Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Microbial derivatives are a significant source of antioxidants, with varying structures leading to different activities due to distinct structure-activity relationships. These structures include polyketones, alkaloids, terpenes, and fatty acids. Microbial-derived antioxidants offer unique advantages, such as diversity, high yield, customizability, sustainability, and biocompatibility, making them promising for various applications. This review aims to address the following objectives: (1) to explore the antioxidant activities of microbial derivatives with these specific structures, (2) to detail their biosynthesis processes, and (3) to lay the groundwork for their further utilization and development in diverse fields.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298307594240725104448
2024-08-06
2025-03-30
Loading full text...

Full text loading...

References

  1. López-AlarcónC. DenicolaA. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays.Anal. Chim. Acta201376311010.1016/j.aca.2012.11.051 23340280
    [Google Scholar]
  2. PisoschiA.M. PopA. The role of antioxidants in the chemistry of oxidative stress: A review.Eur. J. Med. Chem.201597557410.1016/j.ejmech.2015.04.040 25942353
    [Google Scholar]
  3. BhattacharyyaA. ChattopadhyayR. MitraS. CroweS.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases.Physiol. Rev.201494232935410.1152/physrev.00040.2012 24692350
    [Google Scholar]
  4. HanH. YılmazH. Gülçinİ. Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS.Rec. Nat. Prod.201812439740210.25135/rnp.46.17.09.155
    [Google Scholar]
  5. BulutN. KocyigitU.M. GecibeslerI.H. DastanT. KarciH. Synthesis of some novel pyridine compounds containing bis-1,2,4- triazole/thiosemicarbazide moiety and investigation of their antioxidant properties, carbonic anhydrase, and acetylcholinesterase enzymes inhibition profiles. Biochem Mol Toxicol.,2018321
  6. KrawczykH. The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives.Bioorg. Chem.20199010307310.1016/j.bioorg.2019.103073 31234131
    [Google Scholar]
  7. ZiechD. FrancoR. PappaA. PanayiotidisM.I. Reactive Oxygen Species (ROS)––Induced genetic and epigenetic alterations in human carcinogenesis.Mutat. Res.20117111-216717310.1016/j.mrfmmm.2011.02.015 21419141
    [Google Scholar]
  8. HurJ. SullivanK.A. SchuylerA.D. HongY. PandeM. StatesD.J. JagadishH.V. FeldmanE.L. Literature-based discovery of diabetes- and ROS-related targets.BMC Med. Genomics2010314910.1186/1755‑8794‑3‑49 20979611
    [Google Scholar]
  9. NewsholmeP. HaberE.P. HirabaraS.M. RebelatoE.L.O. ProcopioJ. MorganD. Oliveira-EmilioH.C. CarpinelliA.R. CuriR. Diabetes associated cell stress and dysfunction: Role of mitochondrial and non‐mitochondrial ROS production and activity.J. Physiol.2007583192410.1113/jphysiol.2007.135871 17584843
    [Google Scholar]
  10. de VriesH.E. WitteM. HondiusD. RozemullerA.J.M. DrukarchB. HoozemansJ. van HorssenJ. Nrf2-induced antioxidant protection: A promising target to counteract ROS-mediated damage in neurodegenerative disease?Free Radic. Biol. Med.200845101375138310.1016/j.freeradbiomed.2008.09.001 18824091
    [Google Scholar]
  11. WuZ. DuY. XueH. WuY. ZhouB. Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production.Neurobiol. Aging2012331199.e1199.e1210.1016/j.neurobiolaging.2010.06.018 20674094
    [Google Scholar]
  12. BlagosklonnyM.V. Aging: ROS or TOR.Cell Cycle20087213344335410.4161/cc.7.21.6965 18971624
    [Google Scholar]
  13. VigneronA. VousdenK.H. P53, ROS and senescence in the control of aging.Aging20102847147410.18632/aging.100189 20729567
    [Google Scholar]
  14. HassanM.G. ElmezainW.A. BarakaD.M. AboElmaatyS.A. ElhassaneinA. IbrahimR.M. HamedA.A. Anti-cancer and anti-oxidant bioactive metabolites from Aspergillus fumigatus WA7S6 isolated from marine sources: In vitro and in silico studies.Microorganisms202412112710.3390/microorganisms12010127 38257954
    [Google Scholar]
  15. HerreraB. ÁlvarezA.M. SánchezA. FernándezM. RonceroC. BenitoM. FabregatI. Reactive oxygen species (ROS) mediates the mitochondrial‐dependent apoptosis induced by transforming growth factor ß in fetal hepatocytes.FASEB J.200115374175110.1096/fj.00‑0267com 11259392
    [Google Scholar]
  16. ZhangD.W. ShaoJ. LinJ. ZhangN. LuB.J. LinS.C. DongM.Q. HanJ. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis.Science2009325593833233610.1126/science.1172308 19498109
    [Google Scholar]
  17. Scherz-ShouvalR. ElazarZ. Regulation of autophagy by ROS: physiology and pathology.Trends Biochem. Sci.2011361303810.1016/j.tibs.2010.07.007 20728362
    [Google Scholar]
  18. PriyantoJ.A. HeningE.N.W. PermatasariV. PrastyaM.E. HasiduL.O.A.F. PrimahanaG. Antioxidant and cytotoxic properties of extract from soil bacteria isolated from Muna Island, Southeast Sulawesi.Jurnal ILMU DASAR2024251710.19184/jid.v25i1.39244
    [Google Scholar]
  19. RatnamD.V. AnkolaD.D. BhardwajV. SahanaD.K. KumarM.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective.J. Control. Release2006113318920710.1016/j.jconrel.2006.04.015 16790290
    [Google Scholar]
  20. ZhouD. ShaoL. SpitzD.R. Reactive oxygen species in normal and tumor stem cells.Adv. Cancer Res.201412216710.1016/B978‑0‑12‑420117‑0.00001‑3 24974178
    [Google Scholar]
  21. TownsendD.M. TewK.D. TapieroH. The importance of glutathione in human disease.Biomed. Pharmacother.2003573-414515510.1016/S0753‑3322(03)00043‑X 12818476
    [Google Scholar]
  22. FlohéL. The fairytale of the GSSG/GSH redox potential.Biochim. Biophys. Acta, Gen. Subj.2013183053139314210.1016/j.bbagen.2012.10.020 23127894
    [Google Scholar]
  23. AlliJ.A. KehindeA.O. KosokoA.M. AdemowoO.G. Oxidative stress and reduced vitamins C and E levels are associated with multi-drug resistant tuberculosis.J. Tuberc. Res.201421525810.4236/jtr.2014.21006
    [Google Scholar]
  24. ApostolovaN. VictorV.M. Molecular strategies for targeting antioxidants to mitochondria: Therapeutic implications.Antioxid. Redox Signal.201522868672910.1089/ars.2014.5952 25546574
    [Google Scholar]
  25. ChatterjeeA. Reduced glutathione: A radioprotector or a modulator of DNA-repair activity?Nutrients20135252554210.3390/nu5020525 23434907
    [Google Scholar]
  26. PolefkaT.G. MeyerT.A. AginP.P. BianchiniR.J. Cutaneous oxidative stress.J. Cosmet. Dermatol.2012111556410.1111/j.1473‑2165.2011.00596.x 22360336
    [Google Scholar]
  27. MengD. ZhangP. ZhangL. WangH. HoC.T. LiS. ShahidiF. ZhaoH. Detection of cellular redox reactions and antioxidant activity assays.J. Funct. Foods20173746747910.1016/j.jff.2017.08.008
    [Google Scholar]
  28. BreheJ.E. BurchH.B. Enzymatic assay for glutathione.Anal. Biochem.197674118919710.1016/0003‑2697(76)90323‑7 962073
    [Google Scholar]
  29. Limón-PachecoJ. GonsebattM.E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20096741-213714710.1016/j.mrgentox.2008.09.015 18955158
    [Google Scholar]
  30. LewandowskiŁ. KepinskaM. MilnerowiczH. Alterations in concentration/activity of superoxide dismutases in context of obesity and selected single nucleotide polymorphisms in genes: SOD1, SOD2, SOD3.Int. J. Mol. Sci.20202114506910.3390/ijms21145069 32709094
    [Google Scholar]
  31. DormandyT.L. Free-radical oxidation and antioxidants.Lancet1978311806564765010.1016/S0140‑6736(78)91148‑0 76178
    [Google Scholar]
  32. YasuiK. KobayashiN. YamazakiT. AgematsuK. MatsuzakiS. ItoS. NakataS. BabaA. KoikeK. Superoxide dismutase (SOD) as a potential inhibitory mediator of inflammation via neutrophil apoptosis.Free Radic. Res.200539775576210.1080/10715760500104066 16036355
    [Google Scholar]
  33. RondanelliM. MiragliaN. PutignanoP. CastagliuoloI. BrunP. Dall’AcquaS. PeroniG. FalivaM.A. NasoM. NichettiM. InfantinoV. PernaS. Effects of 60-Day Saccharomyces boulardii and superoxide dismutase supplementation on body composition, hunger sensation, pro/antioxidant ratio, inflammation and hormonal lipo-metabolic biomarkers in obese adults: A double-blind, placebo-controlled trial.Nutrients2021138251210.3390/nu13082512 34444671
    [Google Scholar]
  34. VaneevA.N. KostO.A. EremeevN.L. BeznosO.V. AlovaA.V. GorelkinP.V. ErofeevA.S. ChesnokovaN.B. KabanovA.V. KlyachkoN.L. Superoxide dismutase 1 nanoparticles (Nano-SOD1) como um medicamento potencial para o tratamento de doenças inflamatórias dos olhos.Biomedicines20219439610.3390/biomedicines9040396 33917028
    [Google Scholar]
  35. RosaA.C. CorsiD. CaviN. BruniN. DosioF. Superoxide dismutase administration: A review of proposed human uses.Molecules2021267184410.3390/molecules26071844 33805942
    [Google Scholar]
  36. AbatiE. BresolinN. ComiG. CortiS. Silence superoxide dismutase 1 (SOD1): A promising therapeutic target for amyotrophic lateral sclerosis (ALS).Expert Opin. Ther. Targets202024429531010.1080/14728222.2020.1738390 32125907
    [Google Scholar]
  37. Brigelius-FlohéR. FlohéL. Basic principles and emerging concepts in the redox control of transcription factors.Antioxid. Redox Signal.20111582335238110.1089/ars.2010.3534 21194351
    [Google Scholar]
  38. AkınM. AyogluH. OkyayD. AyogluF. GürA. CanM. YurtluS. HancıV. KüçükosmanG. TuranI. Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity.Rev. Bras. Anestesiol.2015651516010.1016/j.bjan.2014.04.001 25497750
    [Google Scholar]
  39. CollinsY. ChouchaniE.T. JamesA.M. MengerK.E. CocheméH.M. MurphyM.P. Mitochondrial redox signalling at a glance.J. Cell Sci.2012125480180610.1242/jcs.098475 22448036
    [Google Scholar]
  40. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.5149 23991888
    [Google Scholar]
  41. RodriguesG.P. CozzolinoS.M.F. MarreiroD.N. CaldasD.R.C. da SilvaK.G. de Sousa AlmondesK.G. NetoJ.M.M. PimentelJ.A.C. de CarvalhoC.M.R.G. NogueiraN.N. Mineral status and superoxide dismutase enzyme activity in Alzheimer’s disease.J. Trace Elem. Med. Biol.201744838710.1016/j.jtemb.2017.06.005 28965606
    [Google Scholar]
  42. HalliwellB. GutteridgeJ.M.C. Role of free radicals and catalytic metal ions in human disease: An overview.Methods Enzymol.199018618510.1016/0076‑6879(90)86093‑B 2172697
    [Google Scholar]
  43. GriessB. TomE. DomannF. Teoh-FitzgeraldM. Extracellular superoxide dismutase and its role in cancer.Free Radic. Biol. Med.201711246447910.1016/j.freeradbiomed.2017.08.013 28842347
    [Google Scholar]
  44. ChelikaniP. FitaI. LoewenP.C. Diversity of structures and properties among catalases.Cell. Mol. Life Sci.200461219220810.1007/s00018‑003‑3206‑5 14745498
    [Google Scholar]
  45. GaetaniG.F. FerrarisA.M. RolfoM. MangeriniR. ArenaS. KirkmanH.N. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes.Blood19968741595159910.1182/blood.V87.4.1595.bloodjournal8741595 8608252
    [Google Scholar]
  46. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.20104811812610.4103/0973‑7847.70902 22228951
    [Google Scholar]
  47. IghodaroO.M. AkinloyeO.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. Med.2017544287293
    [Google Scholar]
  48. EisnerT. AneshansleyD.J. Spray aiming in the bombardier beetle: Photographic evidence.Proc. Natl. Acad. Sci.199996179705970910.1073/pnas.96.17.9705 10449758
    [Google Scholar]
  49. DemainA.L. Importance of microbial natural products and the need to revitalize their discovery.J. Ind. Microbiol. Biotechnol.201441218520110.1007/s10295‑013‑1325‑z 23990168
    [Google Scholar]
  50. KhatuaS. PaulS. AcharyaK. Mushroom as the potential source of new generation of antioxidant: A review.Res. Pharm. Technol.201365496505
    [Google Scholar]
  51. GuptaS. ChaturvediP. KulkarniM.G. Van StadenJ. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi.Biotechnol. Adv.20203910746210.1016/j.biotechadv.2019.107462 31669137
    [Google Scholar]
  52. VitaleG.A. CoppolaD. Palma EspositoF. BuonocoreC. AusuriJ. TortorellaE. de PascaleD. Antioxidant molecules from marine fungi: Methodologies and perspectives.Antioxidants2020912118310.3390/antiox9121183 33256101
    [Google Scholar]
  53. JanthanomR. KikuchiY. KantoH. HiroseT. TaharaA. IshiiT. ThamchaipenetA. InahashiY. A new analog of dihydroxybenzoic acid from Saccharopolyspora sp. KR21-0001.Beilstein J. Org. Chem.202420049750310.3762/bjoc.20.44 38440171
    [Google Scholar]
  54. KawaharaT. IzumikawaM. OtoguroM. YamamuraH. HayakawaM. TakagiM. Shin-yaK. JBIR-94 and JBIR-125, antioxidative phenolic compounds from Streptomyces sp. R56-07.J. Nat. Prod.201275110711010.1021/np200734p 22233425
    [Google Scholar]
  55. HortaA. PinteusS. AlvesC. FinoN. SilvaJ. FernandezS. RodriguesA. PedrosaR. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria.Mar. Drugs20141231676168910.3390/md12031676 24663118
    [Google Scholar]
  56. WolterA. HagerA.S. ZanniniE. GalleS. GänzleM.G. WatersD.M. ArendtE.K. Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours.Food Microbiol.201437445010.1016/j.fm.2013.06.009 24230472
    [Google Scholar]
  57. YuY.J. ChenZ. ChenP.T. NgI.S. Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect.J. Biosci. Bioeng.2018126676977710.1016/j.jbiosc.2018.05.028 30042003
    [Google Scholar]
  58. LimS. JungJ.H. BlanchardL. de GrootA. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species.FEMS Microbiol. Rev.2019431195210.1093/femsre/fuy037 30339218
    [Google Scholar]
  59. LinS.M. BaekC.Y. JungJ.H. KimW.S. SongH.Y. LeeJ.H. JiH.J. ZhiY. KangB.S. BahnY.S. SeoH. Antioxidant activities of an exopolysaccharide (deinopol) produced by the extreme radiation-resistant bacterium Deinococcus radiodurans.Sci. Rep.2020101111 31913322
    [Google Scholar]
  60. WangJ. HuS. NieS. YuQ. XieM. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides.Oxid. Med. Cell. Longev.2016201611310.1155/2016/5692852 26682009
    [Google Scholar]
  61. AzizanM.S. ZamaniA.I. StahmannK.P. NgC.L. Fungal metabolites and their industrial importance: A brief review.Malaysian J. Biochem. Molecul. Biol.20191931523
    [Google Scholar]
  62. Bhanja DeyT. ChakrabortyS. JainK.K. SharmaA. KuhadR.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review.Trends Food Sci. Technol.201653607410.1016/j.tifs.2016.04.007
    [Google Scholar]
  63. RisdianC. MozefT. WinkJ. Biosynthesis of polyketides in Streptomyces.Microorganisms20197512410.3390/microorganisms7050124 31064143
    [Google Scholar]
  64. LiS. SiT. WangM. ZhaoH. Development of a synthetic Malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening.ACS Synth. Biol.20154121308131510.1021/acssynbio.5b00069 26149896
    [Google Scholar]
  65. PiteraD.J. PaddonC.J. NewmanJ.D. KeaslingJ.D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli.Metab. Eng.20079219320710.1016/j.ymben.2006.11.002 17239639
    [Google Scholar]
  66. NielsenJ. KeaslingJ.D. EngineeringD. Cellular metabolism.Cell201616461185119710.1016/j.cell.2016.02.004 26967285
    [Google Scholar]
  67. TillM. RaceP.R. The assembly line enzymology of polyketide biosynthesis.Methods Mol. Biol.20161401314910.1007/978‑1‑4939‑3375‑4_2 26831699
    [Google Scholar]
  68. CrawfordJ.M. TownsendC.A. New insights into the formation of fungal aromatic polyketides.Nat. Rev. Microbiol.201081287988910.1038/nrmicro2465 21079635
    [Google Scholar]
  69. ChaplaV. ZeraikM. XimenesV. ZanardiL. LopesM. CavalheiroA. SilvaD. YoungM. FonsecaL. BolzaniV. AraújoA. Bioactive secondary metabolites from Phomopsis sp., an endophytic fungus from Senna spectabilis.Molecules20141956597660810.3390/molecules19056597 24858094
    [Google Scholar]
  70. SunY. LiuJ. LiL. GongC. WangS. YangF. HuaH. LinH. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus.Bioorg. Med. Chem. Lett.201828331531810.1016/j.bmcl.2017.12.049 29295795
    [Google Scholar]
  71. AminM. LiangX. MaX. DongJ.D. QiS.H. New pyrone and cyclopentenone derivatives from marine-derived fungus Aspergillus sydowii SCSIO 00305.Nat. Prod. Res.202135231832610.1080/14786419.2019.1629919 31204847
    [Google Scholar]
  72. OuyangJ. MaoZ. GuoH. XieY. CuiZ. SunJ. WuH. WenX. WangJ. ShanT. Mollicellins o–r, four new depsidones isolated from the endophytic fungus Chaetomium sp. Eef-10.Molecules20182312321810.3390/molecules23123218 30563178
    [Google Scholar]
  73. ZhangJ. ChenG.Y. LiX.Z. HuM. WangB.Y. RuanB.H. ZhouH. ZhaoL.X. ZhouJ. DingZ.T. YangY.B. Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp.Nat. Prod. Res.201731232745275210.1080/14786419.2017.1295235 28278628
    [Google Scholar]
  74. ChenS. ShenH. DengY. GuoH. JiangM. WuZ. YinH. LiuL. Roussoelins A and B: Two phenols with antioxidant capacity from ascidian-derived fungus Roussoella siamensis SYSU-MS4723.Mar. Life Sci. Technol.202131697610.1007/s42995‑020‑00066‑8 37073392
    [Google Scholar]
  75. LiuH. LiuZ. ZhangY. ChenY. WangH. TanH. ZhangW. Antioxidant aryl-substituted phthalan derivatives produced by endophytic fungus Cytospora rhizophorae.Front Chem.20221082661510.3389/fchem.2022.826615 35237559
    [Google Scholar]
  76. LaiD. LiJ. ZhaoS. GuG. GongX. ProkschP. ZhouL. Chromone and isocoumarin derivatives from the endophytic fungus Xylomelasma sp. Samif07, and their antibacterial and antioxidant activities.Nat. Prod. Res.202135224616462010.1080/14786419.2019.1696333 31782665
    [Google Scholar]
  77. ZouG. TanQ. ChenY. YangW. ZangZ. JiangH. ChenS. WangB. SheZ. FurobenzotropolonesA. Furobenzotropolones a, b and 3-hydroxyepicoccone b with antioxidative activity from mangrove endophytic fungus Epicoccum nigrum MLY-3.Mar. Drugs202119739510.3390/md19070395 34356820
    [Google Scholar]
  78. YanZ. WenS. DingM. GuoH. HuangC. ZhuX. HuangJ. SheZ. LongY. The purification, characterization, and biological activity of new polyketides from mangrove-derived endophytic fungus Epicoccum nigrum SCNU-F0002.Mar. Drugs201917741410.3390/md17070414 31336899
    [Google Scholar]
  79. MaL.Y. LiuW.Z. ShenL. HuangY.L. RongX.G. XuY.Y. GaoX.D. Spiroketals, isocoumarin, and indoleformic acid derivatives from saline soil derived fungus Penicillium raistrickii.Tetrahedron201268102276228210.1016/j.tet.2012.01.054
    [Google Scholar]
  80. XiaoZ. ChenS. CaiR. LinS. HongK. SheZ. New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242.Beilstein J. Org. Chem.2016122077208510.3762/bjoc.12.196 27829913
    [Google Scholar]
  81. AnhC.V. KangJ.S. ChoiB.K. LeeH.S. HeoC.S. ShinH.J. Polyketides and meroterpenes from the marine-derived fungi Aspergillus unguis 158SC-067 and A. flocculosus 01NT-1.1.5 and their cytotoxic and antioxidant activities.Mar. Drugs202119841510.3390/md19080415 34436253
    [Google Scholar]
  82. WuZ. WangY. LiuD. ProkschP. YuS. LinW. Antioxidative phenolic compounds from a marine-derived fungus Aspergillus versicolor.Tetrahedron2016721505710.1016/j.tet.2015.10.038
    [Google Scholar]
  83. LuX. HeJ. WuY. DuN. LiX. JuJ. HuZ. UmezawaK. WangL. Isolation and characterization of new anti-inflammatory and antioxidant components from deep marine-derived fungus Myrothecium sp. Bzo-l062.Mar. Drugs2020181259710.3390/md18120597 33256194
    [Google Scholar]
  84. XuY. LiuW. WuD. HeW. ZuoM. WangD. FuP. WangL. ZhuW. Sulfur-containing phenolic compounds from the cave soil-derived Aspergillus fumigatus GZWMJZ-152.J. Nat. Prod.202285243344010.1021/acs.jnatprod.1c01158 35107296
    [Google Scholar]
  85. ZouG. LiT. YangW. SunB. ChenY. WangB. OuY. YuH. SheZ. Antioxidative indenone and benzophenone derivatives from the mangrove-derived fungus Cytospora heveae NSHSJ-2.Mar. Drugs202321318110.3390/md21030181 36976230
    [Google Scholar]
  86. LiuZ. TanH. ChenK. ChenY. ZhangW. ChenS. LiuH. ZhangW. Rhizophols A and B, antioxidant and axially chiral benzophenones from the endophytic fungus Cytospora rhizophorae.Org. Biomol. Chem.20191747100091001210.1039/C9OB02282A 31755515
    [Google Scholar]
  87. DuX. LiuD. HuangJ. ZhangC. ProkschP. LinW. Polyketide derivatives from the sponge associated fungus Aspergillus europaeus with antioxidant and NO inhibitory activities.Fitoterapia201813019019710.1016/j.fitote.2018.08.030 30193789
    [Google Scholar]
  88. GuoL. LinJ. NiuS. LiuS. LiuL. Pestalotiones A–D: Four new secondary metabolites from the plant endophytic fungus Pestalotiopsis Theae.Molecules202025347010.3390/molecules25030470 31979166
    [Google Scholar]
  89. VoQ.V. ThongN.M. Le HuyenT. NamP.C. TamN.M. HoaN.T. MechlerA. A thermodynamic and kinetic study of the antioxidant activity of natural hydroanthraquinones.RSC Advances20201034200892009710.1039/D0RA04013D 35520421
    [Google Scholar]
  90. LiH.L. LiX.M. LiX. WangC.Y. LiuH. KassackM.U. MengL.H. WangB.G. Antioxidant hydroanthraquinones from the marine algal-derived endophytic fungus Talaromyces islandicus EN-501.J. Nat. Prod.201780116216810.1021/acs.jnatprod.6b00797 27992187
    [Google Scholar]
  91. XuL.L. ZhangC.C. ZhuX.Y. CaoF. ZhuH.J. Bioactive phenyl ether derivatives from the marine-derived fungus Aspergillus carneus.Nat. Prod. Res.201731161875187910.1080/14786419.2016.1263848 27917659
    [Google Scholar]
  92. YangL.J. PengX.Y. ZhangY.H. LiuZ.Q. LiX. GuY.C. ShaoC.L. HanZ. WangC.Y. Antimicrobial and antioxidant polyketides from a deep-sea-derived fungus Aspergillus versicolor SH0105.Mar. Drugs2020181263610.3390/md18120636 33322355
    [Google Scholar]
  93. TanY. WangY.D. LiQ. XingX.K. NiuS.B. SunB.D. ChenL. PanR.L. DingG. Undescribed diphenyl ethers betaethrins A-I from a desert plant endophytic strain of the fungus Phoma betae A.B. Frank (Didymellaceae).Phytochemistry202220111326410.1016/j.phytochem.2022.113264 35679970
    [Google Scholar]
  94. HoshinoS. AwakawaT. ZhangH. HayashiF. AbeI. Beijinchromes A–D, novel aromatic compounds isolated from Nocardia beijingensis NBRC 16342.Chem. Pharm. Bull.201967877577710.1248/cpb.c19‑00364 31366826
    [Google Scholar]
  95. FuJ. HuL. ShiZ. SunW. YueD. WangY. MaX. RenZ. ZuoZ. PengG. ZhongZ. DengJ. CaoS. HuY. Two metabolites isolated from endophytic fungus Coniochaeta sp. F-8 in Ageratina adenophora exhibit antioxidative activity and cytotoxicity.Nat. Prod. Res.202135172840284810.1080/14786419.2019.1675060 31638432
    [Google Scholar]
  96. IsmaN.A. HeniR. DewiM.A. SariP. LilisS.A. YennyF.Y. Antioxidant properties of the ethyl acetate extract of endophytic fungus Penicillium citrinum from Kalanchoe millotii stem through secondary metabolites.Al Kimiya: Jurnal Ilmu Kimia dan Terapan.2023102123132
    [Google Scholar]
  97. BéniZ. DékányM. KovácsB. Csupor-LöfflerB. ZomborszkiZ. KerekesE. SzekeresA. UrbánE. HohmannJ. VányolósA. Bioactivity-guided isolation of antimicrobial and antioxidant metabolites from the mushroom Tapinella atrotomentosa.Molecules2018235108210.3390/molecules23051082 29734648
    [Google Scholar]
  98. XuY. WangY. WuD. HeW. WangL. ZhuW. p-Terphenyls from Aspergillus sp. GZWMJZ-055: Identification, derivation, antioxidant and α-glycosidase inhibitory activities.Front. Microbiol.20211265496310.3389/fmicb.2021.654963 33717048
    [Google Scholar]
  99. ChenH. HuangM. LiX. LiuL. ChenB. WangJ. LinY. Phochrodines A–D, first naturally occurring new chromenopyridines from mangrove entophytic fungus Phomopsis sp. 33#.Fitoterapia201812410310710.1016/j.fitote.2017.10.013 29074224
    [Google Scholar]
  100. LösgenS. SchlörkeO. MeindlK. Herbst-IrmerR. ZeeckA. Structure and biosynthesis of chaetocyclinones, new polyketides produced by an endosymbiotic fungus.Eur. J. Org. Chem.20072007132191219610.1002/ejoc.200601020
    [Google Scholar]
  101. QiuP. LiuZ. ChenY. CaiR. ChenG. SheZ. Secondary metabolites with α-glucosidase inhibitory activity from the mangrove fungus Mycosphaerella sp. SYSU-DZG01.Mar. Drugs201917848310.3390/md17080483 31434338
    [Google Scholar]
  102. KawaharaT. TakagiM. Shin-yaK. JBIR-124: A novel antioxidative agent from a marine sponge-derived fungus Penicillium citrinum SpI080624G1f01.J. Antibiot.2012651454710.1038/ja.2011.98 22008699
    [Google Scholar]
  103. GubianiJ.R. ZeraikM.L. OliveiraC.M. XimenesV.F. NogueiraC.R. FonsecaL.M. SilvaD.H.S. BolzaniV.S. AraujoA.R. Biologically active eremophilane-type sesquiterpenes from Camarops sp., an endophytic fungus isolated from Alibertia macrophylla.J. Nat. Prod.201477366867210.1021/np400825s 24588269
    [Google Scholar]
  104. GubianiJ.R. NogueiraC.R. PereiraM.D.P. YoungM.C.M. FerreiraP.M.P. de MoraesM.O. PessoaC. BolzaniV.S. AraujoA.R. Rearranged sesquiterpenes and branched polyketides produced by the endophyte Camarops sp.Phytochem. Lett.20161725125710.1016/j.phytol.2016.08.007
    [Google Scholar]
  105. ShindoK. MisawaN. New and rare carotenoids isolated from marine bacteria and their antioxidant activities.Mar. Drugs20141231690169810.3390/md12031690 24663119
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298307594240725104448
Loading
/content/journals/mroc/10.2174/0118756298307594240725104448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test