Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The simple separation of magnetic nanocatalysts from the reaction mixture using only an external magnet caused a huge revolution in catalysis, particularly in organic synthesis. Diaryl ethers compounds containing (Ar-O-Ar linkages) are one of the most important and prominent compounds and are widely found in natural products and pharmaceutical and biological molecules. The C-O cross-coupling or O-arylation reactions of aryl halides with aromatic alcohols, especially phenols, is an important and straightforward strategy for the preparation of diaryl ethers. Due to the high importance of diaryl ethers in the pharmaceutical, chemical and medical fields, many efforts have been made for the synthesis of diaryl ethers through C-O cross-coupling aryl halides with aromatic alcohols, especially phenols based on using non-magnetic reusable catalysts. In this review, we carefully reviewed the synthesis of diaryl ethers and discussed the reaction conditions and product yields in each method.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298281758231201052421
2024-01-24
2025-03-30
Loading full text...

Full text loading...

References

  1. EvansD.A. KatzJ.L. WestT.R. Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine.Tetrahedron Lett.199839192937294010.1016/S0040‑4039(98)00502‑4
    [Google Scholar]
  2. LiuM. JiangH. TangJ. YeZ. ZhangF. WuY. Meta -selective O -arylation of cyclic diaryliodonium salts with phenols via aryne intermediates.Org. Lett.202325162777278110.1021/acs.orglett.3c00600 37058147
    [Google Scholar]
  3. JdanovaS. TaylorM.S. Mechanistic study of the copper(II)-mediated site-selective o -arylation of glycosides with arylboronic acids.J. Org. Chem.20238863487349810.1021/acs.joc.2c02693 36888595
    [Google Scholar]
  4. ChenD. WangQ. LiY. LiY. ZhouH. FanY. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds.Chemosphere202024712586910.1016/j.chemosphere.2020.125869 31972487
    [Google Scholar]
  5. KazemiM. Sanchez-MendozaA. GhobadiM. Solvent-free acylation of alcohols, phenols, thiols and amines.J. Med. Chem. Sci.2019211810.26655/jmchemsci.2019.6.1
    [Google Scholar]
  6. Soleiman-BeigiM. KazemiM. AryanR. ShiriL. TBAOH mediated: An efficient and simple procedure for alkylation of alcohols, phenols and thiols under neat aqueous conditions.Lett. Org. Chem.201411532132610.2174/15701786113106660077
    [Google Scholar]
  7. WangG. LiuW. GongZ. HuangY. LiY. PengZ. Design, synthesis, biological evaluation and molecular docking studies of new chalcone derivatives containing diaryl ether moiety as potential anticancer agents and tubulin polymerization inhibitors.Bioorg. Chem.20209510356510.1016/j.bioorg.2019.103565 31927336
    [Google Scholar]
  8. Bedos-BelvalF. RouchA. Vanucci-BacquéC. BaltasM. Diaryl ether derivatives as anticancer agents - A review.MedChemComm2012311135610.1039/c2md20199b
    [Google Scholar]
  9. SinghK.S. SinghA. Chemical diversities, biological activities and chemical synthesis of marine diphenyl ether and their derivatives.J. Mol. Struct.2022126513330210.1016/j.molstruc.2022.133302
    [Google Scholar]
  10. KazemiM. KarezaniN. Research on biological and bioactive molecules containing pyrrole scaffolds.Biol. Mol. Chem.202311152610.22034/bmc.2023.414945.1003
    [Google Scholar]
  11. HeB. HouF. RenC. BingP. XiaoX. A review of current in silico methods for repositioning drugs and chemical compounds.Front. Oncol.20211171122510.3389/fonc.2021.711225 34367996
    [Google Scholar]
  12. KazemiM. ShiriL. A brief review: Microwave assisted ethers synthesis.Org. Chem. Ind. J.2016126107
    [Google Scholar]
  13. KazemiM. Soleiman BeigiM. Tetra-N-butyl ammonium hydroxide as highly efficient for the acylation of alcohols, phenols and thiols.Org. Chem.: Curr. Res.20132210.4172/2161‑0401.1000119
    [Google Scholar]
  14. KovácsÉ. AliH. MinoricsR. TrajP. ReschV. ParagiG. BruszelB. ZupkóI. MernyákE. Synthesis and antiproliferative activity of steroidal diaryl ethers.Molecules2023283119610.3390/molecules28031196 36770863
    [Google Scholar]
  15. DaiL. LiuY. XuQ. WangM. ZhuQ. YuP. ZhongG. ZengX. A dynamic kinetic resolution approach to axially chiral diaryl ethers by catalytic atroposelective transfer hydrogenation.Angew. Chem. Int. Ed.2023627e20221653410.1002/anie.202216534 36536515
    [Google Scholar]
  16. KongL. LiuY. DongL. ZhangL. QiaoL. WangW. YouH. Enhanced red luminescence in CaAl 12 O 19:Mn 4+via doping] Ga3+ for plant growth lighting.Dalton Trans.20204961947195410.1039/C9DT04086B 31976498
    [Google Scholar]
  17. WeiQ. WangZ.P. ZhangX. ZouY. Diaryl ether formation by a versatile thioesterase domain.J. Am. Chem. Soc.2022144229554955810.1021/jacs.2c02813 35639490
    [Google Scholar]
  18. KalnmalsC.A. BenkoZ.L. HamzaA. Bravo-AltamiranoK. SiddallT.L. ZielinskiM. TakanoH.K. RiarD.S. SatchiviN.M. RothJ.J. ChurchJ.B. A new class of diaryl ether herbicides: Structure-activity relationship studies enabled by a rapid scaffold hopping approach.J. Agric. Food Chem.20233c0128510.1021/acs.jafc.3c0128537350671
    [Google Scholar]
  19. ChebaikiM. DelfourneE. TamhaevR. DanounS. RodriguezF. HoffmannP. GrosjeanE. GoncalvesF. Azéma-DespeyrouxJ. PálA. KordulákováJ. PreuilhN. BrittonS. ConstantP. MarrakchiH. MaveyraudL. MoureyL. LherbetC. Discovery of new diaryl ether inhibitors against Mycobacterium tuberculosis targeting the minor portal of InhA.Eur. J. Med. Chem.202325911564610.1016/j.ejmech.2023.115646 37482022
    [Google Scholar]
  20. PamarthyD. BeheraS.K. SwainS. YadavS. SureshS. JainN. BhadraM.P. Diaryl ether derivative inhibits GPX4 expression levels to induce ferroptosis in thyroid cancer cells.Drug Dev. Res.202384586188710.1002/ddr.22059 37070554
    [Google Scholar]
  21. AbdelazizO.A. OthmanD.I.A. Abdel-AzizM.M. BadrS.M.I. EisaH.M. Novel diaryl ether derivatives as InhA inhibitors: Design, synthesis and antimycobacterial activity.Bioorg. Chem.202212910612510.1016/j.bioorg.2022.106125 36126606
    [Google Scholar]
  22. FengD. WuS. JiangB. HeS. LuoY. LiF. SongB. SongR. Discovery of novel isoxazoline derivatives containing diaryl ether against fall armyworms.J. Agric. Food Chem.202371186859687010.1021/acs.jafc.3c00824 37126004
    [Google Scholar]
  23. NikolovaI. SlavchevI. ZagranyarskaI. NikolovaN. VilhelmovaN. StoyanovaA. GrozdanovP. MukovaL. GalabovA.S. LessigiarskaI. TsakovskaI. DobrikovG.M. Synthesis and QSAR analysis of diaryl ethers and their analogues as potential antiviral agents.ChemistrySelect2022734e20220308810.1002/slct.202203088
    [Google Scholar]
  24. ChenT. XiongH. YangJ.F. ZhuX.L. QuR.Y. YangG.F. Diaryl ether: A privileged scaffold for drug and agrochemical discovery.J. Agric. Food Chem.202068379839987710.1021/acs.jafc.0c03369 32786826
    [Google Scholar]
  25. WangW. ChengL. PengH. YaoW. ZhangR. ChenC. ChengH. Synthesis and biological activities of new 4-phenylanilinescontaining the diphenyl ether moiety.Youji Huaxue20193910285110.6023/cjoc201904049
    [Google Scholar]
  26. DierksA. Vanucci-BacquéC. SchäferA.M. LehrichT. RuheF. SchadzekP. Bedos-BelvalF. NgezahayoA. The bioactive phenolic agents diaryl ether CVB2-61 and diarylheptanoid CVB4-57 as connexin hemichannel blockers.Pharmaceuticals20221510117310.3390/ph15101173 36297285
    [Google Scholar]
  27. HelanV. GulevichA.V. GevorgyanV. Cu-catalyzed transannulation reaction of pyridotriazoles with terminal alkynes under aerobic conditions: Efficient synthesis of indolizines.Chem. Sci.2015631928193110.1039/C4SC03358B 25705369
    [Google Scholar]
  28. SoleimaniE. KhodaeiM.M. BatooieN. SamadiS. Tetrakis(acetonitrile)copper(I) hexafluorophosphate catalyzed coumarin synthesis via pechmann condensation under solvent‐free condition.J. Heterocycl. Chem.201249240941210.1002/jhet.814
    [Google Scholar]
  29. ZhangH-F. InBr3-catalyzed deoxygenation of sulfoxides and carboxylic acids with a hydrosilane.J. Synth. Chem.202211424710.22034/jsc.2022.149233
    [Google Scholar]
  30. LiuZ. FanB. ZhaoJ. YangB. ZhengX. Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater: Formation, interfacial release and protective mechanisms.Corros. Sci.202321211095710.1016/j.corsci.2022.110957
    [Google Scholar]
  31. WangY.M. WangJ.B. HuangJ. CuiZ.S. ZhangM. ZhangZ.H. Molybdenum disulfide-catalyzed direct α-hydroxymethylation of amides employing methanol as a sustainable C1 source under photoirradiation.J. Catal.202342711510010.1016/j.jcat.2023.115100
    [Google Scholar]
  32. FujiwaraS. AsanumaY. Shin-ikeT. KambeN. Copper(I)-catalyzed highly efficient synthesis of benzoselenazoles and benzotellurazoles.J. Org. Chem.200772218087809010.1021/jo7013164 17867702
    [Google Scholar]
  33. GhobadiM. Pourmoghaddam QhazviniP. KazemiM. Catalytic application of zinc (II) bromide (ZnBr2) in organic synthesis.Synth. Commun.202050243717373810.1080/00397911.2020.1811873
    [Google Scholar]
  34. ChenL. Noory FajerA. YessimbekovZ. KazemiM. MohammadiM. Diaryl sulfides synthesis: Copper catalysts in C–S bond formation.J. Sulfur Chem.201940445146810.1080/17415993.2019.1596268
    [Google Scholar]
  35. ZhangP. WangX.M. XuQ. GuoC.Q. WangP. LuC.J. LiuR.R. Enantioselective synthesis of atropisomeric biaryls by Pd‐catalyzed asymmetric buchwald-hartwig amination.Angew. Chem. Int. Ed.20216040217182172210.1002/anie.202108747 34374189
    [Google Scholar]
  36. ZhaoX. ZhangY. HouZ. WangL. Photoelectrochemical C-H silylation of heteroarenes.Chin. J. Chem.202341222963296810.1002/cjoc.202300288
    [Google Scholar]
  37. ChenZ. NasrS.M. KazemiM. MohammadiM. A mini-review: Achievements in the thiolysis of epoxides.Mini Rev. Org. Chem.202017435236210.2174/1570193X16666190723111746
    [Google Scholar]
  38. Kargar RaziM. JavahershenasR. AdelzadehM. GhobadiM. KazemiM. Synthetic routes to rhodanine scaffolds.Synth. Commun.202050243739375610.1080/00397911.2020.1812658
    [Google Scholar]
  39. ArdakaniL.S. ArabmarkadehA. KazemiM. Multicomponent synthesis of highly functionalized piperidines.Synth. Commun.202051612410.1080/00397911.2020.1861301
    [Google Scholar]
  40. WanQ. HuangC.Y. HouZ.W. JiangH. WangL. Organophotoelectrochemical silylation cyclization for the synthesis of silylated 3-CF 3 -2-oxindoles.Org. Chem. Front.202310143585359010.1039/D3QO00728F
    [Google Scholar]
  41. Ray ChowdhuriA. BhattacharyaD. SahuS.K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent.Dalton Trans.20164572963297310.1039/C5DT03736K 26754449
    [Google Scholar]
  42. GebreS.H. Recent developments in the fabrication of magnetic nanoparticles for the synthesis of trisubstituted pyridines and imidazoles: A green approach.Synth. Commun.202113110.1080/00397911.2021.1900257
    [Google Scholar]
  43. GovanJ. Gun’koY. Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts.Nanomaterials 20144222224110.3390/nano4020222 28344220
    [Google Scholar]
  44. TangT. ZhouM. LvJ. ChengH. WangH. QinD. HuG. LiuX. Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Coll. Surf.B Biointer.202221611253810.1016/j.colsurfb.2022.112538 35526390
    [Google Scholar]
  45. LiuG. HuangY. LvH. WangH. ZengY. YuanM. MengQ. WangC. Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion.Appl. Catal. B202128411968310.1016/j.apcatb.2020.119683
    [Google Scholar]
  46. Nasiruzzaman ShaikhM. ZahirM.H. Pd complex of ferrocenylphosphine supported on magnetic nanoparticles: A highly reusable catalyst for transfer hydrogenation and coupling reactions.J. Organomet. Chem.2022973-97412239510.1016/j.jorganchem.2022.122395
    [Google Scholar]
  47. DuW. HuangR. HuangX. ChenR. ChenF. Copper-promoted heterogeneous Fenton-like oxidation of Rhodamine B over Fe3O4 magnetic nanocatalysts at mild conditions.Environ. Sci. Pollut. Res. Int.20212816199591996810.1007/s11356‑020‑12264‑z 33410002
    [Google Scholar]
  48. Manafi Khajeh PashaA. RaoufiS. GhobadiM. KazemiM. Biologically active tetrazole scaffolds: Catalysis in magnetic nanocomposites.Synth. Commun.202050243685371610.1080/00397911.2020.1811872
    [Google Scholar]
  49. KazemiM. GhobadiM. Magnetically recoverable nano-catalysts in sulfoxidation reactions.Nanotechnol. Rev.20176654957110.1515/ntrev‑2016‑0113
    [Google Scholar]
  50. KazemiM. Based on CuFe 2 O 4 MNPs: Magnetically recoverable nanocatalysts in coupling reactions.Synth. Commun.202050142114213110.1080/00397911.2020.1728335
    [Google Scholar]
  51. ChengT. ZhangD. LiH. LiuG. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium.Green Chem.20141673401342710.1039/C4GC00458B
    [Google Scholar]
  52. AbdiM.R. Fabrication of novel magnetic metal-organic framework (MOF): Cobalt Ferrite@Cu3(BTC)2 nanocomposite.Biol. Mol. Chem.20231111410.22034/bmc.2023.408859.1000
    [Google Scholar]
  53. Aqeel AshrafM. LiuZ. YangY. LiC. ZhangD. Magnetic nanomaterials catalyzed synthesis of tetrazoles.Synth. Commun.202050172629264610.1080/00397911.2020.1783685
    [Google Scholar]
  54. ShojaieM. One-pot multicomponent synthesis of pyrano[2,3-c]pyrazoles catalyzed by copper oxide nanoparticles (CuO NPs).J. Synth. Chem.20221212513110.22034/jsc.2022.155286
    [Google Scholar]
  55. Mahmoudi-Gom YekS. NasrollahzadehM. AzarifarD. Rostami-VartooniA. GhaemiM. ShokouhimehrM. Grafting Schiff base Cu(II) complex on magnetic graphene oxide as an efficient recyclable catalyst for the synthesis of 4H-pyrano[2,3-b]pyridine-3-carboxylate derivatives.Mater. Chem. Phys.202228412605310.1016/j.matchemphys.2022.126053
    [Google Scholar]
  56. WangX. GuramA. RonkM. MilneJ.E. TedrowJ.S. FaulM.M. Copper-catalyzed N-arylation of sulfonamides with aryl bromides under mild conditions.Tetrahedron Lett.201253171010.1016/j.tetlet.2011.10.113
    [Google Scholar]
  57. KazemiM. MohammadiM. Magnetically recoverable catalysts: Catalysis in synthesis of polyhydroquinolines.Appl. Organomet. Chem.2020343e540010.1002/aoc.5400
    [Google Scholar]
  58. KazemiM. Based on magnetic nanoparticles: Gold reusable nanomagnetic catalysts in organic synthesis.Synth. Commun.202050142079209410.1080/00397911.2020.1725058
    [Google Scholar]
  59. ShiriL. Ghorbani-ChoghamaraniA. KazemiM. S-S bond formation: Nanocatalysts in the oxidative coupling of thiols.Aust. J. Chem.2017701910.1071/CH16318
    [Google Scholar]
  60. ArabmarkadehA. JavahershenasR. KazemiM. Nanomaterials: Catalysis in synthesis of highly substituted heterocycles.Synth. Commun.202151610.1080/00397911.2020.1864646
    [Google Scholar]
  61. AbediM. HosseiniM. ArabmarkadehA. KazemiM. Magnetic nanocatalysts in A3-coupling reactions.Synth. Commun.202151610.1080/00397911.2020.1858320
    [Google Scholar]
  62. NarimaniH. Research on synthesis of heterocyclic structures using ZnO NPs as catalyst.J. Synth. Chem.202212628310.22034/jsc.2022.155232
    [Google Scholar]
  63. ZhengY. LiuY. GuoX. ChenZ. ZhangW. WangY. TangX. ZhangY. ZhaoY. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants.J. Mater. Sci. Technol.20204111712610.1016/j.jmst.2019.09.018
    [Google Scholar]
  64. KazemiM. GhobadiM. MirzaieA. Cobalt ferrite nanoparticles (CoFe 2 O 4 MNPs) as catalyst and support: magnetically recoverable nanocatalysts in organic synthesis.Nanotechnol. Rev.201871436810.1515/ntrev‑2017‑0138
    [Google Scholar]
  65. WangZ. ChenC. LiuH. HrynshpanD. SavitskayaT. ChenJ. ChenJ. Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron.Sci. Total Environ.202070813506310.1016/j.scitotenv.2019.135063 31810663
    [Google Scholar]
  66. GhobadiM. Based on copper ferrite nanoparticles (CuFe2O4 NPs): Catalysis in synthesis of heterocycles.J. Synth. Chem.202212849610.22034/jsc.2022.155234
    [Google Scholar]
  67. ZhangY. ZhaoM. HuangJ. ZhaoN. YuH. Controllable synthesis, photocatalytic property, and mechanism of a novel POM-based direct Z-scheme nano-heterojunction α-Fe2O3/P2Mo18.Molecules20232818667110.3390/molecules28186671 37764447
    [Google Scholar]
  68. KazemiM. ShiriL. Ionic liquid immobilized on magnetic nanoparticles: A nice and efficient catalytic strategy in synthesis of heterocycles.J. Synth. Chem.2022111710.22034/jsc.2022.149201
    [Google Scholar]
  69. HuangY. ZhangW. Magnetic nanoparticle-supported organocatalysis.GPS20132660360910.1515/gps‑2013‑0076
    [Google Scholar]
  70. RostamiA. AtashkarB. MoradiD. Synthesis, characterization and catalytic properties of magnetic nanoparticle supported guanidine in base catalyzed synthesis of α-hydroxyphosphonates and α-acetoxyphosphonates.Appl. Catal. A Gen.201346771610.1016/j.apcata.2013.07.001
    [Google Scholar]
  71. ShiriL. Ghorbani-ChoghamaraniA. KazemiM. Sulfides synthesis: Nanocatalysts in C-S cross-coupling reactions.Aust. J. Chem.201669658510.1071/CH15528
    [Google Scholar]
  72. GhobadiM. Kargar RaziM. JavahershenasR. KazemiM. Nanomagnetic reusable catalysts in organic synthesis.Synth. Commun.202151564766910.1080/00397911.2020.1819328
    [Google Scholar]
  73. SonawaneH.R. DeoreJ.V. ChavanP.N. Reusable nano catalysed synthesis of heterocycles: An overview.ChemistrySelect202278e20210390010.1002/slct.202103900
    [Google Scholar]
  74. WangY.M. LiW.J. WangM.M. ZhangM. ZhangZ.H. Magnetic MoS 2 efficient heterogeneous photocatalyst for the α-methoxymethylation and aminomethylation of aromatic ketones.Catal. Sci. Technol.202313366567410.1039/D2CY01831D
    [Google Scholar]
  75. ZhangM. LiuY.H. ShangZ.R. HuH.C. ZhangZ.H. Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation.Catal. Commun.201788394410.1016/j.catcom.2016.09.028
    [Google Scholar]
  76. ZhangQ. YangX. GuanJ. Applications of magnetic nanomaterials in heterogeneous catalysis.ACS Appl. Nano Mater.2019284681469710.1021/acsanm.9b00976
    [Google Scholar]
  77. LiQ. XuL. MaD. Cu‐catalyzed coupling reactions of sulfonamides with (hetero)aryl chlorides/bromides.Angew. Chem. Int. Ed.20226143e20221048310.1002/anie.202210483 36066563
    [Google Scholar]
  78. StueberD.D. VillanovaJ. AponteI. XiaoZ. ColvinV.L. Magnetic nanoparticles in biology and medicine: Past, present, and future trends.Pharmaceutics202113794310.3390/pharmaceutics13070943 34202604
    [Google Scholar]
  79. ChenM.N. MoL.P. CuiZ.S. ZhangZ.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions.Curr. Opin. Green Sustain. Chem.201915273710.1016/j.cogsc.2018.08.009
    [Google Scholar]
  80. Samadi GarjaeiS. KoukabiN. Nouri ParouchA. Nano-Fe 3 O 4/In: A heterogeneous magnetic nanocatalyst for synthesis of tetrazole derivatives under solvent-free conditions. Inorg.Nano-Metal Chem.20225271050105810.1080/24701556.2022.2034004
    [Google Scholar]
  81. FajerA.N. Al-BahraniH.A. KadhumA.A.H. KazemiM. Research on catalytic application of Fe3O4@AAPA-AP-CuCl2 nanocomposite: First nanomagnetic copper catalyst for preparation of aryl nitriles from aldehydes.J. Mol. Struct.2024129613680010.1016/j.molstruc.2023.136800
    [Google Scholar]
  82. GawandeM.B. BrancoP.S. VarmaR.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies.Chem. Soc. Rev.20134283371339310.1039/c3cs35480f 23420127
    [Google Scholar]
  83. DalpozzoR. Magnetic nanoparticle supports for asymmetric catalysts.Green Chem.20151773671368610.1039/C5GC00386E
    [Google Scholar]
  84. RaiP. GuptaD. Magnetic nanoparticles as green catalysts in organic synthesis-a review.Synth. Commun.202151203059308310.1080/00397911.2021.1968910
    [Google Scholar]
  85. KumarP. TomarV. KumarD. JoshiR.K. NemiwalM. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review.Tetrahedron2022106-10713264110.1016/j.tet.2022.132641
    [Google Scholar]
  86. ThangarajB. MuniyandiB. RanganathanS. XinH. Functionalized magnetic nanoparticles for catalytic application-a review.Rev. Adv. Sci. Eng.20154210611910.1166/rase.2015.1092
    [Google Scholar]
  87. PayraS. SahaA. BanerjeeS. Recent advances on Fe-Based magnetic nanoparticles in organic transformations.J. Nanosci. Nanotechnol.20171774432444810.1166/jnn.2017.14195
    [Google Scholar]
  88. KazemiN. Mahdavi ShahriM. Magnetically separable and reusable CuFe2O4 spinel nanocatalyst for the O-arylation of phenol with aryl halide under ligand-free condition.J. Inorg. Organomet. Polym. Mater.20172751264127310.1007/s10904‑017‑0574‑0
    [Google Scholar]
  89. MoghaddamF.M. TavakoliG. AliabadiA. Application of nickel ferrite and cobalt ferrite magnetic nanoparticles in C–O bond formation: A comparative study between their catalytic activities.RSC Advances2015573591425915310.1039/C5RA08146G
    [Google Scholar]
  90. PaulS. PradhanK. GhoshS. DeS.K. DasA.R. Magnetically retrievable nano crystalline nickel ferrite‐ catalyzed aerobic, ligand‐Free C-N, C-O and C-C cross‐ coupling reactions for the synthesis of a diversified library of heterocyclic molecules.Adv. Synth. Catal.201435661301131610.1002/adsc.201300686
    [Google Scholar]
  91. ZhangR. LiuJ. WangS. NiuJ. XiaC. SunW. Magnetic CuFe 2 O 4 nanoparticles as an efficient catalyst for C-O cross‐coupling of phenols with aryl halides.ChemCatChem20113114614910.1002/cctc.201000254
    [Google Scholar]
  92. YangS. WuC. ZhouH. YangY. ZhaoY. WangC. YangW. XuJ. An ullmann C-O coupling reaction catalyzed by magnetic copper ferrite nanoparticles.Adv. Synth. Catal.20133551535810.1002/adsc.201200600
    [Google Scholar]
  93. NakhateA.V. YadavG.D. Solvothermal synthesis of CuFe 2 O 4 @rGO: Efficient catalyst for C‐O cross coupling and N‐ arylation reaction under ligand‐free condition.ChemistrySelect20172247150715910.1002/slct.201700556
    [Google Scholar]
  94. ArundhathiR. DamodaraD. LikharP.R. KantamM.L. SaravananP. MagdalenoT. KwonS.H. Fe3O4 @mesoporous-polyaniline: A highly efficient and magnetically separable catalyst for cross‐coupling of aryl chlorides and phenols.Adv. Synth. Catal.201135391591160010.1002/adsc.201000977
    [Google Scholar]
  95. BagheriS. PazokiF. RadfarI. HeydariA. Copper(I)–creatine complex on magnetic nanoparticles as a green catalyst for N ‐ and O ‐arylation in deep eutectic solvent.Appl. Organomet. Chem.2020343e544710.1002/aoc.5447
    [Google Scholar]
  96. KhodaeiM.M. AlizadehA. HaghipourM. Preparation and characterization of isatin complexed with Cu supported on 4-(aminomethyl) benzoic acid-functionalized Fe3O4 nanoparticles as a novel magnetic catalyst for the Ullmann coupling reaction.Res. Chem. Intermed.20194552727274710.1007/s11164‑019‑03760‑0
    [Google Scholar]
  97. Ghamari KargarP. LenC. LuqueR. Cu/cellulose-modified magnetite nanocomposites as a highly active and selective catalyst for ultrasound-promoted aqueous O-arylation Ullmann and sp-sp2 Sonogashira cross-coupling reactions.Sustain. Chem. Pharm.20222710067210.1016/j.scp.2022.100672
    [Google Scholar]
  98. AshrafM.A. LiuZ. PengW.X. ZhouL. Glycerol Cu(II) complex supported on Fe3O4 magnetic nanoparticles: A new and highly efficient reusable catalyst for the formation of aryl-sulfur and aryl-oxygen bonds.Catal. Lett.202015041128114110.1007/s10562‑019‑02973‑7
    [Google Scholar]
  99. Mustafa-SalehS. CuI nanoparticles immobilized on magnetic nanoparticles catalyzed synthesis of diaryl ethers through C-O cross-coupling of phenols with aryl iodides.J. Synth. Chem.20221213213610.22034/jsc.2022.155287
    [Google Scholar]
  100. Mousavi MashhadiS.A. KassaeeM.Z. EidiE. Magnetically recyclable nano copper/chitosan in O ‐arylation of phenols with aryl halides.Appl. Organomet. Chem.2019339e504210.1002/aoc.5042
    [Google Scholar]
  101. NasrollahzadehM. MahamM. Rostami-VartooniA. BagherzadehM. SajadiS.M. Barberry fruit extract assisted in situ green synthesis of Cu nanoparticles supported on a reduced graphene oxide–Fe 3 O 4 nanocomposite as a magnetically separable and reusable catalyst for the O-arylation of phenols with aryl halides under ligand-free conditions.RSC Advances2015579647696478010.1039/C5RA10037B
    [Google Scholar]
  102. SaberiD. SheykhanM. NiknamK. HeydariA. Preparation of carbon nanotube-supported α-Fe2O3@CuO nanocomposite: A highly efficient and magnetically separable catalyst in cross-coupling of aryl halides with phenols.Catal. Sci. Technol.201338202510.1039/c3cy00082f
    [Google Scholar]
  103. SharmaA.K. JoshiH. SinghA.K. Catalysis with magnetically retrievable and recyclable nanoparticles layered with Pd(0) for C–C/C–O coupling in water.RSC Advances202010116452645910.1039/C9RA10618A 35495980
    [Google Scholar]
  104. MoghaddamF.M. EslamiM. Immobilized palladium nanoparticles on MNPs@A‐ N ‐AEB as an efficient catalyst for C‐O bond formation in water as a green Solvent.Appl. Organomet. Chem.2018329e446310.1002/aoc.4463
    [Google Scholar]
  105. MoghaddamF.M. JarahiyanA. EslamiM. PourjavadiA. A novel magnetic polyacrylonotrile-based palladium Core−Shell complex: A highly efficientcatalyst for synthesis of Diaryl ethers.J. Organomet. Chem.202091612126610.1016/j.jorganchem.2020.121266
    [Google Scholar]
  106. MoghaddamF.M. JarahiyanA. Heidarian HarisM. PourjavadiA. An advancement in the synthesis of nano Pd@magnetic amine-Functionalized UiO-66-NH2 catalyst for cyanation and O-arylation reactions.Sci. Rep.20211111138710.1038/s41598‑021‑90478‑y 34059726
    [Google Scholar]
  107. Mousavi-MashhadiS.A. ShiriA. On‐water and efficient ullmann‐type O‐arylation cross coupling reaction of phenols and aryl tosylates in the presence of Fe 3 O 4 @Starch‐Au as nanocatalyst.ChemistrySelect20216163941395110.1002/slct.202004327
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298281758231201052421
Loading
/content/journals/mroc/10.2174/0118756298281758231201052421
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test