Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The imidazole ring is a five membered ring with a simple chemical structure and is widely present in natural products. Due to its unique chemical structure, it is beneficial for the imidazole ring to bind with other functional groups, thus exhibiting a wide range of biological activities. The synthesis of imidazole derivatives often involves the Debus method, Michael addition method, and the use of existing materials to synthesize target compounds through one-pot synthesis. Imidazole compounds have numerous medicinal properties and physiological activities, including antioxidant, antibacterial, anti-inflammatory, antihistamine, hypoglycemic, antiviral, antihypertensive and anticancer effects. In addition to its medicinal chemical significance, imidazole also has industrial applications such as corrosion inhibitors, flame retardants, photography, and electronics. The synthesis and activity research of imidazole and its derivatives have good development prospects. This article reviews the chemical synthesis and biosynthesis of imidazole derivatives, as well as their biological activities.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298313032240529094738
2024-06-20
2025-03-30
Loading full text...

Full text loading...

References

  1. ZengZ.Q. LiJ.N. A review on medicinally important heterocyclic compounds.Med. Chem. J.20201611010.2174/187410452202280
    [Google Scholar]
  2. VermaA. JoshiS. SinghD. Imidazole: Having versatile biological activities.J. Chem.201311210.1155/2013/329412
    [Google Scholar]
  3. SiwachA. VermaP.K. Synthesis and therapeutic potential of imidazole containing compounds.BMC Chem.20211511210.1186/s13065‑020‑00730‑1 33602331
    [Google Scholar]
  4. BhatnagarA. SharmaP.K. KumarN. A review on imidazoles: Their chemistry and pharmacological potentials.Int. J. Pharm. Tech. Res.20113268282
    [Google Scholar]
  5. GueiffierA. MavelS. LhassaniM. ElhakmaouiA. SnoeckR. AndreiG. ChavignonO. TeuladeJ.C. WitvrouwM. BalzariniJ. De ClercqE. ChapatJ.P. Synthesis of imidazo[1,2-a]pyridines as antiviral agents.J. Med. Chem.199841255108511210.1021/jm981051y 9836626
    [Google Scholar]
  6. ZalaS.P. BadmanabanR. SenD.J. PatelC.N. Synthesis and biological evaluation of 2,4,5-triphenyl-1H-imidazole-1-yl derivatives.J. Appl. Pharm. Sci.2012220220810.7324/JAPS.2012.2732
    [Google Scholar]
  7. ZhangL. PengX.M. DamuG.L.V. GengR.X. ZhouC.H. Comprehensive review in current developments of imidazole-based medicinal chemistry.Med. Res. Rev.201434234043710.1002/med.21290 23740514
    [Google Scholar]
  8. AliA.A.M. AlabidiH.M. Synthesis and spectroscopic study of some transition metal complexes with 2-(4-iodo phenyl azo)-4,5- diphenyl imidazol.J. Phys. Conf. Ser.20191294505202110.1088/1742‑6596/1294/5/052021
    [Google Scholar]
  9. LiuX.L. ChenJ.B. JiangZ.G. Synthesis and biological activity of 1-aryl substituted imidazole.Nat. Sci. Educ.2007295511514
    [Google Scholar]
  10. GavazovK. SimeonovaZ. AlexandrovA. Extraction spectrophotometric determination of vanadium in natural waters and aluminium alloys using pyridyl azo resorcinol (PAR) and iodo-nitro-tetrazolium chloride (INT).Talanta200052353954410.1016/S0039‑9140(00)00405‑7 18968014
    [Google Scholar]
  11. GujjarappaR. KabiA.K. SravaniS. GargA. VodnalaN. TyagiU. KaldhiD. VelayuthamR. SinghV. GuptaS. MalakarC.C. In: Materials Horizons: From Nature to Nanomaterials; Nanostructured Biomaterials2022522710.1007/978‑981‑16‑8399‑2_6
    [Google Scholar]
  12. RomanG. RileyJ.G. VlahakisJ.Z. KinobeR.T. BrienJ.F. NakatsuK. SzarekW.A. Heme oxygenase inhibition by 2-oxy-substituted 1-(1H-imidazol-1-yl)-4-phenylbutanes: Effect of halogen substitution in the phenyl ring.Bioorg. Med. Chem.20071593225323410.1016/j.bmc.2007.02.034 17339115
    [Google Scholar]
  13. KyhoieshH.A.K. Al-HussainawyM.K. WaheebA.S. Al-AdileeK.J. Synthesis, spectral characterization, lethal dose (LD50) and acute toxicity studies of 1,4-Bis(imidazolylazo)benzene (BIAB).Heliyon202179e0796910.1016/j.heliyon.2021.e07969 34541361
    [Google Scholar]
  14. MahdiM.A. JasimL.S. MohamedM.H. Synthesis, spectral and biological studies of Co (III), Ni (II), and Cu (II) complexes with new heterocyclic ligand derived from Azo dye.Syst. Rev. Pharm.2021121426434
    [Google Scholar]
  15. HarishaS. KeshavayyaJ. Kumara SwamyB.E. ViswanathC.C. Synthesis, characterization and electrochemical studies of azo dyes derived from barbituric acid.Dyes Pigments201713674275310.1016/j.dyepig.2016.09.004
    [Google Scholar]
  16. SihamS. AdelineF. GéraldL. AminaA. AbdelkrimE. Imidazole and azo-based schiff bases ligands as highly active antifungal and antioxidant components.Heteroat. Chem20191910.1155/2019/6862170
    [Google Scholar]
  17. KarimM.R.U. HarunariE. OkuN. AkasakaK. IgarashiY. Bulbimidazoles A-C, antimicrobial and cytotoxic alkanoyl imidazoles from a marine gammaproteobacterium Microbulbifer species.J. Nat. Prod.20208341295129910.1021/acs.jnatprod.0c00082 32191468
    [Google Scholar]
  18. Rojas VargasJ.A. LópezA.G. PérezY. CosP. FroeyenM. In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei.Parasitol. Res.201911851533154810.1007/s00436‑019‑06206‑z 30903349
    [Google Scholar]
  19. LiN. XuM. ZhangL. LeiZ. ChenC. ZhangT. ChenL. SunJ. Discovery of novel celastrol-imidazole derivatives with anticancer activity in vitro and in vivo.J. Med. Chem.20226564578458910.1021/acs.jmedchem.1c01293 35238566
    [Google Scholar]
  20. RaniN. SharmaA. GuptaG. SinghR. Imidazoles as potential antifungal agents: A review.Mini Rev. Med. Chem.201313111626165510.2174/13895575113139990069 23815583
    [Google Scholar]
  21. ParwaniD. BhattacharyaS. RathoreA. MallickC. AsatiV. AgarwalS. RajoriyaV. DasR. KashawS.K. Current insights into the chemistry and antitubercular potential of benzimidazole and imidazole derivatives.Mini Rev. Med. Chem.202121564365710.2174/18755607MTExjMDYfw 33138762
    [Google Scholar]
  22. LiuL. HuY. LuJ. WangG. An imidazole coumarin derivative enhances the antiviral response to spring viremia of carp virus infection in zebrafish.Virus Res.201926311211810.1016/j.virusres.2019.01.009 30658072
    [Google Scholar]
  23. AdeyemiO.S. EseolaA.O. PlassW. AtolaniO. SugiT. HanY. BatihaG.E. KatoK. AwakanO.J. OlaoluT.D. NwonumaC.O. AlejolowoO. OwolabiA. RotimiD. KayodeO.T. Imidazole derivatives as antiparasitic agents and use of molecular modeling to investigate the structure–activity relationship.Parasitol. Res.202011961925194110.1007/s00436‑020‑06668‑6 32279093
    [Google Scholar]
  24. UnnisaA. HuwaimelB. AlmahmoudS. AbouziedA.S. YounesK.M. AnupamaB. KolaP.K. LakshmiN.V.K.C. Design, in silico study, synthesis and in vitro evaluation of some N5-(1H-pyrazol-3-yl)-3H-benzo[d]imidazole-2,5-diamine derivatives as potential pancreatic lipase inhibitors for anti-obesity activity.Eur. Rev. Med. Pharmacol. Sci.2022261972457255 36263535
    [Google Scholar]
  25. ChopraP.N. SahuJ.K. Biological significance of imidazole-based analogues in new drug development.Curr. Drug Discov. Technol.202017557458410.2174/1570163816666190320123340 30894111
    [Google Scholar]
  26. dos Santos NascimentoM.V.P. Mattar MunhozA.C. De Campos FacchinB.M. FratoniE. RossaT.A. Mandolesi SáM. CampaC.C. CiraoloE. HirschE. DalmarcoE.M. New pre-clinical evidence of anti-inflammatory effect and safety of a substituted fluorophenyl imidazole.Biomed. Pharmacother.20191111399140710.1016/j.biopha.2019.01.052 30841455
    [Google Scholar]
  27. MengJ.p. Xu, Qi; Song, Z.G. etc. New progress in the research of antimicrobial drugs containing benzimidazole fragment structures.Chin. J. Antibiot.20123728189
    [Google Scholar]
  28. HuC.F. ZhangP.L. SuiY.F. LvJ.S. AnsariM.F. BattiniN. LiS. ZhouC.H. GengR.X. Ethylenic conjugated coumarin thiazolidinediones as new efficient antimicrobial modulators against clinical methicillin-resistant Staphylococcus aureus.Bioorg. Chem.20209410343410.1016/j.bioorg.2019.103434 31812263
    [Google Scholar]
  29. HuY.Y. Yadav BheemanaboinaR.R. BattiniN. ZhouC.H. Sulfonamide-derived fourcomponent molecular hybrids as novel DNA-targeting membrane active potentiators against clinical Escherichia coli.Mol. Pharm.20191631036105210.1021/acs.molpharmaceut.8b01021 30638386
    [Google Scholar]
  30. SunH. AnsariM.F. BattiniN. BheemanaboinaR.R.Y. ZhouC.H. Novel potential artificial MRSA DNA intercalators: Synthesis and biological evaluation of berberine-derived thiazolidinediones.Org. Chem. Front.20196331933410.1039/C8QO01180J
    [Google Scholar]
  31. MahmoudH.K. GomhaS.M. FarghalyT.A. AwadH.M. Synthesis of thiazole linked imidazo[2,1- b]thiazoles as anticancer agents.Polycycl. Aromat. Compd.20214181608162210.1080/10406638.2019.1689514
    [Google Scholar]
  32. OuakkiM. GalaiM. CherkaouiM. Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review.J. Mol. Liq.202234511781510.1016/j.molliq.2021.117815
    [Google Scholar]
  33. ZhangJ. ZhaoW.M. GuoW.Y. Theoretical evaluation of the corrosion inhibition performance of benzimidazole type corrosion inhibitors.J. Phys. Chem.20084712391244
    [Google Scholar]
  34. CaiJ.L. LiS. ZhouC.H. etc. Research progress on imidazole anticancer drugs.Zhongguo Xin Yao Zazhi20097598608
    [Google Scholar]
  35. WangJ. HuoS. WangJ. YangS. ChenK. LiC. FangD. FangZ. SongP. WangH. Green and facile synthesis of bio-based, flame-retardant, latent imidazole curing agent for single-component epoxy resin.ACS Appl. Polym. Mater.2022453564357410.1021/acsapm.2c00138
    [Google Scholar]
  36. WangJ. DingX. LanZ. LiuG. HouS. HouS. Imidazole compounds: Synthesis, characterization and application in optical analysis.Crit. Rev. Anal. Chem.202212610.1080/10408347.2021.2023459 35001757
    [Google Scholar]
  37. ChenW.C. ZhuZ.L. LeeC.S. Organic light-emitting diodes based on imidazole semiconductors.Adv. Opt. Mater.2018618180025810.1002/adom.201800258
    [Google Scholar]
  38. YinC. DongJ. ZhangZ. ZhangQ. LinJ. Structure and properties of polyimide fibers containing benzimidazole and amide units.J. Polym. Sci., B, Polym. Phys.201553318319110.1002/polb.23606
    [Google Scholar]
  39. PurushottamacharP. RamalingamS. NjarV.C.O. Development of benzimidazole compounds for cancer therapy.In:Chemistry and Applications of Benzimidazole and Its Derivatives.Intech Open2019115
    [Google Scholar]
  40. LeeY.T. TanY.J. OonC.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine.Acta Pharm. Sin. B202313247849710.1016/j.apsb.2022.09.010 36873180
    [Google Scholar]
  41. DennieT.W. KolesarJ.M. Bendamustine for the treatment of chronic lymphocytic leukemia and rituximab-refractory, indolent B-cell non-hodgkin lymphoma.Clin. Ther.200931Pt 22290231110.1016/j.clinthera.2009.11.031 20110042
    [Google Scholar]
  42. WangY.L. Research progress in the synthesis and application of benzimidazole and its derivatives.Organic Chemistry.2006282210212
    [Google Scholar]
  43. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. An Overview on Biological Activity of Benzimidazole Derivatives.Materials Horizons.From Nature to Nanomaterials. Nanostructured Biomaterials202235137810.1007/978‑981‑16‑8399‑2_9
    [Google Scholar]
  44. ZhaoD.D. Study on the synthesis and reaction mechanism of benzimidazole and its derivatives.Nanjing University of Technology2016
    [Google Scholar]
  45. WangJ. LiW. ChuH.T. Green synthesis of 2-benzimidazole under microwave radiation.Chem. Res. Appl.2013253423426
    [Google Scholar]
  46. LikhanovaN.V. Martínez-PalouR. VelozM.A. MatíasD.J. Reyes-CruzV.E. HöpflH. OlivaresO. Microwave‐assisted synthesis of 2‐(2‐pyridyl)azoles. Study of their corrosion inhibiting properties.J. Heterocycl. Chem.200744114515310.1002/jhet.5570440123
    [Google Scholar]
  47. BendaleP.M. SunC.M. Rapid microwave-assisted liquid-phase combinatorial synthesis of 2-(arylamino)benzimidazoles.J. Comb. Chem.20024435936110.1021/cc0200080 12099854
    [Google Scholar]
  48. CreenciaE.C. KosakaM. MuramatsuT. KobayashiM. IizukaT. HoraguchiT. Microwave‐assisted Cadogan reaction for the synthesis of 2‐aryl‐2 H ‐indazoles, 2‐aryl‐1 H ‐benzimidazoles, 2‐carbonylindoles, carbazole, and phenazine.J. Heterocycl. Chem.20094661309131710.1002/jhet.267
    [Google Scholar]
  49. LiuB. WangZ.C. SunK. TangS. WangX. Silver-mediated radical trifluoromethy-lthiolation cyclization: Synthesis of CF3S-containing benzimidazole[2,1-a]isoquinolines.Org. Chem.20224251387139510.6023/cjoc202203053
    [Google Scholar]
  50. MaB. ZhangJ. MiY. MiaoQ. TanW. GuoZ. Preparation of imidazole acids grafted chitosan with enhanced antioxidant, antibacterial and antitumor activities.Carbohydr. Polym.202331512097810.1016/j.carbpol.2023.120978 37230617
    [Google Scholar]
  51. TheodoreC.E. SivaiahG. PrasadS.B.B. KumarK.Y. RaghuM.S. AlharethyF. PrashanthM.K. JeonB-H. Design, synthesis, anticancer activity and molecular docking of novel 1H-benzo[d]imidazole derivatives as potential EGFR inhibitors.J. Mol. Struct.2023129413634110.1016/j.molstruc.2023.136341
    [Google Scholar]
  52. WykoskyJ. FentonT. FurnariF. CaveneeW.K. Therapeutic targeting of epidermal growth factor receptor in human cancer: Successes and limitations.Chin. J. Cancer201130151210.5732/cjc.010.10542 21192840
    [Google Scholar]
  53. KaldhiD. VodnalaN. GujjarappaR. NayakS. RavichandiranV. GuptaS. HazraC.K. MalakarC.C. Organocatalytic oxidative synthesis of C2-functionalized benzoxazoles, naphthoxazoles, benzothiazoles and benzimidazoles.Tetrahedron Lett.201960322322910.1016/j.tetlet.2018.12.017
    [Google Scholar]
  54. KabiA.K. GujjarappaR. RoyA. SahooA. MusibD. VodnalaN. SinghV. MalakarC.C. Transition-metal-free transfer hydrogenative cascade reaction of nitroarenes with amines/alcohols: Redox-economical access to benzimidazoles.J. Org. Chem.20218621145971460710.1021/acs.joc.1c01450 34662119
    [Google Scholar]
  55. BrainC.T. BruntonS.A. An intramolecular palladium-catalysed aryl amination reaction to produce benzimidazoles.Tetrahedron Lett.200243101893189510.1016/S0040‑4039(02)00132‑6
    [Google Scholar]
  56. LiuJ.C. ChenQ.Y. The synthesis and application of imidazole pyridine compounds.Chemical Progress.20102204631638
    [Google Scholar]
  57. KalininA.A. VoloshinaA.D. KulikN.V. ZobovV.V. MamedovV.A. Antimicrobial activity of imidazo[1,5-a]quinoxaline derivatives with pyridinium moiety.Eur. J. Med. Chem.20136634535410.1016/j.ejmech.2013.05.038 23811259
    [Google Scholar]
  58. AbdelhamidA.O. El-IdreesyT.T. AbdelriheemN.A. DawoudH.R.M. Green one‐pot solvent‐free synthesis of pyrazolo[1,5‐ a]pyrimidines, Azolo[3,4‐ d]pyridiazines, and Thieno[2,3‐ b]pyridines containing triazole moiety.J. Heterocycl. Chem.201653371071810.1002/jhet.2343
    [Google Scholar]
  59. EmmitteK.A. WilsonB.J. BaumE.W. EmersonH.K. KuntzK.W. NailorK.E. SalovichJ.M. SmithS.C. CheungM. GerdingR.M. StevensK.L. UehlingD.E. MookR.A.Jr MoorthyG.S. DickersonS.H. HassellA.M. Anthony LeesnitzerM. ShewchukL.M. GroyA. RowandJ.L. AndersonK. AtkinsC.L. YangJ. SabbatiniP. KumarR. Discovery and optimization of imidazo[1,2-a]pyridine inhibitors of insulin-like growth factor-1 receptor (IGF-1R).Bioorg. Med. Chem. Lett.20091931004100810.1016/j.bmcl.2008.11.058 19101143
    [Google Scholar]
  60. MosbyW.L. Heterocyclic systems with bridgehead nitrogen atoms.John Wiley & Sons200950
    [Google Scholar]
  61. AkbarzadehR. ShakibaeiG.I. BazgirA. An efficient synthesis of ferrocenyl imidazo[1,2-a]pyridines.Monatsh. Chem.2010141101077108110.1007/s00706‑010‑0372‑7
    [Google Scholar]
  62. HumphriesA.C. GanciaE. GilliganM.T. GoodacreS. HallettD. MerchantK.J. ThomasS.R. 8-Fluoroimidazo[1,2-a]pyridine: Synthesis, physicochemical properties and evaluation as a bioisosteric replacement for imidazo[1,2-a]pyrimidine in an allosteric modulator ligand of the GABAA receptor.Bioorg. Med. Chem. Lett.20061661518152210.1016/j.bmcl.2005.12.037 16386901
    [Google Scholar]
  63. LiaoQ. ZhangL. LiS. XiC. Domino N-H/C-H bond activation: Copper-catalyzed synthesis of nitrogen-bridgehead heterocycles using azoles and 1,4-dihalo-1,3-dienes.Org. Lett.201113222823110.1021/ol1026365 21141932
    [Google Scholar]
  64. ChenJ.J. GolebiowskiA. McClenaghanJ. KlopfensteinS.R. WestL. Universal Rink–isonitrile resin: Application for the traceless synthesis of 3-acylamino imidazo[1,2- a]pyridines.Tetrahedron Lett.200142122269227110.1016/S0040‑4039(01)00159‑9
    [Google Scholar]
  65. LyonM.A. KercherT.S. Glyoxylic acid and MP-glyoxylate: Efficient formaldehyde equivalents in the 3-CC of 2-aminoazines, aldehydes, and isonitriles.Org. Lett.20046264989499210.1021/ol0478234 15606117
    [Google Scholar]
  66. KamalA. DevaiahV. ReddyK.L. Rajender ShettiR.V.C.R.N.C. ShankaraiahN. Efficient solid-phase synthesis of a library of imidazo[1,2-a]pyridine-8-carboxamides.J. Comb. Chem.20079226727410.1021/cc060141i 17319727
    [Google Scholar]
  67. VarmaR.S. KumarD. Microwave-accelerated three-component condensation reaction on clay: Solvent-free synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines.Tetrahedron Lett.199940437665766910.1016/S0040‑4039(99)01585‑3
    [Google Scholar]
  68. OdellL.R. NilssonM.T. GisingJ. LagerlundO. MuthasD. NordqvistA. KarlénA. LarhedM. Functionalized 3-amino-imidazo[1,2-a]pyridines: A novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors.Bioorg. Med. Chem. Lett.200919164790479310.1016/j.bmcl.2009.06.045 19560924
    [Google Scholar]
  69. Mert-BalciF. ConradJ. BeifussU. Microwave-assisted three-component reaction in conventional solvents and ionic liquids for the synthesis of amino-substituted imidazo[1,2-a]pyridines.ARKIVOC20122012324325610.3998/ark.5550190.0013.318
    [Google Scholar]
  70. DeviN. SinghD. SunkariaR.K. MalakarC.C. MehraS. RawalR.K. SinghV. In(OTf) 3 ‐HBF 4 assisted multicomponent approach for one‐pot synthesis of pyrazolopyridinone fused imidazopyridines.ChemistrySelect20161154696470310.1002/slct.201601133
    [Google Scholar]
  71. DeviN. SinghD. KaurG. MorS. PuttaV.P.R.K. PolinaS. MalakarC.C. SinghV. In(OTf) 3 assisted synthesis of β-carboline C-3 tethered imidazo[1,2-a]azine derivatives.New J. Chem.20174131082109310.1039/C6NJ03210A
    [Google Scholar]
  72. SinghD. SharmaS. ThakurR.K. Vaishali NainS. Jyoti MalakarC.C. SinghV. Cu-catalysed diversity-oriented synthesis of isoxazole and imidazo[1,2-a]azine conjugates.Tetrahedron20241521513380910.1016/j.tet.2023.133809
    [Google Scholar]
  73. SinghV. SinghM. VaishaliV. DeepikaD. JyotiJ. SharmaS. BanyalN. KumarP. BudhalakotiB. MalakarC.C. Transition-metal-free cascade C–N bond formation: An effective strategy for the synthesis of β-carboline n-fused imidazolium acetates and estimation of their light-emitting properties.Synthesis202355203329334110.1055/s‑0041‑1738447
    [Google Scholar]
  74. SinghD. KumarV. DeviN. MalakarC.C. ShankarR. SinghV. Metal–free decarboxylative amination: An alternative approach towards regioselective synthesis of β‐carboline n ‐fused imidazoles.Adv. Synth. Catal.201735971213122610.1002/adsc.201600970
    [Google Scholar]
  75. IbrahimS.A. Al-MhyawiS.R. AtlamF.M. New imidazole-2-ones and their 2-thione analogues as anticancer agents and CAIX inhibitors: Synthesis, in silico ADME and molecular modeling studies.Bioorg. Chem.202314110687210.1016/j.bioorg.2023.106872 37776683
    [Google Scholar]
  76. RoyD. AnasM. ManhasA. SahaS. KumarN. PandaG. Synthesis, biological evaluation, structure − Activity relationship studies of quinoline-imidazole derivatives as potent antimalarial agents.Bioorg. Chem.202212110567110.1016/j.bioorg.2022.105671 35168120
    [Google Scholar]
  77. LouY. CaoP. JiaT. ZhangY. WangM. LiaoJ. Copper-catalyzed enantioselective 1,6-boration of para-quinone methides and efficient transformation of gem-diarylmethine boronates to triarylmethanes.Angew. Chem. Int. Ed.20155441121341213810.1002/anie.201505926 26384020
    [Google Scholar]
  78. HusseinW. ZitouniT.J. Synthesis of 1,2,3-thiadiazole and thiazole-based strobilurins as potent fungicide candidates.J. Agric. Food Chem.201765474575110.1021/acs.jafc.6b05128
    [Google Scholar]
  79. FnfoonD.Y. Al-AdileeK.J. Synthesis and spectral characterization of some metal complexes with new heterocyclic azo imidazole dye ligand and study biological activity as anticancer.J. Mol. Struct.2023127113408910.1016/j.molstruc.2022.134089
    [Google Scholar]
  80. SavićJ. VasićV. Complex formation between Pd(II) and immobilized imidazol-azo-chromotropic acid.Acta Chim. Slov.2006533642
    [Google Scholar]
  81. JaradA.J. SuhailK.F. HussienA.L. Al-Mustansiriya. Synthesis and spectroscopic studies of new heterocyclic azo dye and their complexes with selected metal ion.J. Sci.2010216251257
    [Google Scholar]
  82. JaberS.A. KyhoieshH.A. JawadS.H. Synthesis, characterization and biological activity studies of Cadmium (II) complex derived from azo ligand 2-[2\-(5-Bromo Thiazolyl) Azo]-5-dimethyl amino benzoic acid.J. Phys. Conf. Ser.2021181801201310.1088/1742‑6596/1818/1/012013
    [Google Scholar]
  83. FnfoonD.Y. Al-AdileeK.J. Synthesis and spectral characterization of some metal complexes with new heterocyclic azo imidazole dye ligand and study biological activity as anticancer.J. Mol. Struct.2023127113408910.1016/j.molstruc.2022.134089
    [Google Scholar]
  84. MahdiM.A. LaythS. Synthesis, spectral and biological studies of Co (III), Ni (II), and Cu (II) complexes with new heterocyclic ligand derived from azo dye.Syst. Rev. Pharm.202112142643410.31838/srp.2021.1.63
    [Google Scholar]
  85. Al-AdileeK.J. JawadS.H. KyhoieshH.A.K. HassanH.M. Synthesis, characterization, biological applications, and molecular docking studies of some transition metal complexes with azo dye ligand derived from 5-methyl imidazole.J. Mol. Struct.2024129513669510.1016/j.molstruc.2023.136695
    [Google Scholar]
  86. Al-AdileeK. HusseinA.K. Preparation and identification of some metal complexes with new heterocyclic azo dye ligand 2-[2-(1-Hydroxy-4-Chloro phenyl) azo]-imidazole and their spectral and thermal studies.J. Mol. Struct.2017113716017810.1016/j.molstruc.2017.01.054
    [Google Scholar]
  87. KyhoieshH.A.K. Al-AdileeK.J. Pt(IV) and Au(III) complexes with tridentate-benzothiazole based ligand: Synthesis, characterization, biological applications (antibacterial, antifungal, antioxidant, anticancer and molecular docking) and DFT calculation.Inorg. Chim. Acta202355512159810.1016/j.ica.2023.121598
    [Google Scholar]
  88. Al-AdileeK.J. KyhoieshH.A.K. TaherA.M. Synthesis, characterization, biological studies, molecular docking and theoretical calculation of some transition metal complexes with new azo dye 2-[2′-(6-methoxybenzothiazolyl)azo]-3-methyl-4-nitrophenol.Results in Chemistry2022410050010.1016/j.rechem.2022.100500
    [Google Scholar]
  89. KyhoieshH.A.K. Al-AdileeK.J. Synthesis, spectral characterization and biological activities of Ag(I), Pt(IV) and Au(III) complexes with novel azo dye ligand (N, N, O) derived from 2-amino-6-methoxy benzothiazole.Chem. Zvesti20227652777281010.1007/s11696‑022‑02072‑9
    [Google Scholar]
  90. AdhikaryJ. DasB. ChatterjeeS. DashS.K. ChattopadhyayS. RoyS. ChenJ.W. ChattopadhyayT. Ag/CuO nanoparticles prepared from a novel trinuclear compound [Cu(Imdz)4 (Ag(CN)2)2] (Imdz = imidazole) by a pyrolysis display excellent antimicrobial activity.J. Mol. Struct.2016111391710.1016/j.molstruc.2016.02.029
    [Google Scholar]
  91. NasrollahzadehM.S. EskandarpourV. MalekiM.F. EisvandF. MashreghiM. HadizadehF. Tayarani-NajaranZ. GhodsiR. Design, synthesis and biological evaluation of novel imidazole-based benzamide and hydroxamic acid derivatives as potent histone deacetylase inhibitors and anticancer agents.J. Mol. Struct.2024129713695110.1016/j.molstruc.2023.136951
    [Google Scholar]
  92. HadizadehF. GhodsiR. Synthesis of novel N-substituted imidazolecarboxylic acid hydrazides as monoamine oxidase inhibitors.Farmaco200560323724010.1016/j.farmac.2004.12.007 15784243
    [Google Scholar]
  93. ArjomandiO.K. SaemianN. ShirvaniG. JavaheriM. EsmailliK. Strategy for 14C‐labeling of a series of bis(heteroaryl) piperazines.J. Labelled Comp. Radiopharm.201154736336610.1002/jlcr.1880
    [Google Scholar]
  94. ChennamsettiP. ChevulaK. PatnamN. ThummaV. MangaV. Design, synthesis of novel substituted imidazole derivatives: Cytotoxicity and molecular docking studies.Chemical Data Collections20234710106110.1016/j.cdc.2023.101061
    [Google Scholar]
  95. TaperaM. KekeçmuhammedH. SarıpınarE. DoğanM. TüzünB. KoçyiğitÜ.M. ÇetinF.N. Molecular hybrids integrated with imidazole and hydrazone structural motifs: Design, synthesis, biological evaluation, and molecular docking studies.J. Mol. Liq.202339112324210.1016/j.molliq.2023.123242
    [Google Scholar]
  96. ÇetinerG. Acar ÇevikU. CelikI. BostancıH.E. ÖzkayY. KaplancıklıZ.A. New imidazole derivatives as aromatase inhibitor: Design, synthesis, biological activity, molecular docking, and computational ADME-Tox studies.J. Mol. Struct.2023127813492010.1016/j.molstruc.2023.134920
    [Google Scholar]
  97. LiuL.X. WangX.Q. YanJ.M. LiY. SunC.J. ChenW. ZhouB. ZhangH.B. YangX.D. Synthesis and antitumor activities of novel dibenzo[b,d]furan–imidazole hybrid compounds.Eur. J. Med. Chem.20136642343710.1016/j.ejmech.2013.06.011 23831807
    [Google Scholar]
  98. CaoR. ChenQ. HouX. ChenH. GuanH. MaY. PengW. XuA. Synthesis, acute toxicities, and antitumor effects of novel 9-substituted β-carboline derivatives.Bioorg. Med. Chem.200412174613462310.1016/j.bmc.2004.06.038 15358288
    [Google Scholar]
  99. KimD.K. RyuD.H. LeeJ.Y. LeeN. KimY.W. KimJ.S. ChangK. Synthesis and biological evaluation of novel A-ring modified hexacyclic camptothecin analogues.J. Med. Chem.2001441594160210.1021/jm0004751 11334569
    [Google Scholar]
  100. SaeedA. SolimanA.M. Al-TaisanK.M. Abdel-LatifE. AhmedA.A.A. AlaizeriZ.M. AlhadlaqH.A. Synthesis and molecular docking of new indeno[1,2-d]imidazole, indeno[1,2-e]triazine, indeno[1,2-c]pyrazole, and indeno[1,2-b]pyrrole polycyclic compounds as antibacterial and antioxidant agents.J. Mol. Struct.2023128913576310.1016/j.molstruc.2023.135763
    [Google Scholar]
  101. LengyelI. PatelH.J. StephaniR.A. The preparation and characterization of nineteen new phthalidyl spirohydantoins.Heterocycles20077334937510.3987/COM‑07‑S(U)9
    [Google Scholar]
  102. GhalibR.M. MehdiS.H. HashimR. AlshahateetS.F. SulaimanO. A facile approach for the synthesis of indenoimidazole derivatives and their supramolecular study.J. Chem. Sci.2016128121841184710.1007/s12039‑016‑1181‑2
    [Google Scholar]
  103. ZarenezhadE. BehrouzS. BehrouzM. RadM.N.S. RadS. Synthesis, anti-microbial, antifungal and in silico assessment of some 2,4,5-trisubstituted imidazole analogues.J. Mol. Struct.2024129613683910.1016/j.molstruc.2023.136839
    [Google Scholar]
  104. NikitinaP.A. BasanovaE.I. NikolaenkovaE.B. Os’kinaI.A. SerovaO.A. BormotovN.I. ShishkinaL.N. PerevalovV.P. TikhonovA.Y. Synthesis of esters and amides of 2-aryl-1-hydroxy-4-methyl-1H-imidazole-5-carboxylic acids and study of their antiviral activity against orthopoxviruses.Bioorg. Med. Chem. Lett.20237912908010.1016/j.bmcl.2022.129080 36414175
    [Google Scholar]
  105. MageedA.H. AliW.H. Synthesis, and study biological activity of CuI complexes involving imidazole-2-selones as ligands.J. Organomet. Chem.2023100112289010.1016/j.jorganchem.2023.122890
    [Google Scholar]
  106. StarikovaO.V. DolgushinG.V. LarinaL.I. UshakovP.E. KomarovaT.N. LopyrevV.A. Synthesis of 1,3-dialkylimida-zolium and 1,3-dialkylbenzimidazolium salts.Russ. J. Org. Chem.200339101467147010.1023/B:RUJO.0000010563.79902.47
    [Google Scholar]
  107. UngerY. ZellerA. TaigeM.A. StrassnerT. Near-UV phosphorescent emitters: N-heterocyclic platinum(ii) tetracarbene complexes.Dalton Trans.2009244786479410.1039/b900655a 19513490
    [Google Scholar]
  108. AbbasS.K. HanoonH.D. Al-SaadiN.H. Ultrasound-assistance one-pot synthesis of 1,2,4,5-tetrasubstituted imidazole derivatives and their in vitro anti-urolithiasis activities.Chemical Data Collections20234610105310.1016/j.cdc.2023.101053
    [Google Scholar]
  109. XiaY. ZhuG. ZhangX. LiS. DuL. ZhuW. Biosynthesis of 4-Acyl-5-aminoimidazole alkaloids featuring a new friedel–crafts acyltransferase.J. Am. Chem. Soc.202314548263082631710.1021/jacs.3c09522 37983668
    [Google Scholar]
  110. LanciniG.C. KluepfelD. LazzariE. Origin of the nitro group of azomycin.Biochim. Biophys. Acta, Gen. Subj.1966130374410.1016/0304‑4165(66)90006‑7
    [Google Scholar]
  111. LanciniC.G. LazzariE. SartoriC. Microbial oxidation of aminoimidazoles to nitroimidazoles.J. Antibiot.196821638739210.7164/antibiotics.21.387 5723081
    [Google Scholar]
  112. SekiY. NakamuraT. OkamiY. Accumulation of 2-aminoimidazole by Streptomyces eurocidicus.J. Biochem.197067338939610.1093/oxfordjournals.jbchem.a129262 5424371
    [Google Scholar]
  113. NakaneA. NakamuraT. EguchiY. A novel metabolic fate of arginine in Streptomyces eurocidicus. Partial resolution of the pathway and identification of an intermediate.J. Biol. Chem.1977252155267527310.1016/S0021‑9258(19)63342‑9 885851
    [Google Scholar]
  114. HedgesJ.B. RyanK.S. In vitro reconstitution of the biosynthetic pathway to the nitroimidazole antibiotic azomycin.Angew. Chem. Int. Ed. Engl.20195834116471165110.1002/anie.201903500
    [Google Scholar]
  115. ChengB. GuoH. WangH. ZhaoQ. LiuW. Dissection of the enzymatic process for forming a central imidazopiperidine heterocycle in the biosynthesis of a series c thiopeptide antibiotic.J. Am. Chem. Soc.202114334137901379710.1021/jacs.1c05956 34405994
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298313032240529094738
Loading
/content/journals/mroc/10.2174/0118756298313032240529094738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test