving soil fertility and plant resistance to bacterial wilt disease.Microbiol. Spectr.2023112e04079e2210.1128/spectrum.04079‑22 36861975
    [Google Scholar]
  68. HamadaE.S. AmerA. MesbahA. Effect of seed soaking and foliar spray of humic acid and fulvic acid on cotton plant pests and yield, compared with some recommended pesticides.Egypt. Acad. J. Biol. Sci. B Zool.2021131637510.21608/eajbsz.2021.147916
    [Google Scholar]
  69. BenelliG. Gold nanoparticles – against parasites and insect vectors.Acta Trop.2018178738010.1016/j.actatropica.2017.10.021 29092797
    [Google Scholar]
  70. KampermannI. BautzeD. MapiliM. MusyokaM. KaranjaE. FiaboeK.K.M. IrunguJ. AdamteyN. Insecticide contamination in organic agriculture: Evidence from a long-term farming systems comparisons trial.Crop Prot.202417710652910.1016/j.cropro.2023.106529
    [Google Scholar]
  71. CaoY. CaiH. SunS. GuX. MuQ. DuanW. ZhaoZ. Effects of drip irrigation methods on yield and water productivity of maize in Northwest China.Agric. Water Manage.202225910722710.1016/j.agwat.2021.107227
    [Google Scholar]
  72. KremerC. DíazJ. SeguelO. TapiaY. Preliminary use of a fulvic acid, as a strategy to improve water use in saline soils.Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo202153116417510.48162/rev.39.016
    [Google Scholar]
  73. LiuZ. MaC. XiaoY. LiliZ. MuhammadT. LiY. Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems.Agric. Water Manage.202328510835510.1016/j.agwat.2023.108355
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298321828240826074104
Loading
/content/journals/mroc/10.2174/0118756298321828240826074104
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test